CPSC 440: Advanced Machine Learning More DAGs 3

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Learning in DAG Models

- Learning in DAGs involves fitting each $p(x_j \mid x_{pa(j)})$:
 - Set $\bar{y}^i = x^i_j$ and $\bar{x}^i = x^i_{\mathsf{pa}(j)}$.
 - **2** Solve a supervised learning problem using $\{\bar{X}, \bar{y}\}$.
 - Gives you a model of $p(x_j | x_{pa(j)})$.
- \bullet Combine the d regression/classification models as the density estimator.
 - We've turned unsupervised learning into supervised learning.
- We can use our usual tricks:
 - Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
 - With least squares for continuos x_j it's called a Gaussian belief network.
 - With logistic regression for binary x_j it's called a sigmoid belief networks.
 - Don't need Markov assumptions to tractably fit these models.

DAGs: Big Picture

- Setting the parameters of a DAG model:
 - Get the graph from an expert, or learn the graph (later).
 - Given the conditional probabilities from an expert, or learn them from data.
 - Counting if you use general discrete distribution for conditionals.
 - Supervised learning for conditions.
 - Combine either of the above with EM if you have hidden/missing values.

• Inference in DAG models:

- Can use Monte Carlo approximations with ancestral sampling:
 - Sample x_1 from $p(x_1)$, x_2 from $p(x_2 \mid x_{pa(2)})$, x_3 from $p(x_3 \mid x_{pa(3)})$,...
- Can use dynamic programming for exact inference with discrete x_j .
 - Also works if all $p(x_j \mid x_{pa(j)})$ are Gaussian.
 - But dynamic programming may be too expensive (today).

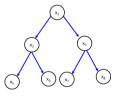
Inference in Forest DAGs ("Belief Propagation")

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{given} p(x_{\mathsf{pa}(j)}).$$

which works if each node has at most one parent.

- Such graphs are called trees (connected), or forests (disconnected).
 - Also called "singly-connected".



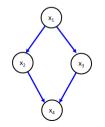
- Forests allow efficient dynamic programming methods as in Markov chains.
 - In particular, decoding and univariate marginals/conditionals in $O(dk^2)$.
 - Forward-backward applied to tree-structured graphs is called belief propagation.

Inference in General DAGs

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

- What goes wrong if nodes have multiple parents?
 - The expression $p(x_{pa(j)})$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:



DAG Wrap-Up

Inference in General DAGs

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

= $\sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_2, x_3) p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)$
= $\sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) \underbrace{\sum_{x_1} p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)}_{M_{23}(x_2, x_3)}$

• Dependencies between $\{x_1, x_2, x_3\}$ mean our message depends on two variables.

$$p(x_4) = \sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) M_{23}(x_2, x_3)$$
$$= \sum_{x_3} M_{34}(x_3, x_4),$$

Inference in General DAGs

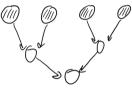
- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

(the same cost as enumerating all possible assignments)

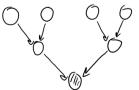
- Unfortunately, cost is not as simple as counting number of parents.
 - Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and computing marginals is #P-hard in general.
 - We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
 - We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.



- Hard to condition on the last variables in the order:
 - Conditioning on descendent makes ancestors dependent.

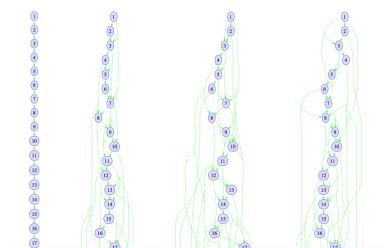


DAG Structure Learning

- Structure learning is the problem of choosing the graph.
 - Input is data X.
 - Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
 - So the parents of j must be chosen from $\{1,2,\ldots,j-1\}.$
- Given the ordering, structure learning reduces to feature selection:
 - Select features $\{x_1, x_2, \ldots, x_{j-1}\}$ that best predict "label" x_j .
 - We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

- Structure learning in rain data using L1-regularized logistic regression.
 - For different λ values, assuming chronological ordering.

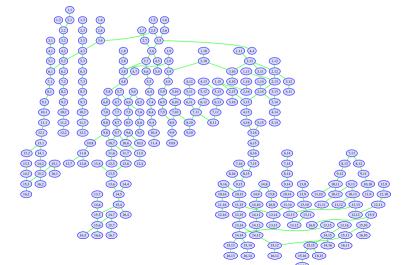


DAG Structure Learning without an Ordering

- Without an ordering, a common approach is "search and score"
 - Define a score for a particular graph structure (like BIC or other L0-regularizers).
 - Search through the space of possible DAGs.
 - "DAG-Search": at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
 - Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
 - For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
 - Score is symmetric if score $(x_j \to x_{j'})$ is the same as score $(x_{j'} \to x_j)$.
 - For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).



DAG Wrap-Up

20 Newsgroups Data

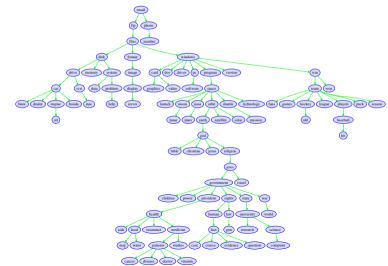
• Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

• Structure learning should give some relationship between word occurrences.

Structure Learning on News Words

Optimal tree on newsgroups data:



DAG Wrap-Up

Undirected Graphical Models

Outline

1 DAG Wrap-Up

2 Undirected Graphical Models

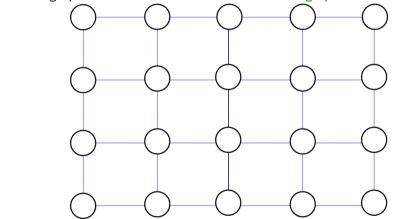
Directed vs. Undirected Models

• In some applications we have a natural ordering of the x_j .

- In the "rain" data, the past affects the future.
- In some applications we don't have a natural order.
 - E.g., pixels in an image.
- In these settings we often use undirected graphical models (UGMs).
 - Also known as Markov random fields (MRFs) and originally from statistical physics.
 - Another name is "Markov networks".

Directed vs. Undirected Models

• Undirected graphical models are based on undirected graphs:



• They are a classic way to model dependencies in images:

• Can capture dependencies between neighbours without imposing an ordering.

Multi-Label Classification

• Consider multi-label classification:

female/indoor/portrait

sky/plant life/tree

water/animals/sea

animals/dog/indoor

indoor/flower/plant life

http://proceedings.mlr.press/v37/chenb15.pdf

- Flickr dataset: each image can have multiple labels (out of 38 possibilities).
- Use neural networks to generate "factors" in an undirected model.
 - Decoding undirected model makes predictions accounting for label correlations.
 - We'll discuss how neural networks and density models fit together later.

Multi-Label Classification

• Learned correlation matrix:

female	0.	00	0.68	0	.04	0.06	0.02	0.24	0.03	-0.00	-0.01	0.01	0.04	-0.00	-0.05	-0.01	0.07	-0.01	-0.00	-0.12	0.04	0.01	0.01	0.02	0.04	0.02
people			0.00			0.06			0.03																	-0.03
indoor	0.	04	0.06	0	.00	0.05	-0.06	0.07	-0.12	-0.07	-0.35	-0.03	-0.46	-0.02	-0.34	0.11	0.02	-0.15	-0.14	-0.01	-0.07	-0.21	0.03	-0.08	0.06	-0.03
baby	0.	06	0.06	0	.05	0.00	0.10	0.11	0.07	0.09	0.03	0.10	0.01	0.10	0.02	0.09	0.06	0.08	0.07	0.07	0.08	0.06	0.09	0.09	0.08	0.10
sea	0.	02	-0.0	0 -	0.06	0.10	0.00	0.04	0.08	0.05	0.16		-0.02	0.09	-0.02	0.06	0.03		0.36	0.06	0.05	0.01	0.08	0.14	0.06	0.10
portrait	0.	24	0.36	0	.07	0.11	0.04	0.00	0.01	0.03	-0.02	0.05	-0.02	0.04	-0.01	0.03	0.12	0.02	0.01	-0.07	0.05	0.05	0.03	0.04	0.07	0.05
transport	0.	03	0.03	-	0.12	0.07	0.08	0.01	0.00	0.02	0.14	0.07		0.04	0.05	0.03	0.06	80.0	0.07	-0.03	0.36	0.10	0.04	0.05	0.04	0.07
flower	-0	0.00	-0.0	8 -	0.07	0.09	0.05	0.03	0.02	0.00	0.02	0.07	-0.03	0.07	0.34	0.04	-0.04	0.04	0.04	0.02	0.05	0.06	0.06	0.06	0.02	0.07
sky	-0	0.01	-0.0	5 -	0.35	0.03		-0.03	0.14	0.02	0.00	0.12	0.22	0.04	0.24	-0.02	-0.00	0.44	0.12	-0.04	0.10	0.30	0.01	0.23	0.05	0.11
lake	0.	01	-0.0	3 -	0.03	0.10		0.05	0.07	0.07	0.12	0.00	-0.00	0.09	0.09	0.07	0.01	0.12	0.26	0.06	0.06	0.10	0.07	0.12	0.07	0.18
structures	0.	04	0.02	-	0.46	0.01	-0.02	-0.03	0.14	-0.03		-0.00	0.00	0.01	0.04	-0.05	0.06	0.08	-0.04	-0.06		0.09	-0.00	0.06	0.03	0.02
bird	-0	0.00	-0.0	6 -	0.02	0.10	0.09	0.04	0.04	0.07	0.04	0.09	0.01	0.00	0.04	0.07	-0.01	0.06	0.09	0.26	0.06	0.05	0.07	0.09	0.05	0.09
plant life	-0	.05	-0.1	2 -	0.34	0.02	-0.02	-0.03	0.05	0.34	0.24	0.09	0.04	0.04	0.00	-0.03	-0.07	0.09	0.01	0.01	0.08	0.68	0.02	0.05	-0.07	0.10
food	-0	0.01	-0.0	5 0	.11	0.09	0.06	0.03	0.03	0.04	-0.02	0.07	-0.05	0.07	-0.03	0.00	-0.01	0.03	0.03	0.03	0.05	0.01	0.06	0.06	0.04	0.07
male	0.	07	0.74	0	.02	0.06	0.03	0.12	0.06	-0.04	-0.00	0.01	0.06	-0.01	-0.07	-0.01	0.00	0.00	-0.01	-0.10	0.04	-0.02	0.01	0.00	0.06	0.01
clouds	-0	0.01	-0.0	4 -	0.15	0.08		0.02	0.08	0.04	0.44	0.12	0.08	0.06	0.09	0.03	0.00	0.00	0.09	-0.00	0.07	0.11	0.05	0.22	-0.01	0.10
water	-0	.00	-0.0	3 -	0.14	0.07	0.36	0.01	0.07	0.04	0.12	0.26	-0.04	0.09	0.01	0.03	-0.01	0.09	0.00	0.05	0.02	0.03	0.05	0.10	0.03	0.27
animals	-0	.12	-0.2	1 -	0.01	0.07	0.06	-0.0	-0.03	0.02	-0.04	0.06	-0.06	0.26	0.01	0.03	-0.10	-0.00	0.05	0.00	0.02	0.00		0.03	-0.01	0.05
car	0.	04	0.01	-	0.07	0.08	0.05	0.05	0.36	0.05	0.10	0.06		0.06	0.08	0.05	0.04	0.07	0.02	0.02	0.00	0.11	0.06	0.08	0.07	0.06
tree	0.	01	-0.0	3 -	0.21	0.06	0.01	0.05	0.10	0.06	0.30	0.10	0.09	0.05	0.68	0.01	-0.02	0.11	0.03	0.00	0.11	0.00	0.04	0.09	-0.00	0.12
dog	0.	01	-0.0	3 0	.03	0.09	0.08	0.03	0.04	0.06	0.01	0.07	-0.00	0.07	0.02	0.06	0.01	0.05	0.05		0.06	0.04	0.00	0.06	0.05	0.07
sunset	0.	02	-0.0	3 -	0.08	0.09	0.14	0.04	0.05	0.06		0.12	0.06	0.09	0.05	0.06	0.00		0.10	0.03	0.08	0.09	0.06	0.00	0.06	0.10
night	0.	04	0.05	0	.06	0.08	0.06	0.07	0.04	0.02	0.05	0.07	0.03	0.05	-0.07	0.04	0.06	-0.01	0.03	-0.01	0.07	-0.00	0.05	0.06	0.00	0.07
river							0.10	0.05	0.07	0.07					0.10				0.27			0.12				0.00
	,	Kon:	200 200	2	*nd	0°, '	. ⁵⁰³	40 ²	t air	2000 CT	SKA	1ate	220	STCENTO,	, ¹ 07.	, °°°	mare	, ^c zoł	A BE	anil.	Car	×.500	, ⁶ 00	SUN	, ¹ , 9,	t'i ver
		4	~o `	~~	۰ و	ο _γ *			~~ `	0.0	04			8	r v	۲, ۲			°S	* .	92				°2 '	× ×
									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				840		`~; _*					0					
															S	`(	0									

http://proceedings.mlr.press/v37/chenb15.pdf

# Summary

- Inference in DAGs:
  - Ancestral sampling and Monte Carlo methods work as before.
  - Message-passing message sizes depend on graph structure.
- Structure learning is the problem of learning the graph structure.
  - Hard in general, but easy for trees and L1-regularization gives fast heuristic.
- Undirected graphical models do not require an ordering of the variables.
- Next time: easy conditional dependence and hard "everything else" in UGMs.

## "Constraint-Based" DAG Structure Learning

- Another common structure learning approach is "constraint-based":
  - Based on performing a sequence of conditional independence tests.
  - Prune edge between  $x_i$  and  $x_j$  if you find variables S making them independent,

$$x_i \perp x_j \mid x_S.$$

- Challenge is considering exponential number of sets  $x_S$  (heuristic: "PC algorithm").
- Assumes "faithfulness" (all independences are reflected in graph).
  - Otherwise it's weird (a duplicated feature would be disconnected from everything.)