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Last Time: Learning in DAG Models

Learning in DAGs involves fitting each p(xj | xpa(j)):

1 Set ȳi = xij and x̄i = xipa(j).

2 Solve a supervised learning problem using {X̄, ȳ}.
Gives you a model of p(xj | xpa(j)).

Combine the d regression/classification models as the density estimator.

We’ve turned unsupervised learning into supervised learning.

We can use our usual tricks:

Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
With least squares for continuos xj it’s called a Gaussian belief network.
With logistic regression for binary xj it’s called a sigmoid belief networks.
Don’t need Markov assumptions to tractably fit these models.
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DAGs: Big Picture

Setting the parameters of a DAG model:

Get the graph from an expert, or learn the graph (later).
Given the conditional probabilities from an expert, or learn them from data.

Counting if you use general discrete distribution for conditionals.
Supervised learning for conditions.
Combine either of the above with EM if you have hidden/missing values.

Inference in DAG models:
Can use Monte Carlo approximations with ancestral sampling:

Sample x1 from p(x1), x2 from p(x2 | xpa(2)), x3 from p(x3 | xpa(3)),. . .

Can use dynamic programming for exact inference with discrete xj .

Also works if all p(xj | xpa(j)) are Gaussian.
But dynamic programming may be too expensive (today).
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Inference in Forest DAGs (“Belief Propagation”)

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

which works if each node has at most one parent.
Such graphs are called trees (connected), or forests (disconnected).

Also called “singly-connected”.

Forests allow efficient dynamic programming methods as in Markov chains.
In particular, decoding and univariate marginals/conditionals in O(dk2).
Forward-backward applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:
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Inference in General DAGs
We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),
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Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1− > x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.
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Conditional Sampling in DAGs
What about conditional sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, easy if we condition on the first variables in the order:

Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.
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DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.
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Example: Structure Learning in Rain Data Given Ordering
Structure learning in rain data using L1-regularized logistic regression.

For different λ values, assuming chronological ordering.



DAG Wrap-Up Undirected Graphical Models

DAG Structure Learning without an Ordering

Without an ordering, a common approach is “search and score”

Define a score for a particular graph structure (like BIC or other L0-regularizers).
Search through the space of possible DAGs.

“DAG-Search”: at each step greedily add, remove, or reverse an edge.

May have equivalent graphs with the same score (don’t trust edge direction).

Do not interpret causally a graph learned from data.

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be found by minimum spanning tree (“Chow-Liu”).

Score is symmetric if score(xj → xj′) is the same as score(xj′ → xj).

For asymetric scores, can be found by minimum spanning arborescence.
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Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).
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20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give some relationship between word occurrences.



DAG Wrap-Up Undirected Graphical Models

Structure Learning on News Words
Optimal tree on newsgroups data:
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Outline

1 DAG Wrap-Up

2 Undirected Graphical Models
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Directed vs. Undirected Models

In some applications we have a natural ordering of the xj .

In the “rain” data, the past affects the future.

In some applications we don’t have a natural order.

E.g., pixels in an image.

In these settings we often use undirected graphical models (UGMs).
Also known as Markov random fields (MRFs) and originally from statistical physics.

Another name is “Markov networks”.
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Directed vs. Undirected Models

Undirected graphical models are based on undirected graphs:

They are a classic way to model dependencies in images:
Can capture dependencies between neighbours without imposing an ordering.
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Multi-Label Classification

Consider multi-label classification:

http://proceedings.mlr.press/v37/chenb15.pdf

Flickr dataset: each image can have multiple labels (out of 38 possibilities).

Use neural networks to generate “factors” in an undirected model.

Decoding undirected model makes predictions accounting for label correlations.
We’ll discuss how neural networks and density models fit together later.

http://proceedings.mlr.press/v37/chenb15.pdf


DAG Wrap-Up Undirected Graphical Models

Multi-Label Classification
Learned correlation matrix:

http://proceedings.mlr.press/v37/chenb15.pdf

http://proceedings.mlr.press/v37/chenb15.pdf
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Summary

Inference in DAGs:

Ancestral sampling and Monte Carlo methods work as before.
Message-passing message sizes depend on graph structure.

Structure learning is the problem of learning the graph structure.

Hard in general, but easy for trees and L1-regularization gives fast heuristic.

Undirected graphical models do not require an ordering of the variables.

Next time: easy conditional dependence and hard “everything else” in UGMs.
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“Constraint-Based” DAG Structure Learning

Another common structure learning approach is “constraint-based”:

Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Challenge is considering exponential number of sets xS (heuristic: “PC algorithm”).
Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)
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