CPSC 440: Advanced Machine Learning More DAGs 2

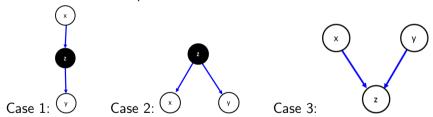
Mark Schmidt

University of British Columbia

Winter 2021

Last Time: D-Separation

- D-separation can be used to "read" conditional independence from graph.
 - Can be derived by considering DAG as "inheritance of genes".
- 3 Cases that can "block" a path between nodes:



- Case 1: Observing a variable in a "chain" blocks a path.
- Case 2: Observing a parent in a "fork" blocks a path.
- Case 3: Not observing a child in a "v-structure" blocks a path.
 - We say that variables are "d-separated" if every path between them is blocked.

D-Separation Case 3: Common Child

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 .

• But if z_2 is observed:

We have $x \not\perp y \mid z_2$: grandchild creates dependence even with unobserved parent.

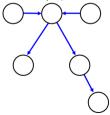
• Case 3 needs to consider descendants of child.

D-Separation Summary (MEMORIZE)

- We say that A and B are d-separated (conditionally independent) if all undirected paths P from A to B are "blocked" because at least one of the following holds:
 - P includes a "chain" with an observed middle node (e.g., Markov chain):

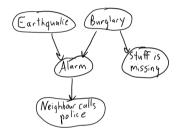
② P includes a "fork" with an observed parent node (e.g., naive Bayes):

 \bigcirc P includes a "v-structure" or "collider" (e.g., probabilistic PCA):



where the "child" and all its descendants are unobserved.

Alarm Example

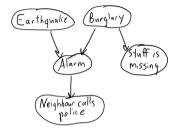


- Case 1:
 - Earthquake

 ∠ Call.
 - \bullet Earthquake \bot Call | Alarm.
- Case 2:

 - Alarm ⊥ Stuff Missing | Burglary.

Alarm Example



- Case 3:
 - \bullet Earthquake \bot Burglary.
 - - "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:

 - Earthquake ⊥ Stuff Missing.
 - Earthquake ∠ Stuff Missing | Call.

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by assumptions:

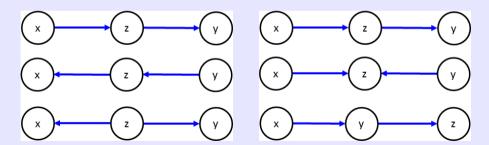
$$(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$$

- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the $p(x_i \mid x_{pa(i)})$.
 - Or some *orderings* of the chain rule may reveal different independences.
 - So lack of d-separation does not imply dependence.
- Instead of restricting to $\{1, 2, \dots, j-1\}$, consider general parent choices.
 - x_2 could be a parent of x_1 .
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).

(all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.
 - Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):



Discussion of D-Separation

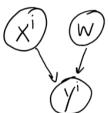
- So the graph is not necessarily unique and is not the whole story.
- But, we can already do a lot with d-separation:
 - Implies every independence/conditional-independence we've used in 340/440.
- Here we start blurring distinction between data/parameters/hyper-parameters...

Tilde Notation as a DAG

When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

this can be interpretd as a DAG model:



- "The variables on the right of \sim are the parents of the variables on the left".
 - In this case, w only depends on X since we know y.
- Note that we're now including both data and parameters in the graph.
 - This allows us to see and reason about their relationships.

IID Assumption as a DAG

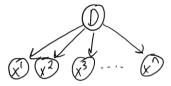
• During week 1, our first independence assumption was the IID assumption:



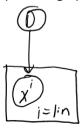
- \bullet Training/test examples come independently from data-generating process D.
- But D is unobserved, so knowing about some x^i tells us about the others.
 - This why the IID assumptions lets us learn.
- We'll use this understanding later to relax the IID assumption.
 - Bonus: using this to ask "when does semi-supervised learning make sense?"

Plate Notation

• Graphical representation of the IID assumption:

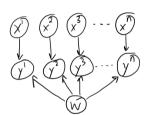


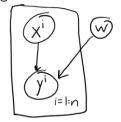
• It's common to represent repeated parts of graphs using plate notation:



Tilde Notation as a DAG

ullet If the x^i are IID then we can represent linear regression as





or

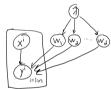
- From d-separation on this graph we have $p(y \mid X, w) = \prod_{i=1}^{n} p(y^i \mid x^i, w)$.
- ullet We often omit the data-generating distribution D.
 - But if you want to learn then you should remember that it's there.
- Note that plate reflects parameter tieing: that we use same w for all i.

Tilde Notation as a DAG

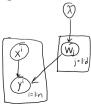
• When we do MAP estimation under the assumptions

$$y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

we can interpret it as the DAG model:



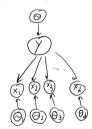
• Or introducing a second plate using:



Other Models in DAG/Plate Notation

• For naive Bayes we have

$$y^i \sim \mathsf{Cat}(\theta), \quad x^i \mid y^i = c \sim Cat(\theta_c).$$



Or in plate notation as

Outline

- D-Separation Discussion and Plate Notation
- 2 Learning in DAGs

Parameter Learning in General DAG Models

• The log-likelihood in DAG models is separable in the conditionals,

$$\log p(x \mid \Theta) = \log \prod_{j=1}^{d} p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j)$$
$$= \sum_{j=1}^{d} \log p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j)$$

- If each $p(x_i \mid x_{pa(i)})$ has its own parameters Θ_i , we can fit them independently.
 - Optimize $\log p(x_1 \mid \Theta_j)$, then $\log p(x_2 \mid x_1, \Theta_j)$ (if x_1 is a parent), and so on.
 - We've done this for: naive Bayes, Gaussian discriminant analysis, M-step for mixtures.
- Sometimes you want to have tied parameters $(\Theta_i = \Theta_{i'})$
 - Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
 - Not separable, and need to fit $p(x_i \mid x_{pa(i)}, \Theta_i)$ and $p(x_{i'} \mid x_{pa(i')}, \Theta_i)$ together.

Tabular Parameterization in DAG Models

- To specify distribution, we need to decide on the form of $p(x_i \mid x_{pa(i)}, \Theta_i)$.
- For discrete data a default choice is the tabular parameterization:

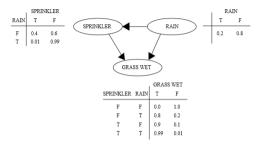
$$p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j) = \theta_{x_j, x_{\mathsf{pa}(j)}} \quad \text{(one parameter per child/parent combo)},$$
 as we did for Markov chains (but now with multiple parents).

• Intuitive: just need conditional probabilities of children given parents like

$$p(\text{``wet grass''} = 1 \mid \text{``sprinkler''} = 1, \text{``rain''} = 0),$$

and MLE is just counting.

Tabular Parameterization Example



https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

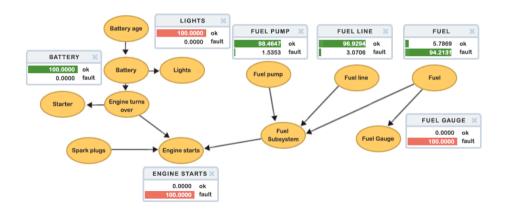
$$p(R = 1) = 0.2.$$

 $p(G = 1 \mid S = 0, R = 1) = 0.8.$

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:



Fitting DAGs using Supervised Learning

- But tabular parameterization requires too many parameters:
 - With binary states and k parents, need 2^{k+1} parameters.
- One solution is letting users specify a "parsimonious" parameterization:
 - Typically have a linear number of parameters.
 - For example, the "noisy-or" model: $p(x_j = 1 \mid x_{pa(j)}) = 1 \prod_{k \in pa(j)} (1 q_k)$.
 - "Estimate probability that each symptom leads to disease on its own".
 - Value q_k is "probability of seeing disease given symptom k".
- But if we have data, we can use supervised learning.
 - Write fitting $p(x_j \mid x_{\mathsf{pa}(j)})$ as our usual $p(y \mid x)$ problem.
 - ullet Predicting one column of X (child) given the values of some other columns (parents).

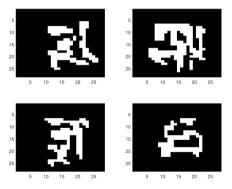
Fitting DAGs using Supervised Learning

- For j = 1 : d:

 - 2 Solve a supervised learning problem using $\{\bar{X}, \bar{y}\}$.
 - Gives you a model of $p(x_j \mid x_{pa(j)})$.
- ullet Combine the d regression/classification models as the density estimator.
- We've turned unsupervised learning into supervised learning.
- We can use our usual tricks:
 - Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
 - With least squares for continuos x_i it's called a Gaussian belief network.
 - With logistic regression for binary x_i it's called a sigmoid belief networks.
 - Don't need Markov assumptions to tractably fit these models.

MNIST Digits with Tabular DAG Model

• Recall our latest MNIST model using a tabular DAG:

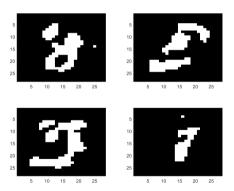


• This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:

(DAG with logistic regression for each variable)



where we use all previous pixels as parents (from 0 to 783 parents).

• Models long-range dependencies but has a linear assumption.

DAGs: Big Picture

- Setting the parameters of a DAG model:
 - Get the graph from an expert, or learn the graph (later).
 - Given the conditional probabilities from an expert, or learn them from data.
 - Counting or supervised learning, and EM if you have hidden/missing values.
- Inference in DAG models:
 - Can use Monte Carlo approximations with ancestral sampling:
 - Sample x_1 from $p(x_1)$, x_2 from $p(x_2 \mid x_{\mathsf{pa}(2)})$, x_3 from $p(x_3 \mid x_{\mathsf{pa}(3)})$,...
 - Can use dynamic programming for exact inference with discrete x_i .
 - Also works if all $p(x_i \mid x_{pa(i)})$ are Gaussian.

Summary

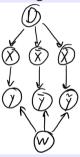
- D-separation allows us to test conditional independences based on graph.
 - Watch out for v-structures and ancestors of v-structures.
- Plate Notation lets us compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_i \mid x_{pa(i)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Next time: trying to discover the graph structure from data.

Does Semi-Supervised Learning Make Sense?

- Should unlabeled examples always help supervised learning?
 - No!
- Consider choosing unlabeled features \bar{x}^i uniformly at random.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of \bar{x}^i says nothing about \bar{y}^i .
- Example where SSL is not possible:
 - Try to detect food allergy by trying random combinations of food:
 - The actual random process isn't important, as long as it isn't affected by labels.
 - ullet You can sample an infinite number of $ar{x}^i$ values, but they says nothing about labels.
- Example where SSL is possible:
 - Trying to classify images as "cat" vs. "dog.:
 - Unlabeled data would need to be images of cats or dogs (not random images).
 - Unlabeled data contains information about what images of cats and dogs look like.
 - For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense?

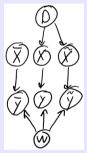
• Let's assume our semi-supervised learning model is represented by this DAG:



- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
 - ullet There is a dependency between y and \tilde{y} because of path through w.
 - ullet Parameter w is tied between training and test distributions.
 - There is a dependency between X and \tilde{y} because of path through w (given y).
 - But note that there is also a second path through D and \tilde{X} .
 - There is a dependency between \bar{X} and \tilde{y} because of path through D and \tilde{X} .
 - \bullet Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense?

• Now consider generating \bar{X} independent of D:



- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
 - ullet Knowing X and y are useful for the same reasons as before.
 - But knowing \bar{X} is not useful:
 - Without knowing \bar{y} , \bar{X} is d-separated from \tilde{y} (no dependence).

Other Models in DAG/Plate Notation

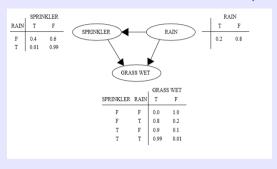
ullet In a full Gaussian model for a single x we have

$$x^i \sim \mathcal{N}(\mu, \Sigma).$$

For mixture of Gaussians we have

$$z^i \sim \mathsf{Cat}(\theta), \quad x^i \mid z^i = c \sim \mathcal{N}(\mu_c, \Sigma_c).$$

Tabular Parameterization Example



https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

$$p(G = 1 \mid R = 1) = p(G = 1, S = 0 \mid R = 1) + p(G = 1, S = 1 \mid R = 1) \qquad \left(p(a \mid c) = \sum_{b} p(a, b \mid c)\right)$$

$$= p(G = 1 \mid S = 0, R = 1)p(S = 0 \mid R = 1) + p(G = 1 \mid S = 1, R = 1)p(S = 1 \mid R = 1)$$

$$= 0.8(0.99) + 0.99(0.01) = 0.81.$$

Dynamic Bayesian Networks

- Dynamic Bayesian networks are a generalization of Markov chains and DAGs:
 - At each time, we have a set of variables x^t .
 - The initial x^0 comes from an "initial" DAG.
 - Given x^{t-1} , we generate x^t from a "transition" DAG.

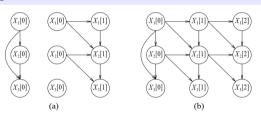


Figure 1: (a) A prior network and transition network defining a DPN for the attributes X_1 , X_2 , X_3 . (b) The corresponding "unrolled" network.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

- Can be used to model multiple variables over time.
 - Unconditional sampling is easy but inference may be hard.