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Conditional Independence D-Separation

Last Time: Directed Acyclic Graphical (DAG) Models
DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are called the “parents” of feature j.
We are using the order 1:d, but note that you could use any order.

This assumes a Markov property (generalizing Markov property in chains),

p(xj |x1:j−1) = p(xj |xpa(j)),

We visualize the assumptions made by the model as a graph:
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Graph Structure Examples
Instead of factorizing by variables j, could factor into blocks b:

p(x) =
∏
b

p(xb | xpa(b)),

and have the nodes be blocks.
Usually assuming full connectivity within the block.

With mixture of Gaussian and full covariances we have

p(z, x) = p(z)p(x | z).
The corresponding graph structure is:

Gaussian generative classifiers (GDA) have the same structure.
But using class lable y instead of cluster z.
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Graph Structure Examples

With probabilistic PCA we have

p(z, x) = p(x | z)
k∏

c=1

p(zc).

The corresponding graph structure is:

The data x comes from a set of independent parents (latent factors).
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Graph Structure Examples

We can consider less-structured examples,

The corresponding factorization is:

p(S, V,R,W,G,D) = p(S)p(V )p(R | V )p(W | S,R)p(G | V )p(D | G).
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Graph Structure Examples

We can consider genetic phylogeny (family trees):
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Example: Vehicle Insurance

Want to predict bottom three “cost” variables, given observed and unobserved
values:

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes
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Example: Radar and Aircraft Control

Modeling multiple planes and radar signals:

https://pr-owl.org/basics/bn.php

https://pr-owl.org/basics/bn.php
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Example: Water Resource Management

Dependencies in environmental monitor and susatainability issues:

https://www.jstor.org/stable/26268156

https://www.jstor.org/stable/26268156


Conditional Independence D-Separation

Beware of the “Causal” DAG

It can helpful to use the language of causality when reasoning about DAGs.

You’ll find that they give the correct causal interpretation based on our intuition.

However, keep in mind that the arrows are not necessarily causal.

“A causes B” has the same graph as “B causes A”.

There is work on causal DAGs which add semantics to deal with “interventions”.

But these require extra assumptions: fitting a DAG to observational data doesn’t
imply anything about causality.
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Outline

1 Conditional Independence

2 D-Separation
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Review of Independence

Let A and B are random variables taking values a ∈ A and b ∈ B.

We say that A and B are independent if we have

p(a, b) = p(a)p(b),

for all a and b.

To denote independence of xi and xj we use the notation

xi ⊥ xj .

In a product of Bernoullis, we assume xi ⊥ xj for all i and j.
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Review of Independence

For independent a and b we have

p(a | b) = p(a, b)

p(b)
=

p(a)p(b)

p(b)
= p(a).

This gives us a more intuitive definition: A and B are independent if

p(a | b) = p(a)

for all a and all b where p(b) 6= 0.
In words: knowing b tells us nothing about a (and vice versa).

This will tend to simplify calculations involving a.

Useful fact: a ⊥ b iff p(a, b) = f(a)g(b) for some functions f and g.
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Conditional Independence

We say that A is conditionally independent of B given C if

p(a, b | c) = p(a | c)p(b | c),

for all a, b, and c 6= 0.

Equivalently, we have

p(a | b, c) = p(a | c), or p(b | a, c) = p(b | c).

“If you know C, then also knowing B would tell you nothing about A”’.
In mixture of Bernoullis, given cluster there is no dependence between variables.

We often write this as
A ⊥ B | C.

In a naive Bayes, we assume xi ⊥ xj | y for all i and j.
This simplifies calculations involving xi and xj , provided that we know y.
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Extra Conditional Independences in Markov Chains

In Markov chains, the Markov assumption is xj ⊥ x1, x2, . . . , xj−2 | xj−1,

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1).

But note that this also implies the additional conditional independence that

p(xj | xj−2, xj−3, . . . , x1) = p(xj | xj−2).

We can use this property to easily compute p(xj | xj−2, xj−3, . . . , x1):

p(xj | xj−2, xj−3, . . . x1) = p(xj | xj−2)

=
∑

xj−1

p(xj , xj−1 | xj−2)

=
∑

xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2)

=
∑

xj−1

p(xj | xj−1)︸ ︷︷ ︸
tran prob

p(xj−1 | xj−2)︸ ︷︷ ︸
tran prob

.
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Extra Conditional Independences in Markov Chains
Proof that xj is independent of {x1, x2, . . . , xj−3} given xj−2:

p(xj | xj−2, xj−3, . . . , x1) =
p(xj , xj−2, xj−3, . . . , x1)

p(xj−2, xj−3, . . . , x1)
(def’n cond. prob.)

=

∑
xj−1

p(xj , xj−1, xj−2, . . . , x1)

p(xj−2 | xj−3, xj−4, . . . , x1)p(xj−3 | xj−4, xj−5, . . . , x1) · · · p(x1)
(marg. and chain rule)

=

∑
xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2) . . . p(x2 | x1)p(x1)

p(xj−2 | xj−3)p(xj−3 | xj−4) · · · p(x1)
(chain rule and Markov)

=
p(x1)p(x2 | x1) · · · p(xj−2 | xj−3)

∑
xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2)

p(xj−2 | xj−3)p(xj−3 | xj−4) · · · p(x1)
(take terms outside)

=
∑

xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2) (cancel out in numerator/denominator)

=
∑

xj−1

p(xj , xj−1 | xj−2) (product rule)

= p(xj | xj−2) (marg rule).

Similar steps could be used to show xj ⊥ xj+2 | xj+1,
and a variety of other conditional independences like x1 ⊥ x10 | x5.
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DAGs and Conditional Independence

So conditional independences can substantially simplify inference.

But it’s tedious to formally show that conditional independences hold.

See the last slide, and the EM notes.

In DAGs we make the conditional independence assumption that

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xpa(j)).

Is there an easy way to find out what other independences are true?

If so, we could quickly find out which calculations are easy to do in a given DAG.
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Outline

1 Conditional Independence

2 D-Separation
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D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B.”

In the special case of product of independent models our graph is:

Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.

We can start connecting properties of graphs to computational complexity.
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D-Separation as Genetic Inheritance
The rules of d-separation are intuitive in a simple model of gene inheritance:

Each node/person has single number, which we’ll call a “gene”.
If you have no parents, your gene is a random number.
If you have parents, your gene is a sum of your parents plus noise.

For example, think of something like this:

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2).
In this model, does p(x1, x2) = p(x1)p(x2)? (Are x1 and x2 independent ?)
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D-Separation as Genetic Inheritance

Genes of people are independent if knowing one says nothing about the other.

Your gene is dependent on your parents:

If I know your parent’s gene, I know something about yours.

Your gene is independent of your (unrelated) friends:

If you know your friend’s gene, it doesn’t tell me anything about you.

Genes of people can be conditionally independent given a third person:

Knowing your grandparent’s gene tells you something about your gene.
But grandparent’s gene isn’t useful if you know parent’s gene.
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D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

No path: x and y are not related (independent),

We have x ⊥ y: there are no paths to be blocked.

Direct link: x is the parent of y,

We have x 6⊥ y: knowing x tells you about y (direct paths aren’t blockable).
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D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

No path: If x and y are independent,

We have x ⊥ y: adding z doesn’t make a path.

Direct link: x is the parent of y,

We have x 6⊥ y | z: adding z doesn’t block path.
We use black or shaded nodes to denote values we condition on (in this case z).

We sometimes also call the nodes that we condition on the “observations”.
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D-Separation Case 1: Chain
Case 1: x is the grandparent of y.

If z is the mother we have:

We have x 6⊥ y: knowing x would give information about y because of z
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.
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D-Separation Case 1: Chain

The same logic holds for great-grandparents:

We have x 6⊥ y (left), but x ⊥ y | z1 (right).
We also have x ⊥ y | z2 and that x ⊥ y | z1, z2.

This case lets you test any independence in Markov chains.
“Do observe any value in between the two nodes?”
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D-Separation Case 1: Chain
Consider weird case where parents z1 and z2 share parent x:

If z1 and z2 are observed we have:

We have x ⊥ y | z1, z2: knowing both parents breaks dependency.
But if only z1 is observed:

We have x 6⊥ y | z1: dependence still “flows” through z2.
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D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z is a common unobserved parent:

We have x 6⊥ y: knowing x would give information about y.
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.

This is type of independence used in naive Bayes and “mixture of independent”.
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D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z1 and z2 are common observed parents:

We have x ⊥ y | z1, z2: knowing z1 and z2 breaks dependence between x and y.
But if we only observe z2:

Then we have x 6⊥ y | z2: dependence still “flows” through z1.



Conditional Independence D-Separation

D-Separation Case 3: Common Child
Case 3: x and y share a child z:

If we observe z then we have:

We have x 6⊥ y | z: if we know z, then knowing x gives us information about y.
But if z is not observed:

We have x ⊥ y: if you don’t observe z then x and y are independent.

Different from Case 1 and Case 2: not observing the child blocks path.
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Summary

Joint distribution of models we’ve discussed can be written as DAG models.

Conditional independence of A and B given C:

Knowing B tells us nothing about A if we already know C.

D-separation allows us to test conditional independences based on graph.

Next time: the IID assumption as a DAG?
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Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.
Unconditionally, the 5 aliens are independent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.
Conditioned on the baby, the 5 aliens are dependent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.
Unconditionally, the 5 clones are dependent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.
Conditioned on the original, the 5 clones are independent.
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