CPSC 440: Advanced Machine Learning More DAGs

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Directed Acyclic Graphical (DAG) Models

• DAG models use a factorization of the joint distribution,

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}),$$

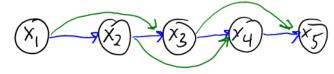
where pa(j) are called the "parents" of feature j.

• We are using the order 1:d, but note that you could use any order.

• This assumes a Markov property (generalizing Markov property in chains),

$$p(x_j|x_{1:j-1}) = p(x_j|x_{\mathsf{pa}(j)}),$$

• We visualize the assumptions made by the model as a graph:



Graph Structure Examples

• Instead of factorizing by variables *j*, could factor into blocks *b*:

$$p(x) = \prod_{b} p(x_b \mid x_{\mathsf{pa}(b)}),$$

and have the nodes be blocks.

- Usually assuming full connectivity within the block.
- With mixture of Gaussian and full covariances we have

$$p(z, x) = p(z)p(x \mid z).$$

• The corresponding graph structure is:

- Gaussian generative classifiers (GDA) have the same structure.
 - But using class lable y instead of cluster z.

Conditional Independence

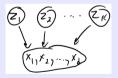
D-Separation

Graph Structure Examples

With probabilistic PCA we have

$$p(z, x) = p(x \mid z) \prod_{c=1}^{k} p(z_c).$$

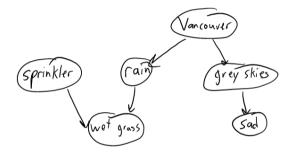
The corresponding graph structure is:



The data x comes from a set of independent parents (latent factors).

Graph Structure Examples

We can consider less-structured examples,

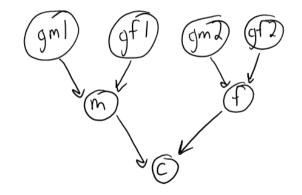


The corresponding factorization is:

 $p(S, V, R, W, G, D) = p(S)p(V)p(R \mid V)p(W \mid S, R)p(G \mid V)p(D \mid G).$

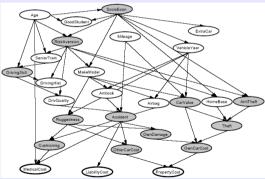
Graph Structure Examples

We can consider genetic phylogeny (family trees):



Example: Vehicle Insurance

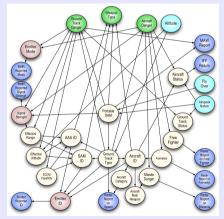
• Want to predict bottom three "cost" variables, given observed and unobserved values:



https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

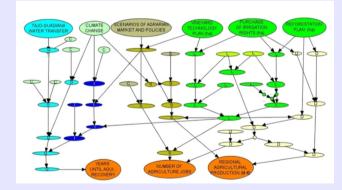
Example: Radar and Aircraft Control

• Modeling multiple planes and radar signals:



Example: Water Resource Management

• Dependencies in environmental monitor and susatainability issues:



https://www.jstor.org/stable/26268156

Beware of the "Causal" DAG

- It can helpful to use the language of causality when reasoning about DAGs.
 - You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
 - "A causes B" has the same graph as "B causes A".
- There is work on causal DAGs which add semantics to deal with "interventions".
 - But these require extra assumptions: fitting a DAG to observational data doesn't imply anything about causality.

Conditional Independence

D-Separation

Outline

Conditional Independence

2 D-Separation

Review of Independence

• Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

 \bullet We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.

• To denote independence of x_i and x_j we use the notation

 $x_i \perp x_j$.

• In a product of Bernoullis, we assume $x_i \perp x_j$ for all i and j.

Review of Independence

• For independent a and b we have

$$p(a \mid b) = \frac{p(a,b)}{p(b)} = \frac{p(a)p(b)}{p(b)} = p(a).$$

• This gives us a more intuitive definition: A and B are independent if

 $p(a \mid b) = p(a)$

for all a and all b where $p(b) \neq 0$.

- In words: knowing b tells us nothing about a (and vice versa).
 - This will tend to simplify calculations involving *a*.
- Useful fact: $a \perp b$ iff p(a,b) = f(a)g(b) for some functions f and g.

Conditional Independence

 \bullet We say that A is conditionally independent of B given C if

$$p(a, b \mid c) = p(a \mid c)p(b \mid c),$$

for all a, b, and $c \neq 0$.

• Equivalently, we have

$$p(a \mid b, c) = p(a \mid c), \quad \text{or} \quad p(b \mid a, c) = p(b \mid c).$$

- "If you know C, then also knowing B would tell you nothing about A"'.
 - In mixture of Bernoullis, given cluster there is no dependence between variables.
- We often write this as

$A \perp B \mid C.$

- In a naive Bayes, we assume $x_i \perp x_j \mid y$ for all *i* and *j*.
 - This simplifies calculations involving x_i and x_j , provided that we know y.

Extra Conditional Independences in Markov Chains

• In Markov chains, the Markov assumption is $x_j \perp x_1, x_2, \dots, x_{j-2} \mid x_{j-1}$,

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{j-1}).$$

• But note that this also implies the additional conditional independence that

$$p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) = p(x_j \mid x_{j-2}).$$

• We can use this property to easily compute $p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1)$:

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots x_1) &= p(x_j \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j, x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} \underbrace{p(x_j \mid x_{j-1})}_{\text{tran prob}} \underbrace{p(x_{j-1} \mid x_{j-2})}_{\text{tran prob}}. \end{split}$$

Extra Conditional Independences in Markov Chains

• Proof that x_j is independent of $\{x_1, x_2, \ldots, x_{j-3}\}$ given x_{j-2} :

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) &= \frac{p(x_j, x_{j-2}, x_{j-3}, \dots, x_1)}{p(x_{j-2}, x_{j-3}, \dots, x_1)} \quad (\text{def'n cond. prob.}) \\ &= \frac{\sum_{x_{j-1}} p(x_j, x_{j-1}, x_{j-2}, \dots, x_1)}{p(x_{j-2} \mid x_{j-3}, x_{j-4}, \dots, x_1) p(x_{j-3} \mid x_{j-4}, x_{j-5}, \dots, x_1) \cdots p(x_1)} \quad (\text{marg. and chain rule}) \\ &= \frac{\sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \dots p(x_2 \mid x_1) p(x_1)}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \cdots p(x_1)} \quad (\text{chain rule and Markov}) \\ &= \frac{p(x_1) p(x_2 \mid x_1) \cdots p(x_{j-2} \mid x_{j-3}) \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2})}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \cdots p(x_1)} \quad (\text{take terms outside}) \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \quad (\text{cancel out in numerator/denominator}) \\ &= \sum_{x_{j-1}} p(x_j, x_{j-1} \mid x_{j-2}) \quad (\text{product rule}) \\ &= p(x_j \mid x_{j-2}) \quad (\text{marg rule}). \end{split}$$

 Similar steps could be used to show x_j ⊥ x_{j+2} | x_{j+1}, and a variety of other conditional independences like x₁ ⊥ x₁₀ | x₅.

DAGs and Conditional Independence

- So conditional independences can substantially simplify inference.
- But it's tedious to formally show that conditional independences hold.
 - See the last slide, and the EM notes.
- In DAGs we make the conditional independence assumption that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{pa}(j)).$$

- Is there an easy way to find out what other independences are true?
 - If so, we could quickly find out which calculations are easy to do in a given DAG.

Outline

Conditional Independence

D-Separation: From Graphs to Conditional Independence

- All conditional independences implied by a DAG can be read from the graph.
- In particular: variables A and B are conditionally independent given C if:
 - "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B."
- In the special case of product of independent models our graph is:

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.
 - We can start connecting properties of graphs to computational complexity.

D-Separation as Genetic Inheritance

• The rules of d-separation are intuitive in a simple model of gene inheritance:

- Each node/person has single number, which we'll call a "gene".
- If you have no parents, your gene is a random number.
- If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:

 $\sim N(x_1 + x_2 |)$

• Graph corresponds to the factorization $p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$.

• In this model, does $p(x_1, x_2) = p(x_1)p(x_2)$? (Are x_1 and x_2 independent ?)

D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other.
- Your gene is dependent on your parents:
 - If I know your parent's gene, I know something about yours.
- Your gene is independent of your (unrelated) friends:
 - If you know your friend's gene, it doesn't tell me anything about you.
- Genes of people can be conditionally independent given a third person:
 - Knowing your grandparent's gene tells you something about your gene.
 - But grandparent's gene isn't useful if you know parent's gene.

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

• No path: x and y are not related (independent),

We have $x \perp y$: there are no paths to be blocked.

• Direct link: x is the parent of y,

We have $x \not\perp y$: knowing x tells you about y (direct paths aren't blockable).

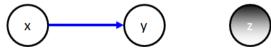
D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

• No path: If x and y are independent,

We have $x \perp y$: adding z doesn't make a path.

• Direct link: x is the parent of y,



We have $x \not\perp y \mid z:$ adding z doesn't block path.

- We use **black or shaded** nodes to denote values we condition on (in this case z).
 - We sometimes also call the nodes that we condition on the "observations".

Conditional Independence

D-Separation

D-Separation Case 1: Chain

- Case 1: x is the grandparent of y.
 - If z is the mother we have:

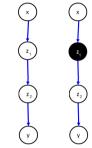
We have $x \not\perp y$: knowing x would give information about y because of z

• But if z is observed:

In this case $x \perp y \mid z:$ knowing z "breaks" dependence between x and y.

D-Separation Case 1: Chain

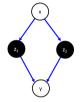
• The same logic holds for great-grandparents:



- We have $x \not\perp y$ (left), but $x \perp y \mid z_1$ (right).
 - We also have $x \perp y \mid z_2$ and that $x \perp y \mid z_1, z_2$.
- This case lets you test any independence in Markov chains.
 - "Do observe any value in between the two nodes?"

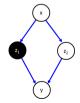
D-Separation Case 1: Chain

- Consider weird case where parents z_1 and z_2 share parent x:
 - If z_1 and z_2 are observed we have:



We have $x \perp y \mid z_1, z_2$: knowing both parents breaks dependency.

• But if only z_1 is *observed*:



We have $x \not\perp y \mid z_1$: dependence still "flows" through z_2 .

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z is a common unobserved parent:

We have $x \not\perp y$: knowing x would give information about y.

• But if *z* is *observed*:

In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y.

• This is type of independence used in naive Bayes and "mixture of independent".

D-Separation Case 2: Common Parent

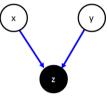
- Case 2: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y. • But if we only observe z_2 :

Then we have $x \not\perp y \mid z_2$: dependence still "flows" through z_1 .

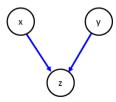
D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
 - If we observe z then we have:



We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y.

• But if z is not observed:

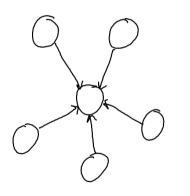


We have $x \perp y$: if you don't observe z then x and y are independent. • Different from Case 1 and Case 2: not observing the child blocks path.

Summary

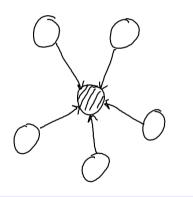
- Joint distribution of models we've discussed can be written as DAG models.
- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- D-separation allows us to test conditional independences based on graph.
- Next time: the IID assumption as a DAG?

Conditional Independence in Star Graphs



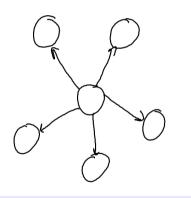
- "5 aliens get together and make a baby alien".
 - Unconditionally, the 5 aliens are independent.

Conditional Independence in Star Graphs



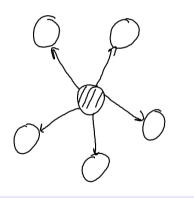
- "5 aliens get together and make a baby alien".
 - Conditioned on the baby, the 5 aliens are dependent.

Conditional Independence in Star Graphs



- "An organism produces 5 clones".
 - Unconditionally, the 5 clones are dependent.

Conditional Independence in Star Graphs



- "An organism produces 5 clones".
 - Conditioned on the original, the 5 clones are independent.