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Last Time: Hidden Markov Models

Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏

j=1

p(xj | zj).

We’re going to learn clusters zj and the hidden dynamics.
Hidden cluster zj could be “summer” or “winter” (we’re learning the clusters).
Transition probability p(zj | zj−1) is probability of staying in “summer”.

Initial probability p(z1) is probability of starting chain in “summer”.

Emission probability p(xj | zj) is probability of “rain” during “summer”.
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Who is Guarding Who?
There is a lot of data on scoring/offense of NBA basketball players.

Every point and assist is recorded, more scoring gives more wins and $$$.

But how do we measure defense (“stopping people from scoring”)?
We need to know who each player is guarding.

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

HMMs can be used to model who is guarding who over time.
https://www.youtube.com/watch?v=JvNkZdZJBt4

http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Decoding in Hidden Markov Models

The HMM model

p(x1, x2, . . . , z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏

j=1

p(xj | zj).

Given a sequence {x1, x2, . . . , xd}, we can decode most likely zj values.

“Which sequence of clusters was most likely”.

Variation on Vitberi decoding for HMMs:

Define Mj(zj) = maxz1,z2,...,zj−1
p(z1)

∏j
j′=2 p(zj′ | zj′−1)

∏j
j′=1 p(xj′ | zj′).

“Highest value sequence not depending on any future values, that ends in state zj”.

Base case: M1(z1) = p(z1)p(x1 | z1).
Recursion: Mj(zj) = maxzj−1

p(zj | zj−1)p(xj | zj)Mj−1(zj−1).

All terms are considered in the final Md(zd) (intermediate Mj are not probabilities).
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Learning and Inference in Hidden Markov Models

HMMs are usually trained with EM, which requires p(zj | x1, x2, . . . xd).

Treating the zj as nuissance variables, as in mixture models.

But unlike Markov chains, CK equations don’t work for HMMs.

Because p(zj = s | x1, x2, . . . , xd) may depend on all xj values.

You could compute p(zj = s | x1, x2, . . . , xd) using dynamic programming.

But this would cost O(dk2) for each value of the O(dk) values j and s.

Instead, we can use a generalization called the forward backward algorithm.

Allows you to compute p(zj = s | x1, x2, . . . , xd) for all j and s in O(dk2).
“Message passing” algoirthm for many variations of Markov chains, and beyond.
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Notes

This section seemed to go particularly badly. Alternative ways to warm-up to
backward messages and forward-backward:

Do a variation on the Google problem?
Use DP to compute marginals of time 3 in 5-node HMM (or conditionals in a MC),
show how computing marginals for time 4 has a bunch of redundant calculation (but
no gain in time because “future” messages are still different?) then

Show how the same calculation can be done with backward messages, and how they
are also redundant?
Show how the message factorizes out at time 3?
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Message-Passing Algorithms
We’ve discussed several algorithms with similar structure:

Viterbi decoding algorithm for decoding in discrete Markov chains.
CK equations for marginals in discrete Markov chains.
Gaussian updates for marginals in Gaussian Markov chains.

These algorithms solve complicated problems using “forward messages” Mj :
1 Mj summarizes all relevant past information, if you end at xj at time j
2 Use Markov property to write Mj recursively in terms of Mj−1.
3 Solve task by computing M1, M2, . . . , Md.

“Generalized distributive law” is a framework for describing when/why this works:
https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

In some cases we’ll also use “backwards messages” Vj (“cost to go” or “value”):
Vj summarizes all relevant future information, if you start at xj at time j.
Use Markov property to write Vj recursively in terms of Vj+1.

https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
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Forward Messages and Backwards Messages

In the case of the CK equations for Markov chains we have M1(x1) = p(x1) and:

Mj(xj) =
∑
xj−1

p(xj | xj−1)Mj−1(xj−1),

which are the forward messages.

The backwards messages for Markov chains have Vd(xd) = 1 and:

Vj(xj) =
∑
xj+1

p(xj+1 | xj)Vj+1(xj+1),

and you compute marginals at any time using p(xj) = Mj(xj)Vj(xj).

But here backwards messages do nothing, since Vj(xj) = 1 for all j and xj .
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Forward-Backward Algorithm
Forward-backward algorithm for computing marginals:

Compute all forward messages Mj(xj) and backward messages Vj(xj).

Compute all univariate marginals using the formula p(xj) ∝ Mj(xj)Vj(xj)
κ(xj)

.

Value κ(xj) is needed to avoid “double counting” (see HMM example below).

Why do we care about backwards messages?
Compute Markov chain conditionals p(xj = s | x10 = 3) for all j and s in O(dk2).

Fix M10(3) = 1 and V10(3) = 1, and other M10(x10) and V10(x10) values to zero.
Then run forward-backward algorithm with these values (Vj(xj) won’t be 1 for all j).
Backward messages modify CK equations with “what future information you need”.

Can be used to compute probabilities in generalizations of Markov chains.
HMM forward message: Mj(zj) =

∑
zj−1

p(zj | zj−1)p(xj | zj)Mj−1(zj−1).

HMM backward message: Vj(zj) =
∑

zj+1
p(zj+1 | zj)p(xj | zj)Vj+1(xj+1).

HMM correction: κ(zj) = p(xj | zj) (divide by it to avoid counting twice).

In reinforcement learning, estimating the “cost to go” (“value”) function is the goal.
We aren’t covering RL, but understanding Markov chains will help you understand RL.
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Outline

1 Message Passing

2 Directed Acyclic Graphical Models
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Higher-Order Markov Models

Markov models use a density of the form

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · p(xd | xd−1).

They support efficient computation but Markov assumption is strong.

A more flexible model would be a second-order Markov model,

p(x) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x3, x2) · · · p(xd | xd−1, xd−2),

or even a higher-order models.

General case is called directed acyclic graphical (DAG) models:

They allow dependence on any subset of previous features.
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DAG Models

As in Markov chains, DAG models use the chain rule to write

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . , xd−1).

We can alternately write this as:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | x1:j−1).

In Markov chains, we assumed xj only depends on previous xj−1 given past.

In DAGs, xj can depend on any subset of the past x1, x2, . . . , xj−1.
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DAG Models

We often write joint probability in DAG models as

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)),

where pa(j) are the “parents” of feature j.

For Markov chains the only “parent” of j is (j − 1).
If we have k parents we only need 2k+1 parameters (for binary states).

This corresponds to a set of conditional independence assumptions,

p(xj | x1:j−1) = p(xj | xpa(j)),

that we’re independent of previous non-parents given the parents.
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From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks”.

“Graphical” name comes from visualizing parents/features as a graph:
We have a node for each feature j.
We place an edge into j from each of its parents.

The DAG representation for a Markov chains is:

Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
Can be used to test arbitrary conditional independences (“d-separation”).
Graph structure tells us whether message passing is efficient (“treewidth”).
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Graph Structure Examples

With product of independent we have

p(x) =

d∏
j=1

p(xj),

so pa(j) = ∅ and the graph is:
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Graph Structure Examples

With Markov chain we have

p(x) = p(x1)

d∏
j=2

p(xj | xj−1),

so pa(j) = {j − 1} and the graph is:
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Graph Structure Examples

With second-order Markov chain we have

p(x) = p(x1)p(x2 | x1)
d∏

j=3

p(xj | xj−1, xj−2),

so pa(j) = {j − 2, j − 1} and the graph is:
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Graph Structure Examples

With general distribution we have

p(x) =

d∏
j=1

p(xj | x1:j−1).

so pa(j) = {1, 2, . . . , j − 1} and the graph is:
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Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y and use

p(y, x) = p(y)

d∏
j=1

p(xj | y),

which has pa(y) = ∅ and pa(xj) = y giving
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Graph Structure Examples

With mixture of independent models we have

p(z, x) = p(z)

d∏
j=1

p(xj | z).

which has pa(z) = ∅ and pa(xj) = z giving same structure as naive Bayes:

Since structure is the same, many computations will be similar.
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Graph Structure Examples

With mixture of Markov chains models we have

p(x1, x2, . . . , xd, z) = p(z)p(x1 | z)

d∏
j=2

p(xj | xj−1, z).

which has pa(z) = ∅ and pa(xj) = {xj−1, z}:
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Graph Structure Examples

Sometimes it’s easier to present a model using the graph.

In hidden Markov models we have this structure:

The graph and variable names already give you an idea of what this model does:

We have hidden variables zj that follow a Markov chain.

Each feature xj depends on corresponding hidden variable zj .
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MNIST DIgits with Markov Chains

Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2”):

{(i−2, j−2), (i−1, j−2), (i, j−2), (i−2, j−1), (i−1, j−1), (i, j−1), (i−2, j), (i−1, j)}.
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Summary

Forward-backward generalization of CK equations.

Allows you to solve many Markov-like problems.
Special case of a message passing algorithm.

DAG models factorize joint distribution into product of conditionals.

Assume conditionals depend on small number of “parents”.

Next time: conditional independence in DAGs.
(I am not going to pretend this is exciting, but its is really useful)
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Chapman-Kolmogorov Equations as Message Passing

We can view Chapman Kolmogorov equations as message passing:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4) =
∑
x3

∑
x2

∑
x1

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)M1(x1)

=
∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x3

p(x4 | x3)M3(x3)

=M4(x4),

Messages Mj(xj) are the marginals of the Markov chain.

So we can view CK equations as Viterbi decoding with “max” replace by “sum”.
These two methods are also known as “max-product” and “sum-product” algorithms.
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Backwards “Cost to Go” Messages
Using backwards messages Vj(xj) to (innefficiently) compute p(x1):

p(x1) =
∑
x2

∑
x3

∑
x4

p(x1, x2, x3, x4) =
∑
x2

∑
x3

∑
x4

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)
∑
x4

p(x4 | x3)

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)V3(x3)︸ ︷︷ ︸
1

= p(x1)
∑
x2

p(x2 | x1)V2(x2)︸ ︷︷ ︸
1

= p(x1)V1(x1)︸ ︷︷ ︸
1

.

Observe that backwards messages Vj(xj) are not probabilities as in CK equations.
But they summarize everything you need to know about the future.
Can use this structure to condition on the future, and compute things like p(x1 | x4).
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Computing Conditional Probabilities

Previously: Monte Carlo for approximating conditional probabilities
For Gaussian/discrete Markov chains, we can do better than rejection sampling.

1 We can generate exact samples from conditional distribution (bonus slide).
Rejection sampling is not needed, relies on “backwards sampling” in time.

2 We can find conditional decoding maxx | xj′=c
p(x):

Run Viterbi decoding with Mj′(c) = 1 and Mj′(c
′) = 0 for c 6= c′.

3 We can find univariate conditionals, p(xj | xj′).

Example of computing p(x1 = c | x3 = 1) in a length-4 discrete Markov chain:

p(x1 = c | x3 = 1) ∝ p(x1 = c, x3 = 1)

=
∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4),

where the normalizing constant is the marginal p(x3 = 1).

This is a sum over kd−2 possible assignments to other variables.
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Distributing Sum across Product
Fortunately, the Markov property makes the sums simplify as before:∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x4

∑
x3=1

∑
x2

∑
x1=c

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

∑
x2

p(x4 | x3)p(x3 | x2)
∑
x1=c

p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1=c

p(x2 | x1)M1(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x4

∑
x3=1

p(x4 | x3)M3(x3)

=
∑
x4

M4(x4),

where Mj(xj) now sums over paths ending in xj instead of maximizing.
And we set M1(c′) = 0 if c′ 6= c and M3(c′) = 0 for c′ 6= 1.
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Conditionals via Backwards Messages

Performing our conditional calculation using backwards messages.

∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x1=c

∑
x2

∑
x3=1

∑
x4

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)V3(x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)V2(x2)

=
∑
x1=c

p(x1)V1(x1).
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Forward-Backward Algorithm

Generic forward and backward messages for discrete marginals have the form

Mj(xj) =
∑
xj−1

p(xj | xj−1)Mj−1(xj−1), Vj(xj) =
∑
xj+1

p(xj+1 | xj)Vj+1(xj+1).

We can compute p(xj = c | xj′ = c′) using only forward messages:

Set Mj(c) = 1 and Mj′(c
′) = 1.

Why we would need backward messages?
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Forward-Backward Algorithm

We can compute p(xj = c | xj′ = c′) for all j in O(dk2) with both messages.

First compute all message normally with Mj′(c
′) = 1 and Vj′(c

′) = 1.
(Set Mj′ (c) and Vj′ (c) to 0 for other values of c.)

We then have that

Mj(xj) sums up all the paths that end in state xj (with xj′ = c′).
Vj(xj) sums up all the paths that start in state xj (with xj′ = c′).
We can combine these values to get

p(xj | xj′) ∝Mj(xj)Vj(xj),

Computing all Mj and Vj is called the forward-backward algorithm.
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Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

1 If we’re only conditioning on first j states, x1:j , just fix these values and start
ancestral sampling from time (j + 1).

2 If we have the marginals p(xj), we can get the “backwards” transition
probabilities using Bayes rule,

p(xj | xj+1) =
p(xj+1 | xj)p(xj)

p(xj+1)
,

which lets us run ancestral sampling in reverse: sample xd from p(xd), then xd−1
from p(xd−1 | xd), and so on.

3 If we’re only conditioning on last j states xd−j:d, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d− j − 1)
to sample the earlier states.
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Conditional Samples from Gaussian/Discrete Markov Chain

4 If we’re conditioning on contiguous states in the middle, xj:j′ , run ancestral
sampling forward starting from position (j′ + 1) and backwards starting from
position (j − 1).

5 If you condition on non-contiguous positions j and j′ with j < j′, need to do (i)
forward sampling starting from (j′ + 1), (ii) backward sampling starting from
(j − 1), and (iii) CK equations on the sequence (j : j′) to get marginals
conditioned on value of j then backwards sampling back to j starting from
(j′ − 1).

The above are all special cases of conditioning in an undirected graphical model
(UGM), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.
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