CPSC 440: Advanced Machine Learning

DAG Models

Mark Schmidt

University of British Columbia

Winter 2021
Message Passing

Last Time: Hidden Markov Models

- Hidden Markov models have each x_j depend on hidden Markov chain.

$$p(x_1, x_2, \ldots, x_d, z_1, z_2, \ldots z_d) = p(z_1) \prod_{j=2}^{d} p(z_j \mid z_{j-1}) \prod_{j=1}^{d} p(x_j \mid z_j).$$

- We’re going to learn clusters z_j and the hidden dynamics.
 - Hidden cluster z_j could be “summer” or “winter” (we’re learning the clusters).
 - Transition probability $p(z_j \mid z_{j-1})$ is probability of staying in “summer”.
 - Initial probability $p(z_1)$ is probability of starting chain in “summer”.
 - Emission probability $p(x_j \mid z_j)$ is probability of “rain” during “summer”.
Who is Guarding Who?

- There is a lot of data on scoring/offense of NBA basketball players.
 - Every point and assist is recorded, more scoring gives more wins and $\$\$\$.

- But how do we measure defense ("stopping people from scoring")?
 - We need to know who each player is guarding.

HMMs can be used to model who is guarding who over time.
- https://www.youtube.com/watch?v=JvNkZdZJBt4

Figure 2a. Graphical depiction of a defender's volume (size) and disruption scores (color). Kawhi Leonard tends to suppress shots on the perimeter. More comparisons are provided in the Appendix.

Decoding in Hidden Markov Models

- The HMM model

\[
p(x_1, x_2, \ldots, z_1, z_2, \ldots, z_d) = p(z_1) \prod_{j=2}^{d} p(z_j \mid z_{j-1}) \prod_{j=1}^{d} p(x_j \mid z_j).
\]

- Given a sequence \(\{x_1, x_2, \ldots, x_d\}\), we can decode most likely \(z_j\) values.
 - “Which sequence of clusters was most likely”.

- Variation on Vitberi decoding for HMMs:
 - Define \(M_j(z_j) = \max_{z_{1}, z_{2}, \ldots, z_{j-1}} p(z_1) \prod_{j'=2}^{j} p(z_{j'} \mid z_{j'-1}) \prod_{j'=1}^{j} p(x_{j'} \mid z_{j'}).\)
 - “Highest value sequence not depending on any future values, that ends in state \(z_j\)”.
 - Base case: \(M_1(z_1) = p(z_1)p(x_1 \mid z_1).\)
 - Recursion: \(M_j(z_j) = \max_{z_{j-1}} p(z_{j} \mid z_{j-1})p(x_j \mid z_j)M_{j-1}(z_{j-1}).\)
 - All terms are considered in the final \(M_d(z_d)\) (intermediate \(M_j\) are not probabilities).
Learning and Inference in Hidden Markov Models

- HMMs are usually trained with EM, which requires $p(z_j \mid x_1, x_2, \ldots x_d)$.
 - Treating the z_j as nuisance variables, as in mixture models.

- But unlike Markov chains, CK equations don’t work for HMMs.
 - Because $p(z_j = s \mid x_1, x_2, \ldots, x_d)$ may depend on all x_j values.

- You could compute $p(z_j = s \mid x_1, x_2, \ldots, x_d)$ using dynamic programming.
 - But this would cost $O(dk^2)$ for each value of the $O(dk)$ values j and s.

- Instead, we can use a generalization called the forward backward algorithm.
 - Allows you to compute $p(z_j = s \mid x_1, x_2, \ldots, x_d)$ for all j and s in $O(dk^2)$.
 - “Message passing” algorithm for many variations of Markov chains, and beyond.
This section seemed to go particularly badly. Alternative ways to warm-up to backward messages and forward-backward:

- Do a variation on the Google problem?
- Use DP to compute marginals of time 3 in 5-node HMM (or conditionals in a MC), show how computing marginals for time 4 has a bunch of redundant calculation (but no gain in time because “future” messages are still different?) then
 - Show how the same calculation can be done with backward messages, and how they are also redundant?
 - Show how the message factorizes out at time 3?
Message-Passing Algorithms

- We’ve discussed several algorithms with similar structure:
 - Viterbi decoding algorithm for decoding in discrete Markov chains.
 - CK equations for marginals in discrete Markov chains.
 - Gaussian updates for marginals in Gaussian Markov chains.

- These algorithms solve complicated problems using “forward messages” M_j:
 1. M_j summarizes all relevant past information, if you end at x_j at time j.
 2. Use Markov property to write M_j recursively in terms of M_{j-1}.
 3. Solve task by computing M_1, M_2, \ldots, M_d.

- “Generalized distributive law” is a framework for describing when/why this works:
 - https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

- In some cases we’ll also use “backwards messages” V_j (“cost to go” or “value”):
 - V_j summarizes all relevant future information, if you start at x_j at time j.
 - Use Markov property to write V_j recursively in terms of V_{j+1}.
Forward Messages and Backwards Messages

- In the case of the CK equations for Markov chains we have $M_1(x_1) = p(x_1)$ and:

$$M_j(x_j) = \sum_{x_{j-1}} p(x_j \mid x_{j-1}) M_{j-1}(x_{j-1}),$$

which are the forward messages.

- The backwards messages for Markov chains have $V_d(x_d) = 1$ and:

$$V_j(x_j) = \sum_{x_{j+1}} p(x_{j+1} \mid x_j) V_{j+1}(x_{j+1}),$$

and you compute marginals at any time using $p(x_j) = M_j(x_j) V_j(x_j)$.

 - But here backwards messages do nothing, since $V_j(x_j) = 1$ for all j and x_j.
Forward-Backward Algorithm

- **Forward-backward algorithm** for computing marginals:
 - Compute all forward messages $M_j(x_j)$ and backward messages $V_j(x_j)$.
 - Compute all univariate marginals using the formula $p(x_j) \propto \frac{M_j(x_j)V_j(x_j)}{\kappa(x_j)}$.
 - Value $\kappa(x_j)$ is needed to avoid “double counting” (see HMM example below).
- Why do we care about backwards messages?
 - Compute Markov chain conditionals $p(x_j = s \mid x_{10} = 3)$ for all j and s in $O(dk^2)$.
 - Fix $M_{10}(3) = 1$ and $V_{10}(3) = 1$, and other $M_{10}(x_{10})$ and $V_{10}(x_{10})$ values to zero.
 - Then run forward-backward algorithm with these values ($V_j(x_j)$ won’t be 1 for all j).
 - Backward messages modify CK equations with “what future information you need”.
- Can be used to compute probabilities in generalizations of Markov chains.
 - HMM forward message: $M_j(z_j) = \sum_{z_{j-1}} p(z_j \mid z_{j-1}) p(x_j \mid z_j) M_{j-1}(z_{j-1})$.
 - HMM backward message: $V_j(z_j) = \sum_{z_{j+1}} p(z_{j+1} \mid z_j) p(x_j \mid z_j) V_{j+1}(x_{j+1})$.
 - HMM correction: $\kappa(z_j) = p(x_j \mid z_j)$ (divide by it to avoid counting twice).
- In reinforcement learning, estimating the “cost to go” (“value”) function is the goal.
 - We aren’t covering RL, but understanding Markov chains will help you understand RL.
Outline

1. Message Passing
2. Directed Acyclic Graphical Models
Higher-Order Markov Models

- **Markov models** use a density of the form

 \[p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3) \cdots p(x_d \mid x_{d-1}). \]

- They support **efficient computation** but **Markov assumption is strong**.

- A more flexible model would be a **second-order Markov model**,

 \[p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4 \mid x_3, x_2) \cdots p(x_d \mid x_{d-1}, x_{d-2}), \]

 or even a higher-order models.

- General case is called **directed acyclic graphical (DAG) models**:
 - They allow **dependence on any subset** of previous features.
DAG Models

- As in Markov chains, DAG models use the chain rule to write

\[p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_1, x_2, \ldots, x_{d-1}). \]

- We can alternately write this as:

\[p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j \mid x_{1:j-1}). \]

- In Markov chains, we assumed \(x_j \) only depends on previous \(x_{j-1} \) given past.

- In DAGs, \(x_j \) can depend on any subset of the past \(x_1, x_2, \ldots, x_{j-1} \).
We often write joint probability in DAG models as

\[p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j \mid x_{pa(j)}), \]

where \(pa(j) \) are the “parents” of feature \(j \).

- For Markov chains the only “parent” of \(j \) is \((j-1) \).
- If we have \(k \) parents we only need \(2^{k+1} \) parameters (for binary states).

This corresponds to a set of conditional independence assumptions,

\[p(x_j \mid x_{1:j-1}) = p(x_j \mid x_{pa(j)}), \]

that we’re independent of previous non-parents given the parents.
From Probability Factorizations to Graphs

- DAG models are also known as “Bayesian networks” and “belief networks”.

- “Graphical” name comes from visualizing parents/features as a graph:
 - We have a node for each feature j.
 - We place an edge into j from each of its parents.

- The DAG representation for a Markov chains is:

 ![DAG representation](image)

 Different than “state transition diagrams”: edges are between variables (not states).

- This graph is not just a visualization tool:
 - Can be used to test arbitrary conditional independences ("d-separation").
 - Graph structure tells us whether message passing is efficient ("treewidth").
With **product of independent** we have

\[p(x) = \prod_{j=1}^{d} p(x_j), \]

so \(\text{pa}(j) = \emptyset \) and the graph is:
With **Markov chain** we have

\[
p(x) = p(x_1) \prod_{j=2}^{d} p(x_j \mid x_{j-1}),
\]

so \(\text{pa}(j) = \{j - 1\} \) and the graph is:

![Graph Diagram](image-url)
With second-order Markov chain we have

\[p(x) = p(x_1)p(x_2 \mid x_1) \prod_{j=3}^{d} p(x_j \mid x_{j-1}, x_{j-2}), \]

so \(\text{pa}(j) = \{j - 2, j - 1\} \) and the graph is:
With general distribution we have

\[p(x) = \prod_{j=1}^{d} p(x_j \mid x_{1:j-1}). \]

so \(\text{pa}(j) = \{1, 2, \ldots, j - 1\} \) and the graph is:
Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y and use

$$p(y, x) = p(y) \prod_{j=1}^{d} p(x_j \mid y),$$

which has $\text{pa}(y) = \emptyset$ and $\text{pa}(x_j) = y$ giving
Graph Structure Examples

With mixture of independent models we have

\[p(z, x) = p(z) \prod_{j=1}^{d} p(x_j | z). \]

which has \(\text{pa}(z) = \emptyset \) and \(\text{pa}(x_j) = z \) giving same structure as naive Bayes:

Since structure is the same, many computations will be similar.
Graph Structure Examples

With mixture of Markov chains models we have

\[
p(x_1, x_2, \ldots, x_d, z) = p(z)p(x_1 \mid z) \prod_{j=2}^{d} p(x_j \mid x_{j-1}, z).
\]

which has \(\text{pa}(z) = \emptyset\) and \(\text{pa}(x_j) = \{x_{j-1}, z\}\):
Sometimes it’s easier to present a model using the graph.

In hidden Markov models we have this structure:

The graph and variable names already give you an idea of what this model does:

- We have hidden variables z_j that follow a Markov chain.
- Each feature x_j depends on corresponding hidden variable z_j.

MNIST Digits with Markov Chains

- Recall trying to model digits using an **inhomogeneous Markov chain**: Only models dependence on pixel above, not on 2 pixels above nor across columns.
MNIST Digits with DAG Model (Sparse Parents)

- Samples from a DAG model with 8 parents per feature:

Parents of \((i, j)\) are 8 other pixels in the neighbourhood ("up by 2, left by 2"):
\[\{(i-2, j-2), (i-1, j-2), (i, j-2), (i-2, j-1), (i-1, j-1), (i, j-1), (i-2, j), (i-1, j)\}\].
Summary

- **Forward-backward** generalization of CK equations.
 - Allows you to solve many Markov-like problems.
 - Special case of a message passing algorithm.

- **DAG models** factorize joint distribution into product of conditionals.
 - Assume conditionals depend on small number of “parents”.

- Next time: conditional independence in DAGs.
 (I am not going to pretend this is exciting, but it is really useful)
Chapman-Kolmogorov Equations as Message Passing

We can view Chapman Kolmogorov equations as message passing:

\[p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 | x_3)p(x_3 | x_2)p(x_2 | x_1)p(x_1) \]

\[= \sum_{x_3} p(x_4 | x_3) \sum_{x_2} p(x_3 | x_2) \sum_{x_1} p(x_2 | x_1)M_1(x_1) \]

\[= \sum_{x_3} p(x_4 | x_3) \sum_{x_2} p(x_3 | x_2)M_2(x_2) \]

\[= \sum_{x_3} p(x_4 | x_3)M_3(x_3) \]

\[=M_4(x_4), \]

Messages \(M_j(x_j) \) are the marginals of the Markov chain.

So we can view CK equations as Viterbi decoding with “max” replace by “sum”.

These two methods are also known as “max-product” and “sum-product” algorithms.
Backwards “Cost to Go” Messages

- Using backwards messages $V_j(x_j)$ to (inefficiently) compute $p(x_1)$:

$$p(x_1) = \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1, x_2, x_3, x_4) = \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1)p(x_2 | x_1)p(x_3 | x_2)p(x_4 | x_3)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_2) \sum_{x_4} p(x_4 | x_3)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_2) \sum_{x_4} p(x_4 | x_3) V_4(x_4)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_2) V_3(x_3)$$

$$= p(x_1) \sum_{x_2} p(x_2 | x_1) V_2(x_2)$$

$$= p(x_1) V_1(x_1).$$

- Observe that backwards messages $V_j(x_j)$ are not probabilities as in CK equations.
 - But they summarize everything you need to know about the future.
 - Can use this structure to condition on the future, and compute things like $p(x_1 | x_4)$.
Computing Conditional Probabilities

- Previously: Monte Carlo for approximating conditional probabilities
- For Gaussian/discrete Markov chains, we can do better than rejection sampling.
 1. We can generate exact samples from conditional distribution (bonus slide).
 - Rejection sampling is not needed, relies on “backwards sampling” in time.
 2. We can find conditional decoding $\max_x | x_j = c | p(x)$:
 - Run Viterbi decoding with $M_j(c) = 1$ and $M_j(c') = 0$ for $c \neq c'$.
 3. We can find univariate conditionals, $p(x_j | x_{j'}).

- Example of computing $p(x_1 = c | x_3 = 1)$ in a length-4 discrete Markov chain:
 \[
p(x_1 = c | x_3 = 1) \propto p(x_1 = c, x_3 = 1) = \sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4),
 \]
 where the normalizing constant is the marginal $p(x_3 = 1)$.
- This is a sum over k^{d-2} possible assignments to other variables.
Distributing Sum across Product

Fortunately, the Markov property makes the sums simplify as before:

\[
\sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) = \sum_{x_4} \sum_{x_3=1} \sum_{x_2} \sum_{x_1=c} p(x_4 | x_3)p(x_3 | x_2)p(x_2 | x_1)p(x_1)
\]

\[
= \sum_{x_4} \sum_{x_3=1} \sum_{x_2} p(x_4 | x_3)p(x_3 | x_2) \sum_{x_1=c} p(x_2 | x_1)p(x_1)
\]

\[
= \sum_{x_4} \sum_{x_3=1} p(x_4 | x_3) \sum_{x_2} p(x_3 | x_2) \sum_{x_1=c} p(x_2 | x_1)M_1(x_1)
\]

\[
= \sum_{x_4} \sum_{x_3=1} p(x_4 | x_3) \sum_{x_2} p(x_3 | x_2)M_2(x_2)
\]

\[
= \sum_{x_4} \sum_{x_3=1} p(x_4 | x_3)M_3(x_3)
\]

\[
= \sum_{x_4} M_4(x_4),
\]

where \(M_j(x_j)\) now sums over paths ending in \(x_j\) instead of maximizing.

And we set \(M_1(c') = 0\) if \(c' \neq c\) and \(M_3(c') = 0\) for \(c' \neq 1\).
Performing our conditional calculation using backwards messages.

\[
\sum_{x_4} \sum_{x_2} p(x_1 = c, x_2, x_3 = 1, x_4) = \sum_{x_1 = c} \sum_{x_2} \sum_{x_3 = 1} \sum_{x_4} p(x_4 | x_3)p(x_3 | x_2)p(x_2 | x_1)p(x_1)
\]

\[
= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3 = 1} p(x_3 | x_2) \sum_{x_4} p(x_4 | x_3)
\]

\[
= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3 = 1} p(x_3 | x_2) p(x_4 | x_3) V_4(x_4)
\]

\[
= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3 = 1} p(x_3 | x_2) V_3(x_3)
\]

\[
= \sum_{x_1 = c} p(x_1) \sum_{x_2} p(x_2 | x_1) V_2(x_2)
\]

\[
= \sum_{x_1 = c} p(x_1) V_1(x_1).
\]
Generic forward and backward messages for discrete marginals have the form

\[M_j(x_j) = \sum_{x_{j-1}} p(x_j \mid x_{j-1}) M_{j-1}(x_{j-1}), \quad V_j(x_j) = \sum_{x_{j+1}} p(x_{j+1} \mid x_j) V_{j+1}(x_{j+1}). \]

We can compute \(p(x_j = c \mid x_{j'} = c') \) using only forward messages:
- Set \(M_j(c) = 1 \) and \(M_{j'}(c') = 1 \).

Why we would need backward messages?
Forward-Backward Algorithm

- We can compute $p(x_j = c \mid x_{j'} = c')$ for all j in $O(dk^2)$ with both messages.

- First compute all message normally with $M_{j'}(c') = 1$ and $V_{j'}(c') = 1$.
 (Set $M_{j'}(c)$ and $V_{j'}(c)$ to 0 for other values of c.)

- We then have that
 - $M_j(x_j)$ sums up all the paths that end in state x_j (with $x_{j'} = c'$).
 - $V_j(x_j)$ sums up all the paths that start in state x_j (with $x_{j'} = c'$).
 - We can combine these values to get
 \[p(x_j \mid x_{j'}) \propto M_j(x_j)V_j(x_j), \]

- Computing all M_j and V_j is called the forward-backward algorithm.
Generating exact conditional samples from Gaussian/discrete Markov chains:

1. If we’re only conditioning on first \(j \) states, \(x_{1:j} \), just fix these values and start ancestral sampling from time \((j + 1)\).

2. If we have the marginals \(p(x_j) \), we can get the “backwards” transition probabilities using Bayes rule,

\[
p(x_j \mid x_{j+1}) = \frac{p(x_{j+1} \mid x_j)p(x_j)}{p(x_{j+1})},
\]

which lets us run ancestral sampling in reverse: sample \(x_d \) from \(p(x_d) \), then \(x_{d-1} \) from \(p(x_{d-1} \mid x_d) \), and so on.

3. If we’re only conditioning on last \(j \) states \(x_{d-j:d} \), run CK equations to get marginals and then start ancestral sampling “backwards” starting from \((d - j - 1)\) to sample the earlier states.
Conditional Samples from Gaussian/Discrete Markov Chain

4 If we’re conditioning on contiguous states in the middle, \(x_{j:j'} \), run ancestral sampling forward starting from position \((j' + 1)\) and backwards starting from position \((j - 1)\).

5 If you condition on non-contiguous positions \(j \) and \(j' \) with \(j < j' \), need to do (i) forward sampling starting from \((j' + 1)\), (ii) backward sampling starting from \((j - 1)\), and (iii) CK equations on the sequence \((j : j')\) to get marginals conditioned on value of \(j \) then backwards sampling back to \(j \) starting from \((j' - 1)\).

The above are all special cases of conditioning in an undirected graphical model (UGM), followed by applying the “forward-filter backward-sampling” algorithm on each of the resulting chain-structured UGMs.