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Last Time: Chapman-Kolmogorov Equations

e Chapman-Kolmogorov (CK) equations:
o Recursive formula for computing p(x; = s) for all j and s in a Markov chain.

k

p(z;) = Z p(xj [ zj-1)p(z;-1),

Tj—1=1

o Allows us to compute all these marginal probabilities p(x; = s) in O(dk?).
o For a length-d chain with k states.

@ We also discussed stationary distributions of homogeneous Markov chains.
w(e) =Y plxj=claj1=)n(d),
C/

which are sets of marginal probabilities 7 that don't change over time.
e You can think of this as the “long-run average probability of being in each state”.
e Stationary distribution exists and is unique if all transitions are positive.
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Application: Voice Photoshop

@ Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:
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Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

e https://www.youtube.com/watch?v=I314XLZ59iw


http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw
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Decoding: Maximizing Joint Probability

Decoding in density models: finding = with highest joint probability:

argmax p(zy1,Ta,...,xq).
L1,X2,..-,Td

For CS grad student (d = 60) the decoding is “industry” for all years.

o The decoding often doesn’t look like a typical sample.
e The decoding can change if you increase d.

Decoding is easy for independent models:

o Here, p(x1, 22,23, 24) = p(x1)p(x2)p(23)p(T4).
e You can optimize p(x1, z2, 3, x4) by optimizing each p(z;) independently.

Can we also maximize the marginals to decode a Markov chain?
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Example of Decoding vs. Maximizing Marginals

@ Consider the “plane of doom” 2-variable Markov chain:

“land”
“land”
“crash”

“explode”

“crash”
“land”

@ 40% of the time the plane lands and you live.

“alive” ]
“alive”
“dead”
“dead”
“dead”
“alive”

@ 30% of the time the plane crashes and you die.

@ 30% of the time the explodes and you die.

Hidden Markov Models
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Example of Decoding vs. Maximizing Marginals
@ Initial probabilities are given by
p(z1 = “land”) = 0.4, p(z; = “crash”) =0.35, p(z; = “explode”) = 0.25,
and transition probabilities are:
p(ze = “alive” | 1 = “land”) =1, p(xe = “alive” | x; = “crash”) =0,
p(zo = “alive” | 21 = “explode”) = 0.
o If we apply the CK equations we get
p(zg = "alive”) =04, p(ze = “dead”) = 0.6,
so maximizing the marginals p(z;) independently gives (“land”, “dead”).

o This actually has probability 0, since p(“dead” | “land”) = 1.

@ Decoding considers the joint assignment to x1 and x2 maximizing probaiblity.
o In this case it's ("land”, “alive”), which has probability 0.4.
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Decoding with Dynamic Programming

@ Note that decoding can’t be done forward in time as in CK equations.

e Even if p(z; = 1) = 0.99, the most likely sequence could have z; = 2.
e So we need to optimize over all k% assignments to all variables.

@ Fortunately, we can solve this problem using dynamic programming.

@ Ingredients of dynamic programming:
@ Optimal sub-structure.
@ We can divide the problem into sub-problems that can individual be solved.
@ Overlapping sub-problems.
@ The same sub-problems are reused several times.
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Decoding with Dynamic Programming

@ For decoding in Markov chains, we will use the following sub-problem:

e Compute the highest probability sequence of length j ending in state s.
o We'll use M, (s) as the probability of this sequence.

M;(s)= max  p(x1,22,...,2; =3).
L1,L2,.-3T5—1
@ Optimal sub-structure:

o We can find the decoding by finding the s maximizing My(s) (then “backtracking”).
o We can compute other M;(s) recursively (derivation of this coming up),

M](S) = ma;lcp(xj =S ‘ £Ej,1) Mjfl(wjfl),
Tj

given recurse

with a base case of M;(s) = p(xz1 = s) (which is given by the initial probability).
@ Overlapping sub-problems:
o The same k values of M;_1(s) are used to compute the k values of M;(s).
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Digression: Recursive Joint Maximization
@ To derive the M; formula, it will be helpful to re-write joint maximizations as

max f(x1,x2) = max fi(z1),
1,22 1

where fi(x1) = max,, f(x1,x2) (this fi “maximizes out” over x3).

o This is similar to the marginalization rule in probability.

@ Plugging in the definition of f1(x1) we obtain:
max f(x1,x2) = maxmax f(x1,x2) .
1,2 1 z2
| ——
Ji(z1)

@ You can do this trick repeatedly and/or with any number of variables.



Viterbi Decoding Hidden Markov Models

Decoding with Dynamic Programming

@ Derivation of recursive calculation M;(x;) for decoding Markov chains:

Mj(z;) = o m;ggxxjil p(z1,x2,...,2;5) (definition of Mj(x;))

= max p(x; | 1, 22,...xj-1)p(z1, T2, ..., Tj_1) (product rule)
T1,T2,-.Tj 1

= max  p(z; | zj—1)p(x1,®2,...,2T5-1) (Markov property)
T1,T2,..T5j_1

= max { max  p(z; | x]-_l)p(az1,a:2,:e]-_1)} (max f(a,b) = max{max f(a,b)})
Tj—1 | T1,T2,---T5j_2 a,b a b

= max {p(xj | z5_1) max p(xl,xg,a:jfl)} (max aa; = amaxa; for a > 0)
Tj_1 1,2, T2 i i

=maxp(z; | xj_1) Mj_1(xj_1) (definition of M;_1(x;j_1))
Tj_1

given recurse

e For each (j,s) we also store the maximizing value of z;_;.

o Once we have M;(z; = s) for all j and s values,
backtrack using these values to solve problem.
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Example: Decoding the Plane of Doom

@ We have M;(x1) = p(x1) so in “plane of doom” we have
M;i("land") = 0.4, M;("crash”)=0.3, M;("explode”)=0.3.
e We have Ms(x2) = max,, p(xs | x1)M;p(x1) so we get
Mo(“alive”) = 0.4, Mo("“dead") = 0.3.

@ My(2) # p(z2 = 2) because we needed to choose either “crash” or “explode”.
o And notice that Ele Ms(xzj; = c¢) # 1 (this is not a distribution over x3).

e We maximize Ms(z2) to find that the optimal decoding ends with “alive”.
o We now need to backtrack to find the state that lead to “alive”, giving “land”.
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Viterbi Decoding

@ The Viterbi decoding dynamic programming algorithm:
e Set M1(£E1) = p(xl) for all xIy.
@ Compute My (x2) for all x4, store value of x; leading to the best value of each xs.
© Compute Ms(x3) for all z3, store value of zo leading to the best value of each 3.
Q ...
© Maximize My(x4) to find value of 4 in a decoding.
@ Bactrack to find the value of x4_; that lead to this x.
@ Backtrack to find the value of xz4_o that lead to this z4_1.
Q ...
© Backtrack to find the value of x; that lead to this 5.

e For a fixed j, computing all M;(z;) given all M;_1(zj_1) costs O(k?).
o Total cost is only O(dk?) to search over all k¢ paths.
e Has numerous applications like decoding digital TV.
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Decoding with Dynamic Programming

e What Viterbi decoding data structures might look like (d = 4,k = 3):

0.25 0.25 0.50 000
0.35 0.15 0.05 113
M=1010 005 005]° BT {2 11
0.02 0.03 0.05 2 21

@ The d x k matrix M stores the values M;(s), while B stores the argmax values.

@ From the last row of M and the bactracking matrix B,
the decoding is z1 = 1,20 = 2,23 = 1,24 = 3.



Outline

@ Viterbi Decoding

© Hidden Markov Models
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Back to the Rain Data

@ We previously considered the “Vancouver Rain" data:

@ We used homogeneous Markov chains to model between-day dependence.
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Back to the Rain Data

@ But doesn't it rain less in the summer?

@ There are hidden clusters in the data not captured by the Markov chain.
e But mixture of independent models are inefficient at representing direct dependency.

@ Mixture of Markov chains could capture direct dependence and clusters,

2
p(w1, 72, .. xa) = Y pz =) p(x1 | z = )p(z | w1,2 = ¢) -~ p(wg| a1,2 = ¢).

c=1

Markov chain ¢

@ Cluster z chooses which homogeneous Markov chain parameters to use.

e We could learn that we're more likely to have rain in winter.
e Can modify CK equations to take into account z, and then apply EM.
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Comparison of Models on Rain Data

Independent (homogeneous) Bernoulli:
o Average NLL: 18.97 (1 parameter).
Independent Bernoullis:
o Average NLL: 18.95, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):
o Average NLL: 17.06 (10 + 10 x 28 = 290 parameters)
Homogeneous Markov chain:
o Average NLL: 16.81 (3 parameters)
Mixture of Markov chains (k = 10, five random restarts of EM):
o Average NLL: 16.53 (10 + 10 x 3 = 40 parameters).
o Included what | call a “summer” cluster:

p(z=5)=0.14

p(z1 = “rain” | z =15) = 0.22 (instead of usual 37%)
p(z; = “rain” | z;_1 = “rain”,z =5) = 0.49 (instead of usual 65%)
p(z; = “rain” | x;_1 = “not rain",z =5) =0.11  (instead of usual 35%)
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Back to the Rain Data

@ The rain data is artificially divideded into months.

@ We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.

@ But a mixture doesn’'t make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.
o We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a"hidden” Markov model (HMM):

e Instead of months being assigned to clusters, days are assigned to clusters.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models (MEMORIZE)

@ Hidden Markov models have each x; depend on hidden Markov chain.
AU

I ]
@@@@@

d d
p(r1,m2,. .., %4, 21,22, - - - 24) :p(zl)H (25 | zj—1 H p(xj | zj).
J=2 J=1
@ We're going to learn clusters z; and the hidden dynamics.
o Hidden cluster z; could be “summer” or “winter” (we're learning the clusters).
e Transition probability p(z; | zj—1) is probability of staying in “summer"”.
o Initial probability p(z1) is probability of starting chain in “summer”.
o Emission probability p(x; | z;) is probability of “rain” during “summer”.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on hidden Markov chain.

@‘A? Z2 -—"9@—4214'_9@
| |l ]
L oo b
p(a:l,azg,...,zl,zg,...zd):p(zl)H (25 | zj—1) ﬁ (x5 ] z5).
j=2

@ You observe the z; values but do not see the z; values.
o There is a “hidden” Markov chain, whose state determines the cluster at each time.

@ Note that the ; can be continuous even with discrete clusters z;.
e Data could come from a mixture of Gaussians, with cluster changing in time.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on hidden Markov chain.

@—7 Z3 -—-’7@—’7 = —9@

l
b 66 b

d
p($17$2a"'721722)"'zd):p(zl)H Z]|ZJ 1 H 113]|Zj-
Jj=2 J=1
o If the z; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.

@ Variants of HMMs are probably the most-used time-series model...
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Applications of HMMs and Kalman Filters

Applications fediy

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).
Applications include:

. Single Molecule Kinetic analysis!'€]

. Cryptanalysis

. Speech recognition

. Speech synthesis

. Part-of-speech tagging

. Document Separation in scanning solutions

+ Machine translation

. Partial discharge

. Gene prediction

. Alignment of bio-sequences

. Time Series Analysis

. Activity recognition

. Protein folding!'?)

. Metamorphic Virus Detection['#!

. DNA Motif Discovery!!9]

Applications (edi

. Aftitude and Heading Reference Systems . Economics, in particular » ime . Simultaneous localization and mapping
. Autopilot series analysis, and econometrics!*?] . Speech enhancement
. Battery state of charge (SoG) estimation[291(4¢] . Inertial guidance system . Visual odometry
. Brain-computer interface . Orbit Determination . Weather forecasting
. Chaotic signals . Power system state estimation . Navigation system
. Tracking and Vertex Fitting of charged particles in - Radar tracker . 3D modeling
Particle Detectors!*1] . Satellite navigation systems . Structural health monitoring
. Tracking of objects in computer vision . Seismology*? . Human sensorimotor processing/4!
. Dynamic positioning . Sensorless control of AC motor variable-frequency

drives
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Example: Modeling DNA Sequences

e Markov model for elements of sequence (dependence on previous symbol):

"AfterA" wheel "AfterC" wheel

P&=0.2, p:=0.3, R;=0.3, p,;=0.2 Pa=0.1, p:=0.41, p;=0.39, p,=0.1

"AfterG" wheel "AfterT" wheel

Pi=0.25, p=0.25, pF0.25,p=0.25  p,=0.5, p=0.17, p=0.17, p,=0.17

https://www.tes.com/lessons/WESE9RncBhieAQ/dna


https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

e Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

"AT-rich" wheel "GC-rich" wheel

p=0.3 of
changing wheel

<———-
p=0.1of
changing wheel

p=0.39, p=0.1, p=0.1, p,=0.41 ps=0.1, p.=0.41, p=0.39, p,=0.1

@ This is a (hidden) state transition diagram.
o Can reflect that probabilities are different in different regions.
o The actual regions are not given, but instead are nuissance variables handled by EM.

@ A better model might use a hidden and visible Markov chain.
o With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
o Would have “treewidth 2" which we'll show later means it's tractable to use.
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Summary

@ Decoding is task of finding most probable x.

@ Viterbi decoding allow efficient decoding with Markov chains.
e A special case of dynamic programming.

@ Hidden Markov models model time-series with hidden per-time cluster.
e Tons of applications, typically more realistic than Markov models.

o Next time: measuring defence in the NBA.
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