
Viterbi Decoding Hidden Markov Models

CPSC 440: Advanced Machine Learning
Hidden Markov Models

Mark Schmidt

University of British Columbia

Winter 2021

Viterbi Decoding Hidden Markov Models

Last Time: Chapman-Kolmogorov Equations
Chapman-Kolmogorov (CK) equations:

Recursive formula for computing p(xj = s) for all j and s in a Markov chain.

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1),

Allows us to compute all these marginal probabilities p(xj = s) in O(dk2).
For a length-d chain with k states.

We also discussed stationary distributions of homogeneous Markov chains.

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′),

which are sets of marginal probabilities π that don’t change over time.
You can think of this as the “long-run average probability of being in each state”.
Stationary distribution exists and is unique if all transitions are positive.

Viterbi Decoding Hidden Markov Models

Application: Voice Photoshop

Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I3l4XLZ59iw

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Viterbi Decoding Hidden Markov Models

Decoding: Maximizing Joint Probability

Decoding in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For CS grad student (d = 60) the decoding is “industry” for all years.

The decoding often doesn’t look like a typical sample.
The decoding can change if you increase d.

Decoding is easy for independent models:

Here, p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4).
You can optimize p(x1, x2, x3, x4) by optimizing each p(xj) independently.

Can we also maximize the marginals to decode a Markov chain?

Viterbi Decoding Hidden Markov Models

Example of Decoding vs. Maximizing Marginals

Consider the “plane of doom” 2-variable Markov chain:

X =

“land” “alive”
“land” “alive”
“crash” “dead”

“explode” “dead”
“crash” “dead”
“land” “alive”

...
...

.

40% of the time the plane lands and you live.

30% of the time the plane crashes and you die.

30% of the time the explodes and you die.

Viterbi Decoding Hidden Markov Models

Example of Decoding vs. Maximizing Marginals

Initial probabilities are given by

p(x1 = “land”) = 0.4, p(x1 = “crash”) = 0.35, p(x1 = “explode”) = 0.25,

and transition probabilities are:

p(x2 = “alive” | x1 = “land”) = 1, p(x2 = “alive” | x1 = “crash”) = 0,

p(x2 = “alive” | x1 = “explode”) = 0.

If we apply the CK equations we get

p(x2 = ‘’alive”) = 0.4, p(x2 = “dead”) = 0.6,

so maximizing the marginals p(xj) independently gives (“land”, “dead”).
This actually has probability 0, since p(“dead′′ | “land′′) = 1.

Decoding considers the joint assignment to x1 and x2 maximizing probaiblity.
In this case it’s (“land”, “alive”), which has probability 0.4.

Viterbi Decoding Hidden Markov Models

Decoding with Dynamic Programming

Note that decoding can’t be done forward in time as in CK equations.

Even if p(x1 = 1) = 0.99, the most likely sequence could have x1 = 2.
So we need to optimize over all kd assignments to all variables.

Fortunately, we can solve this problem using dynamic programming.

Ingredients of dynamic programming:
1 Optimal sub-structure.

We can divide the problem into sub-problems that can individual be solved.

2 Overlapping sub-problems.

The same sub-problems are reused several times.

Viterbi Decoding Hidden Markov Models

Decoding with Dynamic Programming

For decoding in Markov chains, we will use the following sub-problem:
Compute the highest probability sequence of length j ending in state s.
We’ll use Mj(s) as the probability of this sequence.

Mj(s) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj = s).

Optimal sub-structure:
We can find the decoding by finding the s maximizing Md(s) (then “backtracking”).
We can compute other Mj(s) recursively (derivation of this coming up),

Mj(s) = max
xj−1

p(xj = s | xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

,

with a base case of M1(s) = p(x1 = s) (which is given by the initial probability).

Overlapping sub-problems:
The same k values of Mj−1(s) are used to compute the k values of Mj(s).

Viterbi Decoding Hidden Markov Models

Digression: Recursive Joint Maximization

To derive the Mj formula, it will be helpful to re-write joint maximizations as

max
x1,x2

f(x1, x2) = max
x1

f1(x1),

where f1(x1) = maxx2 f(x1, x2) (this f1 “maximizes out” over x2).

This is similar to the marginalization rule in probability.

Plugging in the definition of f1(x1) we obtain:

max
x1,x2

f(x1, x2) = max
x1

max
x2

f(x1, x2)︸ ︷︷ ︸
f1(x1)

.

You can do this trick repeatedly and/or with any number of variables.

Viterbi Decoding Hidden Markov Models

Decoding with Dynamic Programming
Derivation of recursive calculation Mj(xj) for decoding Markov chains:

Mj(xj) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj) (definition of Mj(xj))

= max
x1,x2,...xj−1

p(xj | x1, x2, . . . xj−1)p(x1, x2, . . . , xj−1) (product rule)

= max
x1,x2,...xj−1

p(xj | xj−1)p(x1, x2, . . . , xj−1) (Markov property)

= max
xj−1

{
max

x1,x2,...xj−2
p(xj | xj−1)p(x1, x2, xj−1)

}
(max

a,b
f(a, b) = max

a
{max

b
f(a, b)})

= max
xj−1

{
p(xj | xj−1) max

x1,x2,...xj−2
p(x1, x2, xj−1)

}
(max

i
αai = αmax

i
ai for α ≥ 0)

= max
xj−1

p(xj | xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

(definition of Mj−1(xj−1))

For each (j, s) we also store the maximizing value of xj−1.

Once we have Mj(xj = s) for all j and s values,
backtrack using these values to solve problem.

Viterbi Decoding Hidden Markov Models

Example: Decoding the Plane of Doom

We have M1(x1) = p(x1) so in “plane of doom” we have

M1(“land”) = 0.4, M1(“crash”) = 0.3, M1(“explode”) = 0.3.

We have M2(x2) = maxx1 p(x2 | x1)M1(x1) so we get

M2(“alive”) = 0.4, M2(“dead”) = 0.3.

M2(2) 6= p(x2 = 2) because we needed to choose either “crash” or “explode”.

And notice that
∑k

c=1M2(xj = c) 6= 1 (this is not a distribution over x2).

We maximize M2(x2) to find that the optimal decoding ends with “alive”.

We now need to backtrack to find the state that lead to “alive”, giving “land”.

Viterbi Decoding Hidden Markov Models

Viterbi Decoding

The Viterbi decoding dynamic programming algorithm:
1 Set M1(x1) = p(x1) for all x1.
2 Compute M2(x2) for all x2, store value of x1 leading to the best value of each x2.
3 Compute M3(x3) for all x3, store value of x2 leading to the best value of each x3.
4 . . .
5 Maximize Md(xd) to find value of xd in a decoding.
6 Bactrack to find the value of xd−1 that lead to this xd.
7 Backtrack to find the value of xd−2 that lead to this xd−1.
8 . . .
9 Backtrack to find the value of x1 that lead to this x2.

For a fixed j, computing all Mj(xj) given all Mj−1(xj−1) costs O(k2).

Total cost is only O(dk2) to search over all kd paths.
Has numerous applications like decoding digital TV.

Viterbi Decoding Hidden Markov Models

Decoding with Dynamic Programming

What Viterbi decoding data structures might look like (d = 4, k = 3):

M =

0.25 0.25 0.50
0.35 0.15 0.05
0.10 0.05 0.05
0.02 0.03 0.05

 , B =

∅ ∅ ∅
1 1 3
2 1 1
2 2 1

 .
The d× k matrix M stores the values Mj(s), while B stores the argmax values.

From the last row of M and the bactracking matrix B,
the decoding is x1 = 1, x2 = 2, x3 = 1, x4 = 3.

Viterbi Decoding Hidden Markov Models

Outline

1 Viterbi Decoding

2 Hidden Markov Models

Viterbi Decoding Hidden Markov Models

Back to the Rain Data

We previously considered the “Vancouver Rain” data:

We used homogeneous Markov chains to model between-day dependence.

Viterbi Decoding Hidden Markov Models

Back to the Rain Data

But doesn’t it rain less in the summer?

There are hidden clusters in the data not captured by the Markov chain.

But mixture of independent models are inefficient at representing direct dependency.

Mixture of Markov chains could capture direct dependence and clusters,

p(x1, x2, . . . , xd) =

k∑
c=1

p(z = c) p(x1 | z = c)p(x2 | x1, z = c) · · · p(xd | xd−1, z = c)︸ ︷︷ ︸
Markov chain c

.

Cluster z chooses which homogeneous Markov chain parameters to use.

We could learn that we’re more likely to have rain in winter.
Can modify CK equations to take into account z, and then apply EM.

Viterbi Decoding Hidden Markov Models

Comparison of Models on Rain Data
Independent (homogeneous) Bernoulli:

Average NLL: 18.97 (1 parameter).
Independent Bernoullis:

Average NLL: 18.95, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):

Average NLL: 17.06 (10 + 10× 28 = 290 parameters)
Homogeneous Markov chain:

Average NLL: 16.81 (3 parameters)
Mixture of Markov chains (k = 10, five random restarts of EM):

Average NLL: 16.53 (10 + 10× 3 = 40 parameters).
Included what I call a “summer” cluster:

p(z = 5) = 0.14

p(x1 = “rain” | z = 5) = 0.22 (instead of usual 37%)

p(xj = “rain” | xj−1 = “rain”, z = 5) = 0.49 (instead of usual 65%)

p(xj = “rain” | xj−1 = “not rain”, z = 5) = 0.11 (instead of usual 35%)

Viterbi Decoding Hidden Markov Models

Back to the Rain Data

The rain data is artificially divideded into months.

We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.

But a mixture doesn’t make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.
We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a“hidden” Markov model (HMM):
Instead of months being assigned to clusters, days are assigned to clusters.
Have a Markov dependency between cluster values of adjacent days.

Viterbi Decoding Hidden Markov Models

Hidden Markov Models (MEMORIZE)

Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏
j=1

p(xj | zj).

We’re going to learn clusters zj and the hidden dynamics.
Hidden cluster zj could be “summer” or “winter” (we’re learning the clusters).
Transition probability p(zj | zj−1) is probability of staying in “summer”.

Initial probability p(z1) is probability of starting chain in “summer”.

Emission probability p(xj | zj) is probability of “rain” during “summer”.

Viterbi Decoding Hidden Markov Models

Hidden Markov Models
Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏
j=1

p(xj | zj).

You observe the xj values but do not see the zj values.
There is a “hidden” Markov chain, whose state determines the cluster at each time.

Note that the xj can be continuous even with discrete clusters zj .
Data could come from a mixture of Gaussians, with cluster changing in time.

Viterbi Decoding Hidden Markov Models

Hidden Markov Models
Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏
j=1

p(xj | zj).

If the zj are continuous it’s often called a state-space model.
If everything is Gaussian, it leads to Kalman filtering.
Keywords for non-Gaussian: unscented Kalman filter and particle filter.

Variants of HMMs are probably the most-used time-series model...

Viterbi Decoding Hidden Markov Models

Applications of HMMs and Kalman Filters

Also includes chain-structured conditional random fields.

Viterbi Decoding Hidden Markov Models

Example: Modeling DNA Sequences
Markov model for elements of sequence (dependence on previous symbol):

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Viterbi Decoding Hidden Markov Models

Example: Modeling DNA Sequences
Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

This is a (hidden) state transition diagram.
Can reflect that probabilities are different in different regions.
The actual regions are not given, but instead are nuissance variables handled by EM.

A better model might use a hidden and visible Markov chain.
With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
Would have “treewidth 2”, which we’ll show later means it’s tractable to use.

Viterbi Decoding Hidden Markov Models

Summary

Decoding is task of finding most probable x.

Viterbi decoding allow efficient decoding with Markov chains.

A special case of dynamic programming.

Hidden Markov models model time-series with hidden per-time cluster.

Tons of applications, typically more realistic than Markov models.

Next time: measuring defence in the NBA.

	Viterbi Decoding
	Hidden Markov Models

