CPSC 440: Advanced Machine Learning Hidden Markov Models

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Chapman-Kolmogorov Equations

- Chapman-Kolmogorov (CK) equations:
 - Recursive formula for computing $p(x_j = s)$ for all j and s in a Markov chain.

$$p(x_j) = \sum_{x_{j-1}=1}^k p(x_j \mid x_{j-1}) p(x_{j-1}),$$

- Allows us to compute all these marginal probabilities p(x_j = s) in O(dk²).
 For a length-d chain with k states.
- We also discussed stationary distributions of homogeneous Markov chains.

$$\pi(c) = \sum_{c'} p(x_j = c \mid x_{j-1} = c') \pi(c'),$$

which are sets of marginal probabilities π that don't change over time.

- You can think of this as the "long-run average probability of being in each state".
- Stationary distribution exists and is unique if all transitions are positive.

Application: Voice Photoshop

• Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we find a candidate set of good potential matches (columns below). Good paths through this set minimize differences from the query, number and severity of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I314XLZ59iw

Decoding: Maximizing Joint Probability

• Decoding in density models: finding x with highest joint probability:

 $\underset{x_1, x_2, \dots, x_d}{\operatorname{argmax}} p(x_1, x_2, \dots, x_d).$

- For CS grad student (d = 60) the decoding is "industry" for all years.
 - The decoding often doesn't look like a typical sample.
 - The decoding can change if you increase d.
- Decoding is easy for independent models:
 - Here, $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4)$.
 - You can optimize $p(x_1, x_2, x_3, x_4)$ by optimizing each $p(x_j)$ independently.
- Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

• Consider the "plane of doom" 2-variable Markov chain:

$$X = \begin{bmatrix} ``land'' ``alive'' \\ ``land'' ``alive'' \\ ``crash'' ``dead'' \\ ``explode'' ``dead'' \\ ``crash'' ``dead'' \\ ``land'' ``alive'' \\ \vdots & \vdots \end{bmatrix}.$$

- $\bullet~40\%$ of the time the plane lands and you live.
- $\bullet~30\%$ of the time the plane crashes and you die.
- 30% of the time the explodes and you die.

Example of Decoding vs. Maximizing Marginals

• Initial probabilities are given by

 $p(x_1 = \text{``land''}) = 0.4, \quad p(x_1 = \text{``crash''}) = 0.35, \quad p(x_1 = \text{``explode''}) = 0.25,$

and transition probabilities are:

$$\begin{split} p(x_2 = \text{``alive''} \mid x_1 = \text{``land''}) = 1, \quad p(x_2 = \text{``alive''} \mid x_1 = \text{``crash''}) = 0, \\ p(x_2 = \text{``alive''} \mid x_1 = \text{``explode''}) = 0. \end{split}$$

• If we apply the CK equations we get

$$p(x_2 = \text{``alive''}) = 0.4, \quad p(x_2 = \text{``dead''}) = 0.6,$$

so maximizing the marginals $p(x_j)$ independently gives ("land", "dead").

- This actually has probability 0, since $p(\text{"dead}'' \mid \text{"land}'') = 1$.
- Decoding considers the joint assignment to x₁ and x₂ maximizing probability.
 In this case it's ("land", "alive"), which has probability 0.4.

Decoding with Dynamic Programming

- Note that decoding can't be done forward in time as in CK equations.
 - Even if $p(x_1 = 1) = 0.99$, the most likely sequence could have $x_1 = 2$.
 - So we need to optimize over all k^d assignments to all variables.
- Fortunately, we can solve this problem using dynamic programming.
- Ingredients of dynamic programming:
 - Optimal sub-structure.
 - We can divide the problem into sub-problems that can individual be solved.
 - Overlapping sub-problems.
 - The same sub-problems are reused several times.

Decoding with Dynamic Programming

• For decoding in Markov chains, we will use the following sub-problem:

- Compute the highest probability sequence of length j ending in state s.
- We'll use $M_j(s)$ as the probability of this sequence.

$$M_j(s) = \max_{x_1, x_2, \dots, x_{j-1}} p(x_1, x_2, \dots, x_j = s).$$

• Optimal sub-structure:

- We can find the decoding by finding the s maximizing $M_d(s)$ (then "backtracking").
- We can compute other $M_j(s)$ recursively (derivation of this coming up),

$$M_j(s) = \max_{x_{j-1}} \underbrace{p(x_j = s \mid x_{j-1})}_{\text{given}} \underbrace{M_{j-1}(x_{j-1})}_{\text{recurse}},$$

with a base case of $M_1(s) = p(x_1 = s)$ (which is given by the initial probability).

- Overlapping sub-problems:
 - The same k values of $M_{j-1}(s)$ are used to compute the k values of $M_j(s)$.

Digression: Recursive Joint Maximization

• To derive the M_j formula, it will be helpful to re-write joint maximizations as

$$\max_{x_1, x_2} f(x_1, x_2) = \max_{x_1} f_1(x_1),$$

where $f_1(x_1) = \max_{x_2} f(x_1, x_2)$ (this f_1 "maximizes out" over x_2). • This is similar to the marginalization rule in probability.

• Plugging in the definition of $f_1(x_1)$ we obtain:

$$\max_{x_1, x_2} f(x_1, x_2) = \max_{x_1} \underbrace{\max_{x_2} f(x_1, x_2)}_{f_1(x_1)}.$$

• You can do this trick repeatedly and/or with any number of variables.

Decoding with Dynamic Programming

• Derivation of recursive calculation $M_j(x_j)$ for decoding Markov chains:

$$\begin{split} M_{j}(x_{j}) &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{1}, x_{2}, \dots, x_{j}) & (\text{definition of } M_{j}(x_{j})) \\ &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{j} \mid x_{1}, x_{2}, \dots, x_{j-1}) p(x_{1}, x_{2}, \dots, x_{j-1}) & (\text{product rule}) \\ &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{j} \mid x_{j-1}) p(x_{1}, x_{2}, \dots, x_{j-1}) & (\text{Markov property}) \\ &= \max_{x_{j-1}} \left\{ \max_{x_{1}, x_{2}, \dots, x_{j-2}} p(x_{j} \mid x_{j-1}) p(x_{1}, x_{2}, x_{j-1}) \right\} & (\max_{a, b} f(a, b) = \max_{a} \{\max_{b} f(a, b)\}) \\ &= \max_{x_{j-1}} \left\{ p(x_{j} \mid x_{j-1}) \max_{x_{1}, x_{2}, \dots, x_{j-2}} p(x_{1}, x_{2}, x_{j-1}) \right\} & (\max_{i} \alpha a_{i} = \alpha \max_{i} a_{i} \text{ for } \alpha \ge 0) \\ &= \max_{x_{j-1}} \underbrace{p(x_{j} \mid x_{j-1}) \underbrace{M_{j-1}(x_{j-1})}_{\text{recurse}} p(x_{1}, x_{2}, x_{j-1})}_{\text{recurse}} \end{split}$$

- For each (j, s) we also store the maximizing value of x_{j-1} .
 - Once we have $M_j(x_j = s)$ for all j and s values, backtrack using these values to solve problem.

Example: Decoding the Plane of Doom

• We have $M_1(x_1) = p(x_1)$ so in "plane of doom" we have

 $M_1(\text{``land''}) = 0.4, \quad M_1(\text{``crash''}) = 0.3, \quad M_1(\text{``explode''}) = 0.3.$

• We have $M_2(x_2) = \max_{x_1} p(x_2 \mid x_1) M_1(x_1)$ so we get

$$M_2(\text{``alive''}) = 0.4, \quad M_2(\text{``dead''}) = 0.3.$$

M₂(2) ≠ p(x₂ = 2) because we needed to choose either "crash" or "explode".
And notice that ∑^k_{c=1} M₂(x_j = c) ≠ 1 (this is not a distribution over x₂).

We maximize M₂(x₂) to find that the optimal decoding ends with "alive".
We now need to backtrack to find the state that lead to "alive", giving "land".

Viterbi Decoding

Viterbi Decoding

- The Viterbi decoding dynamic programming algorithm:
 - **1** Set $M_1(x_1) = p(x_1)$ for all x_1 .

2 Compute $M_2(x_2)$ for all x_2 , store value of x_1 leading to the best value of each x_2 .

- Sompute $M_3(x_3)$ for all x_3 , store value of x_2 leading to the best value of each x_3 .
- 4 ...
- **(5)** Maximize $M_d(x_d)$ to find value of x_d in a decoding.
- **(**) Bactrack to find the value of x_{d-1} that lead to this x_d .
- **O** Backtrack to find the value of x_{d-2} that lead to this x_{d-1} .
- 8 . . .
- **(9)** Backtrack to find the value of x_1 that lead to this x_2 .
- For a fixed j, computing all $M_j(x_j)$ given all $M_{j-1}(x_{j-1})$ costs $O(k^2)$.
 - Total cost is only $O(dk^2)$ to search over all k^d paths.
 - Has numerous applications like decoding digital TV.

.

Decoding with Dynamic Programming

• What Viterbi decoding data structures might look like (d = 4, k = 3):

$$M = \begin{bmatrix} 0.25 & 0.25 & 0.50 \\ 0.35 & 0.15 & 0.05 \\ 0.10 & 0.05 & 0.05 \\ 0.02 & 0.03 & 0.05 \end{bmatrix}, \quad B = \begin{bmatrix} \emptyset & \emptyset & \emptyset \\ 1 & 1 & 3 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

- The $d \times k$ matrix M stores the values $M_i(s)$, while B stores the argmax values.
- From the last row of M and the bactracking matrix B, the decoding is $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 3$.

Viterbi Decoding

Hidden Markov Models

Outline

Viterbi Decoding

2 Hidden Markov Models

Back to the Rain Data

• We previously considered the "Vancouver Rain" data:

• We used homogeneous Markov chains to model between-day dependence.

Back to the Rain Data

- But doesn't it rain less in the summer?
- There are hidden clusters in the data not captured by the Markov chain.
 - But mixture of independent models are inefficient at representing direct dependency.
- Mixture of Markov chains could capture direct dependence and clusters,

$$p(x_1, x_2, \dots, x_d) = \sum_{c=1}^k p(z=c) \underbrace{p(x_1 \mid z=c) p(x_2 \mid x_1, z=c) \cdots p(x_d \mid x_{d-1}, z=c)}_{\text{Markov chain } c}.$$

- Cluster z chooses which homogeneous Markov chain parameters to use.
 - We could learn that we're more likely to have rain in winter.
 - Can modify CK equations to take into account z, and then apply EM.

Comparison of Models on Rain Data

- Independent (homogeneous) Bernoulli:
 - Average NLL: 18.97 (1 parameter).
- Independent Bernoullis:
 - Average NLL: 18.95, (28 parmaeters).
- Mixture of Bernoullis (k = 10, five random restarts of EM):
 - Average NLL: 17.06 $(10 + 10 \times 28 = 290 \text{ parameters})$
- Homogeneous Markov chain:
 - Average NLL: 16.81 (3 parameters)
- Mixture of Markov chains (k = 10, five random restarts of EM):
 - Average NLL: 16.53 ($10 + 10 \times 3 = 40$ parameters).
 - Included what I call a "summer" cluster:

$$\begin{array}{l} p(z=5)=0.14\\ p(x_1=\text{``rain''}\mid z=5)=0.22\\ p(x_j=\text{``rain''}\mid x_{j-1}=\text{``rain''}, z=5)=0.49\\ p(x_j=\text{``rain''}\mid x_{j-1}=\text{``not rain''}, z=5)=0.11 \end{array} (instead of usual 35\%) \end{array}$$

Viterbi Decoding

Back to the Rain Data

- The rain data is artificially divideded into months.
- We previously discussed viewing rain data as one very long sequence (n = 1).
- We could apply homogeneous Markov chains due to parameter tieing.
- But a mixture doesn't make sense when n = 1.
- What we want: different "parts" of the sequence come from different clusters.
 We transition from "summer" cluster to "fall" cluster at some time *j*.
- One way to address this is with a "hidden" Markov model (HMM):
 - Instead of months being assigned to clusters, days are assigned to clusters.
 - Have a Markov dependency between cluster values of adjacent days.

Hidden Markov Models (MEMORIZE)

• Hidden Markov models have each x_j depend on hidden Markov chain.

- We're going to learn clusters z_j and the hidden dynamics.
 - Hidden cluster z_j could be "summer" or "winter" (we're learning the clusters).
 - Transition probability $p(z_j \mid z_{j-1})$ is probability of staying in "summer".
 - Initial probability $p(z_1)$ is probability of starting chain in "summer".
 - Emission probability $p(x_j \mid z_j)$ is probability of "rain" during "summer".

Hidden Markov Models

• Hidden Markov models have each x_i depend on hidden Markov chain.

• You observe the x_j values but do not see the z_j values.

• There is a "hidden" Markov chain, whose state determines the cluster at each time.

• Note that the x_j can be continuous even with discrete clusters z_j .

• Data could come from a mixture of Gaussians, with cluster changing in time.

Hidden Markov Models

• Hidden Markov models have each x_j depend on hidden Markov chain.

- If the z_j are continuous it's often called a state-space model.
 - If everything is Gaussian, it leads to Kalman filtering.
 - Keywords for non-Gaussian: unscented Kalman filter and particle filter.
- Variants of HMMs are probably the most-used time-series model...

Applications of HMMs and Kalman Filters

Applications [edit]

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are). Applications include:

- . Single Molecule Kinetic analysis^[16]
- . Cryptanalysis
- . Speech recognition
- . Speech synthesis
- . Part-of-speech tagging
- . Document Separation in scanning solutions
- . Machine translation
- . Partial discharge
- . Gene prediction
- . Alignment of bio-sequences
- . Time Series Analysis
- . Activity recognition
- Protein folding^[17]
- . Metamorphic Virus Detection^[18]
- . DNA Motif Discovery^[19]

Applications [edit]

- . Attitude and Heading Reference Systems
- . Autopilot
- . Battery state of charge (SoC) estimation^{[39][40]}
- . Brain-computer interface
- . Chaotic signals
- . Tracking and Vertex Fitting of charged particles in Particle Detectors^[41]
- . Tracking of objects in computer vision
- . Dynamic positioning

- Economics, in particular macroeconomics, time series analysis, and econometrics^[42]
- . Inertial guidance system
- . Orbit Determination
- . Power system state estimation
- . Radar tracker
- . Satellite navigation systems
- Seismology^[43]
- . Sensorless control of AC motor variable-frequency
- drives

- . Simultaneous localization and mapping
- . Speech enhancement
- . Visual odometry
- . Weather forecasting
- . Navigation system
- . 3D modeling
- . Structural health monitoring
- . Human sensorimotor processing[44]

Example: Modeling DNA Sequences

• Markov model for elements of sequence (dependence on previous symbol):

Example: Modeling DNA Sequences

• Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

- This is a (hidden) state transition diagram.
 - Can reflect that probabilities are different in different regions.
 - The actual regions are not given, but instead are nuissance variables handled by EM.
- A better model might use a hidden and visible Markov chain.
 - With 2 hidden clusters, you would have 8 "probability wheels" (4 per cluster).
 - Would have "treewidth 2", which we'll show later means it's tractable to use.

Summary

- Decoding is task of finding most probable x.
- Viterbi decoding allow efficient decoding with Markov chains.
 - A special case of dynamic programming.
- Hidden Markov models model time-series with hidden per-time cluster.
 - Tons of applications, typically more realistic than Markov models.
- Next time: measuring defence in the NBA.