
Monte Carlo Approximation Exact Marginals and PageRank

CPSC 440: Advanced Machine Learning
More Monte Carlo

Mark Schmidt

University of British Columbia

Winter 2021



Monte Carlo Approximation Exact Marginals and PageRank

Last Time: Monte Carlo Methods
Given density estimator, we often want to make probabilistic inferences:

Marginals: what is the probability that xj = c?
What is the probability we’re in industry 10 years after graduation?

Conditionals: what is the probability that xj = c given xj′ = c′?
What is the probability of industry after 10 years, if we immediately go to grad school?

A basic Monte Carlo method for estimating probabilities of events:
1 Generate a large number of samples xi from the model,

X =


0 0 1 0
1 1 1 0
0 1 1 1
1 1 1 1

 .
Last time we discussed inverse transform and ancestral sampling.

2 Compute frequency that the event happened in the samples,

p(x2 = 1) ≈ 3/4,

p(x3 = 0) ≈ 0/4.
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Monte Carlo Method for Inequalities

Monte Carlo estimate of probability that variable is above threshold:

Compute fraction of examples where sample is above threshold.
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Monte Carlo Method for Mean
A Monte Carlo approximation of the mean:

Approximate the mean by average of samples.

E[x] ≈ 1

n

n∑
i=1

xi.

Visual demo of Monte Carlo approximation of mean and vairance:
http://students.brown.edu/seeing-theory/basic-probability/index.html

http://students.brown.edu/seeing-theory/basic-probability/index.html
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Monte Carlo for Markov Chains
Our samples from the CS grad student Markov chain:

We can estimate probabilities by looking at frequencies in samples.
In how many out of the 100 chains did we have x10 = “industry”?

This works for continuous states too (for inequalities and expectations).
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Monte Carlo Methods for Markov Chains

Some Monte Carlo approximations of inference tasks in Markov chains:

Marginal p(xj = c) is the number of chains that were in state c at time j.

Average value at time j, E[xj ], is approximated by average of xj in the samples.

p(5 ≤ xj ≤ 10) is approximate by frequency of xj being between 5 and 10.

This makes more sense for continuous states than evaluating equalities.

p(xj ≤ 10, xj+1 ≥ 10) is approximated by number of chains where both happen.



Monte Carlo Approximation Exact Marginals and PageRank

Monte Carlo Methods: General Form

Monte Carlo methods approximate expectations of random functions,

E[g(x)] =
∑
x∈X

g(x)p(x)︸ ︷︷ ︸
discrete x

or E[g(x)] =
∫
x∈X

g(x)p(x)dx︸ ︷︷ ︸
continuous x

.

Computing mean is the special case of g(x) = x.

Computing probability of any event A is also a special case:
Set g(x) = I[“A happened in sample xi”], indicator function for event A.

To approximate expectation, generate n samples xi from p(x) and use:

E[g(x)] ≈ 1

n

n∑
i=1

g(xi).
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Unbiasedness of Monte Carlo Methods
Let µ = E[g(x)] be the value we want to approximate (not necessarily mean).

The Monte Carlo estimate is an unbiased approximation of µ,

E

[
1

n

n∑
i=1

g(xi)

]
=

1

n
E

[
n∑
i=1

g(xi)

]
(linearity of E)

=
1

n

n∑
i=1

E[g(xi)] (linearity of E)

=
1

n

n∑
i=1

µ (xi is IID with mean µ)

= µ.

The law of large numbers says that:
Unbiased approximators “converge” (probabilistically) to expectation as n→∞.
So the more samples you get, the closer to the true value you expect to get.
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Rate of Convergence of Monte Carlo Methods
Let f be the squared error in a 1D Monte Carlo approximation,

f(x1, x2, . . . , xn) =

(
1

n

n∑
i=1

g(xi)− µ

)2

.

If variance is bounded, error with n samples is O(1/n),

E

( 1

n

n∑
i=1

g(xi)− µ
)2
 = Var

[
1

n

n∑
i=1

g(xi)

]
(unbiased and def’n of variance)

=
1

n2
Var

[
n∑
i=1

g(xi)

]
(Var(αx) = α2Var(x))

=
1

n2

n∑
i=1

Var[g(xi)] (IID)

=
1

n2

n∑
i=1

σ2 =
σ2

n
. (xi is IID with var σ2)

Similar O(1/n) argument holds for d > 1 (notice that faster for small σ2).
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Conditional Probabilities with Monte Carlo

We often want to compute conditional probabilities in Markov chains.
We can ask “what lead to x10 = 4?” with queries like p(x1 | x10 = 4).
We can ask “where does x10 = 4 lead?” with queries like p(xd | x10 = 4).

Monte Carlo approach to estimating p(xj | xj′):
1 Generate a large number of samples from the Markov chain, xi ∼ p(x1, x2, . . . , xd).
2 Use Monte Carlo estimates of p(xj = c, xj′ = c′) and p(xj′ = c′) to give

p(xj = c | xj′ = c′) =
p(xj = c, xj′ = c′)

p(xj′ = c′)
≈
∑n

i=1 I[x
i
j = c, xij′ = c′]∑n

i=1 I[x
i
j′ = c′]

,

frequency of first event in samples consistent with second event.

This is a special case of rejection sampling (we’ll see general case later).
Unfortunately, if xj′ = c′ is rare then most samples are “rejected” (ignored).
http://students.brown.edu/seeing-theory/compound-probability/index.html

http://students.brown.edu/seeing-theory/compound-probability/index.html
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Exact Marginal Calculation

In typical settings Monte Carlo has slow convergence like stochastic gradient.
O(1/t) convergence rate where constant is variance of samples.

If all samples look the same, it converges quickly.
If samples look very different, it can be painfully slow.

For discrete-state Markov chains, we can actually compute marginals directly:

We’re given initial probabilities p(x1 = s) for all s as part of the definition.
We can use transition probabilities to compute p(x2 = s) for all s:

p(x2) =

k∑
x1=1

p(x2, x1)︸ ︷︷ ︸
marginalization rule

=

k∑
x1=1

p(x2 | x1)p(x1)︸ ︷︷ ︸
product rule

.
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Exact Marginal Calculation
We can do a similar calculation to compute p(x3):

p(x3 = s) =
k∑

x2=1

k∑
x1=1

p(x1, x2, x3)

=
k∑

x2=1

k∑
x1=1

p(x3 | x2)p(x2 | x1)p(x)

=
k∑

x2=1

p(x3 | x2)
k∑

x1=1

p(x2 | x1)p(x)

=

k∑
x2=1

p(x3 | x2)p(x2).

We can also derive this recursively,

p(x3) =

k∑
x2=1

p(x3, x2)︸ ︷︷ ︸
marginalization rule

=

k∑
x2=1

p(x3 | x2)p(x2)︸ ︷︷ ︸
product rule

,

which is simpler but more-complicated scenarios won’t yield a simple recursion.
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Exact Marginal Calculation

Recursive formula for maginals at time j:

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1),

called the Chapman-Kolmogorov (CK) equations.

The CK equations can be implemented as matrix-vector multiplication:

Define πj as a vector containing the marginals at time t:

πj
c = p(xj = c).

Define T j as a matrix cotaining the transition probabilities:

T j
cc′ = p(xj = c | xj−1 = c′).
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Exact Marginal Calculation
Implementing the CK equations as a matrix multiplications:

T
j
π
j−1

=

p(xj = 1|xj−1 = 1) p(xj = 1|xj−1 = 2) . . . p(xj = 1|xj−1 = k)
p(xj = 2|xj−1 = 1) p(xj = 2|xj−1 = 2) . . . p(xj = 2|xj−1 = k)
p(xj = k|xj−1 = 1) p(xj = k|xj−1 = 2) . . . p(xj = k|xj−1 = k)



p(xj−1 = 1)
p(xj−1 = 2)

.

.

.
p(xj−1 = k)



=



∑k
c=1 p(xj = 1 | xj−1 = c)p(xj−1 = c)∑k
c=1 p(xj = 2 | xj−1 = c)p(xj−1 = c)

.

.

.∑k
c=1 p(xj = k | xj−1 = c)p(xj−1 = c)

 =


p(xj = 1)
p(xj = 2)

.

.

.
p(xj = k)

 = π
j
.

Cost of multiplying a vector by a k × k matrix is O(k2).

So cost to compute marginals up to time d is O(dk2).
This is fast considering that last step sums over all kd possible paths.

p(xd) =
k∑

x1=1

k∑
x2=1

· · ·
k∑

xj−1=1

k∑
xj+1=1

· · ·
k∑

xd−1=1

p(x1, x2, . . . , xd).



Monte Carlo Approximation Exact Marginals and PageRank

Marginals in CS Grad Career

CK equations can give all marginals p(xj = c) from CS grad Markov chain:

Each row j is a state and each column c is a year.
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Continuous-State Markov Chains

The CK equations also apply if we have continuous states:

p(xj) =

∫
xj−1

p(xj | xj−1)p(xj−1)dxj−1,

but this integral may not have a closed-form solution.

Gaussian probabilities are an important special case:
If p(xj−1) and p(xj | xj−1) are Gaussian, then p(xj) is Gaussian.

Joint distribution is a product of Gaussians.

So we can write p(xj) in closed-form in terms of mean and variance.

If the probabilities are non-Gaussian, usually can’t represent p(xj) distribution.

You are stuck using Monte Carlo or other approximations.
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Stationary Distribution

A stationary distribution of a homogeneous Markov chain is a vector π satisfying

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′).

“Probabilities don’t change across time” (also called “invariant” distribution).
Here we are talking about the “marginal” probabilities p(xj),
not the “transition” probabilities p(xj | xj−1).

Under certain conditions, marginals converge to a stationary distribution.
p(xj = c)→ π(c) as j goes to ∞.
If we fit a Markov chain to the rain example, we have π(“rain”) = 0.41.
In the CS grad student example, we have π(“dead”) = 1.

Stationary distribution is basis for Google’s PageRank algorithm.
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Application: PageRank

Web search before Google:

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

It was also easy to fool search engines by copying popular websites.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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State Transition Diagram

State transition diagrams are common for visualizing homogenous Markov chains:

P =


0 0 0.2 0.8
0 0 0 1
0.2 0 0 0.8
0 0.45 0.45 0.1


Each node is a state, each edge is a non-zero transition probability.

For web-search, each node will be a webpage.

Cost of CK equations is only O(z) instead of O(k2) if you have only z edges.
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Application: PageRank
Wikipedia’s cartoon illustration of Google’s PageRank:

Large face means higher rank.

https://en.wikipedia.org/wiki/PageRank

“Important webpages are linked from other important webpages”.

“Link is more meaningful if a webpage has few links”.

https://en.wikipedia.org/wiki/PageRank
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Application: PageRank

Google’s PageRank algorithm for measuring the importance of a website:
Stationary probability in “random surfer” Markov chain:

With probability α, surfer clicks on a random link on the current webpage.
Otherwise, surfer goes to a completely random webpage.

To compute the stationary distribution, they use the power method:

Repeatedly apply the CK equations.
Iterations are faster than O(k2) due to sparsity of links.

Transition matrix is “sparse plus rank-1” which allows fast multiplication.

Can be easily parallelized.
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Application: Game of Thrones

PageRank can be used in other applications.

“Who is the main character in the Game of Thrones books?”

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character
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Existence/Uniqueness of Stationary Distribution

Does a stationary distribution π exist and is it unique?

A sufficient condition for existence/uniqueness is that all p(xj = c | xj′ = c′) > 0.

PageRank satisfies this by adding probability (1− α) of jumping to a random page.

Weaker sufficient conditions for existence and uniqueness (“ergodic”):
1 “Irreducible” (doesn’t get stuck in part of the graph).
2 “Aperiodic” (probability of returning to state isn’t on fixed intervals).
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Summary

Monte Carlo samples to approximate expectations of random functions.

Tke average of the function applied to each sample.

Chapman-Kolmogorov equations compute exact univariate marginals.

For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.

Marginals as time goes to ∞.
Basis of Google’s PageRank method.

Next time: voice Photoshop.
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Monte Carlo as a Stochastic Gradient Method

Consider case of using Monte Caro method to estimate mean µ = E[x],

µ ≈ 1

n

n∑
i=1

xi.

We can write this as minimizing the 1-strongly convex

f(w) =
1

2
‖w − µ‖2.

The gradient is ∇f(w) = (w − µ).
Consider applying stochastic gradient descent on f using

∇fi(wk) = wk − xk+1,

which is unbiased since each xi is unbiased µ approximation.

Monte Carlo method is a stochastic gradient method with this approximation.
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Monte Carlo as a Stochastic Gradient Method
Monte Carlo approximation as a stochastic gradient method with αi = 1/(i+ 1),

wn = wn−1 − αn−1(wn−1 − xi)
= (1− αn−1)wn−1 + αn−1x

i

=
n− 1

n
wn−1 +

1

n
xi

=
n− 1

n

(
n− 2

n− 1
wn−2 +

1

n− 1
xi−1

)
+

1

n
xi

=
n− 2

n
wn−2 +

1

n

(
xi−1 + xi

)
=
n− 3

n
wn−3 +

1

n

(
xi−2 + xi−1 + xi

)
=

1

n

n∑
i=1

xi.

We know the rate of stochastic gradient for strongly-convex is O(1/n).
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Law of the Unconscious Statistician

We use these identities to define the expectation of a function g applied to a
random variable x,

E[g(x)] =
∑
x∈X

g(x)p(x)︸ ︷︷ ︸
discrete x

or E[g(x)] =
∫
x∈X

g(x)p(x)dx︸ ︷︷ ︸
continuous x

.

The transformation from expectation to sum/integral is known as the “law of the
unconsciuos statistician”.

It’s usually taken as being true, but it’s proof is a bit of a pain.
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Accelerated Monte Carlo: Quasi Monte Carlo

Unlike stochastic gradient, there are some “accelerated” Monte Carlo methods.

Quasi Monte Carlo methods achieve an accelerated rate of O(1/n2).
Key idea: fill the space strategically with a deterministic “low-discrepancy sequence”.
Uniform random vs. deterministic low-discrepancy:

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method
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Label Propagation as a Markov Chain Problem

Semi-supervised label propagation method has a Markov chain interpretation.

We have n+ t states, one for each [un]labeled example.

Monte Carlo approach to label propagation (“adsorption”):

At time t = 0, set the state to the node you want to label.
At time t > 0 and on a labeled node, output the label.

Labeled nodes are absorbing states.

At time t > 0 and on an unlabeled node i:

Move to neighbour j with probability proportional wij (or w̄ij).

Final predictions are probabilities of outputting each label.

Nice if you only need to label one example at a time (slow if labels are rare).
Common hack is to limit random walk time to bound runtime.
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