CPSC 440: Advanced Machine Learning
More Monte Carlo

Mark Schmidt
University of British Columbia

Winter 2021
Last Time: Monte Carlo Methods

Given density estimator, we often want to make **probabilistic inferences**:

- **Marginals**: what is the probability that \(x_j = c\)?
 - What is the probability we’re in industry 10 years after graduation?
- **Conditionals**: what is the probability that \(x_j = c\) given \(x_{j'} = c'\)?
 - What is the probability of industry after 10 years, if we immediately go to grad school?

A basic **Monte Carlo** method for estimating probabilities of events:

1. Generate a large number of samples \(x^i\) from the model,

\[
X = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}.
\]

2. Last time we discussed inverse transform and ancestral sampling.

2. Compute frequency that the event happened in the samples,

\[
p(x_2 = 1) \approx 3/4,
\]
\[
p(x_3 = 0) \approx 0/4.
\]
Monte Carlo Method for Inequalities

- Monte Carlo estimate of probability that variable is above threshold:
 - Compute fraction of examples where sample is above threshold.
Monte Carlo Method for Mean

- A Monte Carlo approximation of the mean:
 - Approximate the mean by average of samples.

\[E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^i. \]

- Visual demo of Monte Carlo approximation of mean and variance:
 - http://students.brown.edu/seeing-theory/basic-probability/index.html
Monte Carlo for Markov Chains

- Our samples from the CS grad student Markov chain:

- We can estimate probabilities by looking at frequencies in samples.
 - In how many out of the 100 chains did we have $x_{10} = \text{“industry”}$?
 - This works for continuous states too (for inequalities and expectations).
Monte Carlo Approximation

Monte Carlo Methods for Markov Chains

• Some Monte Carlo approximations of inference tasks in Markov chains:

 • Marginal $p(x_j = c)$ is the number of chains that were in state c at time j.

 • Average value at time j, $E[x_j]$, is approximated by average of x_j in the samples.

 • $p(5 \leq x_j \leq 10)$ is approximate by frequency of x_j being between 5 and 10.
 • This makes more sense for continuous states than evaluating equalities.

 • $p(x_j \leq 10, x_{j+1} \geq 10)$ is approximated by number of chains where both happen.
Monte Carlo Methods: General Form

- **Monte Carlo** methods approximate expectations of random functions,
 \[
 \mathbb{E}[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x)\,dx.
 \]
 - **Computing mean** is the special case of \(g(x) = x\).
 - Computing **probability of any event** \(A\) is also a special case:
 - Set \(g(x) = \mathbb{I}["A\ happened in sample \ x^i"]\), indicator function for event \(A\).

- To approximate expectation, **generate** \(n\) samples \(x^i\) from \(p(x)\) and use:
 \[
 \mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^i).
 \]
Unbiasedness of Monte Carlo Methods

- Let $\mu = \mathbb{E}[g(x)]$ be the value we want to approximate (not necessarily mean).

- The Monte Carlo estimate is an unbiased approximation of μ,

$$
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{n} g(x^i) \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[g(x^i)] \\
= \frac{1}{n} \sum_{i=1}^{n} \mu \\
= \mu.
$$

- The law of large numbers says that:
 - Unbiased approximators “converge” (probabilistically) to expectation as $n \to \infty$.
 - So the more samples you get, the closer to the true value you expect to get.
Rate of Convergence of Monte Carlo Methods

Let f be the squared error in a 1D Monte Carlo approximation,

$$f(x^1, x^2, \ldots, x^n) = \left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2.$$

If variance is bounded, error with n samples is $O(1/n)$,

$$\mathbb{E} \left[\left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2 \right] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right]$$

(unbiased and def’n of variance)

$$= \frac{1}{n^2} \text{Var} \left[\sum_{i=1}^{n} g(x^i) \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[g(x^i)]$$

(IID)

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}. \quad (x^i \text{ is IID with var } \sigma^2)$$

Similar $O(1/n)$ argument holds for $d > 1$ (notice that faster for small σ^2).
Conditional Probabilities with Monte Carlo

- We often want to compute conditional probabilities in Markov chains.
 - We can ask “what lead to $x_{10} = 4$?” with queries like $p(x_1 | x_{10} = 4)$.
 - We can ask “where does $x_{10} = 4$ lead?” with queries like $p(x_d | x_{10} = 4)$.

- Monte Carlo approach to estimating $p(x_j | x_{j'})$:
 1. Generate a large number of samples from the Markov chain, $x^i \sim p(x_1, x_2, \ldots, x_d)$.
 2. Use Monte Carlo estimates of $p(x_j = c, x_{j'} = c')$ and $p(x_{j'} = c')$ to give

$$p(x_j = c | x_{j'} = c') = \frac{p(x_j = c, x_{j'} = c')}{p(x_{j'} = c')} \approx \frac{\sum_{i=1}^{n} I[x_j^i = c, x_{j'}^i = c']} {\sum_{i=1}^{n} I[x_{j'}^i = c']} ,$$

frequency of first event in samples consistent with second event.

- This is a special case of rejection sampling (we’ll see general case later).
 - Unfortunately, if $x_{j'} = c'$ is rare then most samples are “rejected” (ignored).

http://students.brown.edu/seeing-theory/compound-probability/index.html
Outline

1. Monte Carlo Approximation
2. Exact Marginals and PageRank
Exact Marginal Calculation

- In typical settings Monte Carlo has slow convergence like stochastic gradient.
 - $O(1/t)$ convergence rate where constant is variance of samples.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.

- For discrete-state Markov chains, we can actually compute marginals directly:
 - We’re given initial probabilities $p(x_1 = s)$ for all s as part of the definition.
 - We can use transition probabilities to compute $p(x_2 = s)$ for all s:

$$p(x_2) = \sum_{x_1=1}^{k} p(x_2, x_1) = \sum_{x_1=1}^{k} p(x_2 \mid x_1)p(x_1).$$

 marginalization rule

 product rule
We can do a similar calculation to compute $p(x_3)$:

$$p(x_3 = s) = \sum_{x_2=1}^{k} \sum_{x_1=1}^{k} p(x_1, x_2, x_3)$$

$$= \sum_{x_2=1}^{k} \sum_{x_1=1}^{k} p(x_3 \mid x_2)p(x_2 \mid x_1)p(x)$$

$$= \sum_{x_2=1}^{k} p(x_3 \mid x_2) \sum_{x_1=1}^{k} p(x_2 \mid x_1)p(x)$$

$$= \sum_{x_2=1}^{k} p(x_3 \mid x_2)p(x_2).$$

We can also derive this recursively,

$$p(x_3) = \sum_{x_2=1}^{k} p(x_3, x_2) = \sum_{x_2=1}^{k} p(x_3 \mid x_2)p(x_2),$$

which is simpler but more-complicated scenarios won’t yield a simple recursion.
Exact Marginal Calculation

- **Recursive formula for marginals at time j:**

\[
p(x_j) = \sum_{x_{j-1}=1}^{k} p(x_j \mid x_{j-1}) p(x_{j-1}),
\]

called the Chapman-Kolmogorov (CK) equations.

- **The CK equations can be implemented as matrix-vector multiplication:**
 - Define π^j as a vector containing the marginals at time t:
 \[
 \pi^j_c = p(x_j = c).
 \]
 - Define T^j as a matrix containing the transition probabilities:
 \[
 T^j_{cc'} = p(x_j = c \mid x_{j-1} = c').
 \]
Exact Marginal Calculation

- Implementing the CK equations as a matrix multiplications:

$$T^j \pi^{j-1} = \begin{bmatrix} p(x_j = 1|x_{j-1} = 1) & p(x_j = 1|x_{j-1} = 2) & \ldots & p(x_j = 1|x_{j-1} = k) \\ p(x_j = 2|x_{j-1} = 1) & p(x_j = 2|x_{j-1} = 2) & \ldots & p(x_j = 2|x_{j-1} = k) \\ p(x_j = k|x_{j-1} = 1) & p(x_j = k|x_{j-1} = 2) & \ldots & p(x_j = k|x_{j-1} = k) \end{bmatrix} \begin{bmatrix} p(x_{j-1} = 1) \\ p(x_{j-1} = 2) \\ \vdots \\ p(x_{j-1} = k) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{c=1}^k p(x_j = 1 | x_{j-1} = c)p(x_{j-1} = c) \\ \sum_{c=1}^k p(x_j = 2 | x_{j-1} = c)p(x_{j-1} = c) \\ \vdots \\ \sum_{c=1}^k p(x_j = k | x_{j-1} = c)p(x_{j-1} = c) \end{bmatrix} = \begin{bmatrix} p(x_j = 1) \\ p(x_j = 2) \\ \vdots \\ p(x_j = k) \end{bmatrix} = \pi^j.$$

- Cost of multiplying a vector by a $k \times k$ matrix is $O(k^2)$.

- So cost to compute marginals up to time d is $O(dk^2)$.

 - This is fast considering that last step sums over all k^d possible paths.

$$p(x_d) = \sum_{x_1=1}^k \sum_{x_2=1}^k \ldots \sum_{x_{j-1}=1}^k \sum_{x_{j+1}=1}^k \ldots \sum_{x_{d-1}=1}^k p(x_1, x_2, \ldots, x_d).$$
Marginals in CS Grad Career

- CK equations can give all marginals $p(x_j = c)$ from CS grad Markov chain:

- Each row j is a state and each column c is a year.
Continuous-State Markov Chains

- The CK equations also apply if we have continuous states:

\[p(x_j) = \int_{x_{j-1}} p(x_j | x_{j-1}) p(x_{j-1}) dx_{j-1}, \]

but this integral may not have a closed-form solution.

- **Gaussian probabilities** are an important special case:
 - If \(p(x_{j-1}) \) and \(p(x_j | x_{j-1}) \) are Gaussian, then \(p(x_j) \) is Gaussian.
 - Joint distribution is a product of Gaussians.
 - So we can write \(p(x_j) \) in closed-form in terms of mean and variance.

- If the probabilities are non-Gaussian, usually can’t represent \(p(x_j) \) distribution.
 - You are stuck using Monte Carlo or other approximations.
Stationary Distribution

- A **stationary distribution** of a homogeneous Markov chain is a vector π satisfying

$$
\pi(c) = \sum_{c'} p(x_j = c | x_{j-1} = c') \pi(c').
$$

- “Probabilities don’t change across time” (also called “invariant” distribution).
 - Here we are talking about the “marginal” probabilities $p(x_j)$, not the “transition” probabilities $p(x_j | x_{j-1})$.

- Under certain conditions, **marginals converge to a stationary distribution**.
 - $p(x_j = c) \to \pi(c)$ as j goes to ∞.
 - If we fit a Markov chain to the rain example, we have $\pi(\text{“rain”}) = 0.41$.
 - In the CS grad student example, we have $\pi(\text{“dead”}) = 1$.

- Stationary distribution is basis for Google’s **PageRank** algorithm.
Application: PageRank

- Web search before Google:

- It was also easy to fool search engines by copying popular websites.
State Transition Diagram

- **State transition diagrams** are common for visualizing homogenous Markov chains:

\[
P = \begin{bmatrix}
0 & 0 & 0.2 & 0.8 \\
0 & 0 & 0 & 1 \\
0.2 & 0 & 0 & 0.8 \\
0 & 0.45 & 0.45 & 0.1
\end{bmatrix}
\]

- Each node is a state, each edge is a non-zero transition probability.
 - For web-search, each node will be a webpage.
- Cost of CK equations is only $O(z)$ instead of $O(k^2)$ if you have only z edges.
Application: PageRank

- Wikipedia’s cartoon illustration of Google’s PageRank:
 - Large face means higher rank.

- “Important webpages are linked from other important webpages”.
- “Link is more meaningful if a webpage has few links”.

[Link to Wikipedia](https://en.wikipedia.org/wiki/PageRank)
Google’s PageRank algorithm for measuring the importance of a website:

- Stationary probability in “random surfer” Markov chain:
 - With probability α, surfer clicks on a random link on the current webpage.
 - Otherwise, surfer goes to a completely random webpage.

To compute the stationary distribution, they use the power method:

- Repeatedly apply the CK equations.
- Iterations are faster than $O(k^2)$ due to sparsity of links.
 - Transition matrix is “sparse plus rank-1” which allows fast multiplication.
- Can be easily parallelized.
Application: Game of Thrones

PageRank can be used in other applications.

“Who is the main character in the Game of Thrones books?”

Does a stationary distribution π exist and is it unique?

A sufficient condition for existence/uniqueness is that all $p(x_j = c \mid x_{j'} = c') > 0$.
- PageRank satisfies this by adding probability $(1 - \alpha)$ of jumping to a random page.

Weaker sufficient conditions for existence and uniqueness ("ergodic"):
1. "Irreducible" (doesn’t get stuck in part of the graph).
2. "Aperiodic" (probability of returning to state isn’t on fixed intervals).
Summary

- **Monte Carlo** samples to approximate expectations of random functions.
 - Take the average of the function applied to each sample.

- **Chapman-Kolmogorov equations** compute exact univariate marginals.
 - For discrete or Gaussian Markov chains.

- **Stationary distribution** of homogenous Markov chain.
 - Marginals as time goes to ∞.
 - Basis of Google’s PageRank method.

- Next time: voice Photoshop.
Monte Carlo as a Stochastic Gradient Method

- Consider case of using Monte Carlo method to estimate mean $\mu = \mathbb{E}[x]$,

$$\mu \approx \frac{1}{n} \sum_{i=1}^{n} x^i.$$

- We can write this as minimizing the 1-strongly convex

$$f(w) = \frac{1}{2} \|w - \mu\|^2.$$

- The gradient is $\nabla f(w) = (w - \mu)$.

- Consider applying stochastic gradient descent on f using

$$\nabla f_i(w^k) = w^k - x^{k+1},$$

which is unbiased since each x^i is unbiased μ approximation.

- Monte Carlo method is a stochastic gradient method with this approximation.
Monte Carlo as a Stochastic Gradient Method

- Monte Carlo approximation as a stochastic gradient method with $\alpha_i = 1/(i + 1)$,

\[
\begin{align*}
w^n &= w^{n-1} - \alpha_{n-1}(w^{n-1} - x^i) \\
&= (1 - \alpha_{n-1})w^{n-1} + \alpha_{n-1}x^i \\
&= \frac{n-1}{n}w^{n-1} + \frac{1}{n}x^i \\
&= \frac{n-1}{n} \left(\frac{n-2}{n-1}w^{n-2} + \frac{1}{n-1}x^{i-1} \right) + \frac{1}{n}x^i \\
&= \frac{n-2}{n}w^{n-2} + \frac{1}{n} \left(x^{i-1} + x^i \right) \\
&= \frac{n-3}{n}w^{n-3} + \frac{1}{n} \left(x^{i-2} + x^{i-1} + x^i \right) \\
&= \frac{1}{n} \sum_{i=1}^{n} x^i.
\end{align*}
\]

- We know the rate of stochastic gradient for strongly-convex is $O(1/n)$.

We use these identities to define the expectation of a function g applied to a random variable x,

$$
\mathbb{E}[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x)\,dx.
$$

The transformation from expectation to sum/integral is known as the “law of the unconscious statistician”.

- It’s usually taken as being true, but it’s proof is a bit of a pain.
Accelerated Monte Carlo: Quasi Monte Carlo

- Unlike stochastic gradient, there are some “accelerated” Monte Carlo methods.

- **Quasi Monte Carlo** methods achieve an accelerated rate of $O(1/n^2)$.
 - Key idea: fill the space strategically with a deterministic “low-discrepancy sequence”.
 - Uniform random vs. deterministic low-discrepancy:

 ![Uniform random vs. deterministic low-discrepancy](https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method)
Label Propagation as a Markov Chain Problem

- Semi-supervised label propagation method has a Markov chain interpretation.
 - We have $n + t$ states, one for each [un]labeled example.

- Monte Carlo approach to label propagation ("adsorption"):
 - At time $t = 0$, set the state to the node you want to label.
 - At time $t > 0$ and on a labeled node, output the label.
 - Labeled nodes are absorbing states.
 - At time $t > 0$ and on an unlabeled node i:
 - Move to neighbour j with probability proportional w_{ij} (or \bar{w}_{ij}).

- Final predictions are probabilities of outputting each label.
 - Nice if you only need to label one example at a time (slow if labels are rare).
 - Common hack is to limit random walk time to bound runtime.