CPSC 440: Advanced Machine Learning Monte Carlo Methods

Mark Schmidt

University of British Columbia

Winter 2021

Introduction to Sampling

Last Time: Markov Chains

• We can use Markov chains for density estimation,

$$p(x) = \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^{d} \underbrace{p(x_j \mid x_{j-1})}_{\text{transition prob.}},$$

which model dependency between adjacent features.

- Different than mixture models which focus on clusters in the data.
- Homogeneous chains use same transition probability for all j (parameter tieing).
 Gives more data to estimate transitions, allows examples of different sizes.
 - Gives more data to estimate transitions, anows examples of different size
- Inhomogeneous chains allow different transitions at different times.
 - More flexible, but need more data.
- MLE is discrete-state Markov chains has simple closed-form "counting" solution.

Training Markov Chains

- Some common setups for fitting the parameters Markov chains:
 - **(1)** We have one long sequence, and fit parameters of a homogeneous Markov chain.
 - Here, we just focus on the transition probabilities.
 - 2 We have many sequences of different lengths, and fit a homogeneous chain.
 - And we can use it to model sequences of any length.
 - We have many sequences of same length, and fit an inhomgeneous Markov chain.
 This allows "position-specific" effects.
 - **We use** domain knowledge to guess the initial and transition probabilities.

Fun with Markov Chains

- Markov Chains "Explained Visually": http://setosa.io/ev/markov-chains
- Snakes and Ladders: http://datagenetics.com/blog/november12011/index.html
- Candyland:

http://www.datagenetics.com/blog/december12011/index.html

• Yahtzee:

http://www.datagenetics.com/blog/january42012/

 Chess pieces returning home and K-pop vs. ska: https://www.youtube.com/watch?v=63HHmjlh794

Inference in Markov Chains

- Given a Markov chain model, these are the most common inference tasks:
 Sampling: generate sequences that follow the probability.
 - **2** Marginalization: compute probability of being in state c at time j.
 - **O Decoding:** compute assignment to the x_j with highest joint probability.
 - Decoding and marginalization will be important when we return to supervised learning.
 - **(** Conditioning: do any of the above, assuming $x_j = c$ for some j and c.
 - For example, "filling in" missing parts of the image.
 - **5** Stationary distribution: probability of being in state c as j goes to ∞ .
 - Usually for homogeneous Markov chains.

Outline

1 Introduction to Sampling

2 Monte Carlo Approximation

Fundamental Problem: Sampling from a Density

- A common inference task is sampling from a density.
 - Generating examples x^i that are distributed according to a given density p(x).

E 1 D

3

.

• Basically, the "opposite" of density estimation: going from a model to data.

$$p(x) = \begin{cases} 1 & \text{w.p. } 0.5 \\ 2 & \text{w.p. } 0.25 \\ 3 & \text{w.p. } 0.25 \end{cases} \implies X = \begin{vmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \end{vmatrix}$$

Fundamental Problem: Sampling from a Density

• A common inference task is sampling from a density.

- Generating examples x^i that are distributed according to a given density p(x).
- Basically, the "opposite" of density estimation: going from a model to data.

• We've been using pictures of samples to "tell us what the model has learned".

- If the samples look like real data, then we have a good density model.
- Samples can also be used in Monte Carlo estimation (today):
 - Replace complicated p(x) with samples to solve hard problems at test time.

Simplest Case: Sampling from a Bernoulli

• Consider sampling from a Bernoulli, for example

$$p(x = 1) = 0.9, \quad p(x = 0) = 0.1.$$

- Sampling methods assume we can sample uniformly over [0, 1].
 - Usually, a "pseudo-random" number generator is good enough (like Julia's rand).
- How to use a uniform sample to sample from the Bernoulli above:
 - **(**) Generate a uniform sample $u \sim \mathcal{U}(0, 1)$.
 - 2 If $u \leq 0.9$, set x = 1 (otherwise, set x = 0).

• If uniform samples are "good enough", then we have x = 1 with probability 0.9.

Sampling from a Categorical Distribution

• Consider a more general categorical density like

$$p(x = 1) = 0.4$$
, $p(x = 2) = 0.1$, $p(x = 3) = 0.2$, $p(x = 4) = 0.3$,

we can divide up the $\left[0,1\right]$ interval based on probability values:

• If $u \sim \mathcal{U}(0,1)$, 40% of the time it lands in x_1 region, 10% of time in x_2 , and so on.

Sampling from a Categorical Distribution

• Consider a more general categorical density like

$$p(x = 1) = 0.4$$
, $p(x = 2) = 0.1$, $p(x = 3) = 0.2$, $p(x = 4) = 0.3$.

- To sample from this categorical density we can use (*sampleDiscrete* function):
 - **④** Generate $u \sim \mathcal{U}(0, 1)$.
 - 2 If $u \leq 0.4$, output 1.
 - **③** If $u \le 0.4 + 0.1$, output 2.
 - **④** If $u \le 0.4 + 0.1 + 0.2$, output 3.
 - **Otherwise**, output 4.

Sampling from a Categorical Distribution

- General case for sampling from categorical.
 - Generate $u \sim \mathcal{U}(0, 1)$.
 If $u \leq p(x \leq 1)$, output 1.
 If $u \leq p(x \leq 2)$, output 2.
 If $u \leq p(x \leq 3)$, output 3.
 ...
- The value $p(x \le c) = p(x = 1) + p(x = 2) + \dots + p(x = c)$ is the CDF.
 - "Cumulative distribution function".
- Worst case cost with k possible states is O(k) by incrementally computing CDFs.
- But to generate t samples only costs $O(k + t \log k)$ instead of O(tk):
 - One-time O(k) cost to store the CDF $p(x \le c)$ for each c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest c with $u \le p(x \le c)$.

Cumulative Distribution Function (CDF)

- We often use $F(c)=p(x\leq c)$ to denote the CDF.
 - F(c) is between 0 and 1, giving proportion of times x is below c.
 - F(c) monotically increases with c.
 - F can be used for discrete and continuous variables:

https://en.wikipedia.org/wiki/Cumulative_distribution_function

- The "binary search for smallest c" method finds smallest c such that $u \leq F(c)$.
 - This same approach works for continuous and general densities.
- General approach uses the inverse CDF (or "quantile") function:
 - If F is invertible, then F^{-1} is the usual inverse:
 - $F^{-1}(u) = c$ for the unique c where F(c) = u.
 - The generalization that covers non-invertible cases is $F^{-1}(u) = \inf\{c \mid F(c) \ge u\}$.
 - "Return the smallest c where F(c) is at least u."

Inverse Transform Method (Exact 1D Sampling)

- Inverse transfrom method for exact sampling in 1D:
 - 1 Sample $u \sim \mathcal{U}(0, 1)$. 2 Return $F^{-1}(u)$.
- Why this works (invertible case);

$$p(F^{-1}(u) \le c) = p(u \le F(c))$$
 (apply monotonic F to both sides)
= $F(c)$ (since $p(u \le y) = y$ for uniform u)

- So this algorithm has the same CDF as the distribution we want to sample.
- Video on pseudo-random numbers and inverse-transform sampling:
 - https://www.youtube.com/watch?v=C82JyCmtKWg

Example: Sampling from a 1D Gaussian

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

• CDF has the form

$$F(c) = p(x \le c) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{c - \mu}{\sigma\sqrt{2}}\right) \right],$$

where the "error function" is $\operatorname{erf}(c) = \frac{2}{\pi} \int_0^c \exp(-t^2) dt$.

- In [-1,1] with no closed-form solution, but is typically available in stats packages.
- Inverse CDF has the form

$$F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1).$$

- To sample from a Gaussian:
 - Generate $u \sim \mathcal{U}(0, 1)$.
 - 2 Return $\mu + \sigma \sqrt{2} \text{erf}^{-1}(2u-1)$.

Sampling from a Product Distribution

• Consider a product distribution,

$$p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d).$$

- Because variables are independent, we can sample independently:
 - Sample x_1 from $p(x_1)$.
 - Sample x_2 from $p(x_2)$.
 - ...
 - Sample x_d from $p(x_d)$.
- Example: sampling from a multivariate Gaussian with diagonal covariance.
 - Sample each variable independently based on μ_j and σ_j^2 .

Digression: Sampling from a Multivariate Gaussian

- In some cases we can sample from multivariate distributions by transformation.
- Recall the affine property of multivariate Gaussian:
 - If $x \sim \mathcal{N}(\mu, \Sigma)$, then $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.
- To sample from a general multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$:
 - **()** Sample x from a $\mathcal{N}(0, I)$ (each x_j coming independently from $\mathcal{N}(0, 1)$).
 - **②** Transform to a sample from the right Gaussian using the affine property:

$$Ax + \mu \sim \mathcal{N}(\mu, AA^T),$$

where we choose A so that $AA^T = \Sigma$ (e.g., by Cholesky factorization).

Ancestral Sampling

• To sample dependent random variables we can use the chain rule of probability,

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1).$

- The chain rule suggests the following sampling strategy:
 - Sample x_1 from $p(x_1)$.
 - Given x_1 , sample x_2 from $p(x_2 \mid x_1)$.
 - Given x_1 and x_2 , sample x_3 from $p(x_3 \mid x_2, x_1)$.
 - ...
 - Given x_1 through x_{d-1} , sample x_d from $p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1)$.
- This is called ancestral sampling.
 - It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
 - But may not be simple, binary conditional j has 2^j values of $\{x_1, x_2, \ldots, x_j\}$.

Ancestral Sampling Examples

• For Markov chains the chain rule simplifies to

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1}),$

• So ancestral sampling simplifies too:

Sample x1 from initial probabilities p(x1).
Given x1, sample x2 from transition probabilities p(x2 | x1).
Given x2, sample x3 from transition probabilities p(x3 | x2).
...

- **(5)** Given x_{d-1} , sample x_d from transition probabilities $p(x_d \mid x_{d-1})$.
- For mixture models with cluster variables z we could write

$$p(x,z) = p(z)p(x \mid z),$$

so we can first sample cluster z and then sample x given cluster z.

• If you want samples of x, sample (x, z) pairs and ignore the z values.

Markov Chain Toy Example: CS Grad Career

- "Computer science grad career" Markov chain:
 - Initial probabilities:

State	Probability	Description
Industry	0.60	They work for a company or own their own company.
Grad School	0.30	They are trying to get a Masters or PhD degree.
Video Games	0.10	They mostly play video games.

• Transition probabilities (from row to column):

From\to	Video Games	Industry	Grad School	Video Games (with PhD)	Industry (with PhD)	Academia	Deceased
Video Games	0.08	0.90	0.01	0	0	0	0.01
Industry	0.03	0.95	0.01	0	0	0	0.01
Grad School	0.06	0.06	0.75	0.05	0.05	0.02	0.01
Video Games (with PhD)	0	0	0	0.30	0.60	0.09	0.01
Industry (with PhD)	0	0	0	0.02	0.95	0.02	0.01
Academia	0	0	0	0.01	0.01	0.97	0.01
Deceased	0	0	0	0	0	0	1

• So
$$p(x_t = \text{``Grad School''} \mid x_{t-1} = \text{``Industry''}) = 0.01.$$

Example of Sampling x_1

- Initial probabilities are:
 - 0.1 (Video Games)
 - 0.6 (Industry)
 - 0.3 (Grad School)
 - 0 (Video Games with PhD)
 - 0 (Academia)
 - 0 (Deceased)

- So initial CDF is:
 - 0.1 (Video Games)
 - 0.7 (Industry)
 - 1 (Grad School)
 - 1 (Video Games with PhD)
 - 1 (Academia)
 - 1 (Deceased)

- To sample the initial state x_1 :
 - First generate a uniform number u, for example u = 0.724.
 - Now find the first CDF value bigger than u, which in this case is "Grad School".

Example of Sampling x_2 , Given $x_1 =$ "Grad School"

• So we sampled $x_1 =$ "Grad School".

• To sample x_2 , we'll use the "Grad School" row in transition probabilities:

From\to	Video Games	Industry	Grad School	Video Games (with PhD)	Industry (with PhD)	Academia	Deceased	
Video Games	0.08	0.90	0.01	0	0	0	0.01	
Industry	0.03	0.95	0.01	0	0	0	0.01	
Grad School	0.06	0.06	0.75	0.05	0.05	0.02	0.01	\supset
Video Games (with PhD)	0	0	0	0.30	0.60	0.09	0.01	
Industry (with PhD)	0	0	0	0.02	0.95	0.02	0.01	
Academia	0	0	0	0.01	0.01	0.97	0.01	
Deceased	0	0	0	0	0	0	1	

Example of Sampling x_2 , Given $x_1 =$ "Grad School"

• Transition probabilities:

- 0.06 (Video Games)
- 0.06 (Industry)
- 0.75 (Grad School)
- 0.05 (Video Games with PhD)
- 0.02 (Academia)
- 0.01 (Deceased)

- So transition CDF is:
 - 0.06 (Video Games)
 - 0.12 (Industry)
 - 0.87 (Grad School)
 - 0.97 (Video Games with PhD)
 - 0.99 (Academia)
 - 1 (Deceased)

- To sample the second state x_2 :
 - First generate a uniform number u, for example u = 0.113.
 - Now find the first CDF value bigger than u, which in this case is "Industry".

Markov Chain Toy Example: CS Grad Career

• Samples from "computer science grad career" Markov chain:

• State 7 ("deceased") is called an absorbing state (no probability of leaving).

• Samples often give you an idea of what model knows (and what should be fixed).

Outline

Introduction to Sampling

2 Monte Carlo Approximation

Marginalization and Conditioning

- Given density estimator, we often want to make probabilistic inferences:
 - Marginals: what is the probability that $x_j = c$?
 - What is the probability we're in industry 10 years after graduation?
 - Conditionals: what is the probability that $x_j = c$ given $x_{j'} = c'$?
 - What is the probability of industry after 10 years, if we immediately go to grad school?
- This is easy for simple independent models:
 - We directly model marginals $p(x_j)$, and conditional are marginals: $p(x_j \mid x_{j'}) = p(x_j)$.
- This is also easy for mixtures of simple independent models.
 - Do inference for each mixture, add results using mixture probabilities:

$$p(x_j) = \sum_{z} p(z, x_j) = \sum_{z} p(z) \underbrace{p(x_j \mid z)}_{\text{inference within cluster}}$$

• For Markov chains, it's more complicated...

Marginals in CS Grad Career

• All marginals $p(x_i = c)$ from "computer science grad career" Markov chain:

• Each row j is a state and each column c is a year (sum of values in column is 1).

Monte Carlo: Marginalization by Sampling

• A basic Monte Carlo method for estimating probabilities of events:

() Generate a large number of samples x^i from the model,

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Occupies Compute frequency that the event happened in the samples,

$$p(x_2 = 1) \approx 3/4,$$

 $p(x_3 = 0) \approx 0/4.$

- Monte Carlo methods are second most important class of ML algorithms.
 - Originally developed to build better atomic bombs :(
 - Run physics simulator to "sample", then see if it leads to a chain reaction.

Monte Carlo Method for Rolling Di

• Monte Carlo estimate of the probability of an event A:

number of samples where A happened number of samples

- Computing probability of a pair of dice rolling a sum of 7:
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - . . .

• Monte Carlo estimate: fraction of samples where sum is 7.

Summary

- Markov chain inference tasks (MEMORIZE):
 - Sampling, marginalization, decoding, conditioning, stationary distributions.
- Inverse Transform generates samples from simple 1D distributions.
 - When we can easily invert the CDF.
- Ancestral sampling generates samples from multivariate distributions.
 - When conditionals have a nice form.
- Monte Carlo method for approximating probabilities of an event.
 - Generate samples, then count how many times event happened.
- Next time: the original Google algorithm.