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Example: Vancouver Rain Data

Consider density estimation on the “Vancouver Rain” dataset:

Variable xij = 1 if it rained on day j in month i.
Each row is a month, each column is a day of the month.
Data ranges from 1896-2004.

The strongest signals in the data:
It tends to rain more in the winter than the summer.
If it rained yesterday, it’s likely to rain today (≈ 70% chance of (xij == xij−1)).
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Rain Data with Independent Bernoullis

With independent Bernoullis, we get p(xij =“rain”) ≈ 0.41 (sadly).

Samples from product of Bernoullis model (left) vs. real data (right):

Making days independent misses seasons and misses correlations.
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Rain Data with Mixture of Bernoullis

A better model is a mixture of Bernoullis:

Samples from product of Bernoullis model (left) vs. mixture of 50 Bernoullis (right):

Mixture of Bernoullis can learn that there are seasons (clusters).

But mixture of Bernoullis can’t easily learn the between-day correlations.
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Rain Data with Mixture of Bernoullis
Visualizing the mean parameters of the mixture of 50 Bernoullis:

Recall that mixture of Bernoullis assumes independence, given cluster.
This makes it try to model between-day correlations in a weird way:

Uses clusters with rain for consectuve days, during different parts of month.

So you would need a lot of clusters to model all between-day correlations.
Need cluster that correlate that day 1 and 2, that correlate day 2 and 3, and so on.
Doesn’t account for “position independence” of the correlation.
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Markov Chains

A better model for the between-day correlations is a Markov chain.
Models p(xij | xij−1): probability of rain today given yesterday’s value.

Captures dependency between adjacent days.

It can perfectly capture the “position-independent” between-day correlation.

With only a few parameters and a closed-form MLE (no EM or non-convexity).
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Markov Chain for Rain

Markov chain ingredients and MLE for rain data:
State space:

At time j, we can be in the “rain” state or the “not rain” state.

Initial probabilities:

c p(x1 = c)
Rain 0.37

Not Rain 0.63

Transition probabilities (assumed to the same for all times j):

c′ c p(xj = c | xj−1 = c′)
Rain Rain 0.65
Rain Not Rain 0.35

Not Rain Rain 0.25
Not Rain Not Rain 0.75

Becuase of “sum to 1” constraints, there are only 3 parameters in this model.
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Markov Chain Ingredients

Markov chain ingredients and MLE for rain data:
State space:

Set of possible states (indexed by c) we can be in at time j (“rain” or “not rain”).

Initial probabilities:

p(x1 = c): probability that we start in state c at time j = 1 (p(“rain”) on day 1).

Transition probabilities:

p(xj = c | xj−1 = c′): probability that we move from state c′ to state c at time j.
Probability that it rains today, given what happened yesterday.

Notation alert: I’m going to start using “xj” as short for “xij” for a generic i.

We’re assuming that the order of features is meaningful.

We’re modeling dependency of each feature on the previous feature.
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Chain Rule of Probability

By using the product rule, p(a, b) = p(a)p(b | a), we can write any density as

p(x1, x2, . . . , xd) = p(x1)p(x2, x3, . . . , xd | x1)
= p(x1)p(x2 | x1)p(x3, x4, . . . , xd | x1, x2)
= p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4, x5, . . . , xd | x1, x2, x3),

and so on until we get

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . xd−1).

This factorization of a density is called the chain rule of probability.

But it leads to complicated conditionals:

For binary xj , we need 2d parameters for p(xd | x1, x2, . . . , xd−1) alone.
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Markov Chains

Markov chains we simplify the distribution by assuming the Markov property:

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),
that xj is independent of the past given xj−1.

“Don’t care what happened 2 days ago if you know what happened yesterday”.

The probability for a sequence x1, x2, · · · , xd in a Markov chain simplifies to

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1)
= p(x1)p(x2 | x1)p(x3 | x2) · · · p(xd | xd−1)

Another way to write this joint probability is

p(x1, x2, . . . , xd) = p(x1)︸ ︷︷ ︸
initial prob.

d∏
j=2

p(xj | xj−1)︸ ︷︷ ︸
transition prob.

.
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Markov Chains

Markov chains are ubiquitous in sequence/time-series models:
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Homogenous Markov Chains

For rain data it makes sense to use a homogeneous Markov chain:
Transition probabilities p(xj | xj−1) are the same for all times j.

With discrete states, we could parameterize transition probabilities by

p(xj = c | xj−1 = c′) = θc,c′ ,

where θc,c′ ≥ 0 and
∑k

c=1 θc,c′ = 1 (and we use the same θc,c′ for all j).
So we have a categorical distribution over c values for each c′ value.

MLE for homogeneous Markov chain with discrete xj is:

θc,c′ =
(number of transitions from c′ to c)

(number of times we went from c′ to anything)
,

so learning is just counting.
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Parameter Tieing

Using same parameters θc,c′ for different j is called parameter tieing.

“Making different parts of the model use the same parameters.”

Key advantages to parameter tieing:
1 You have more data available to estimate each parameter.

Don’t need to independently learn p(xj | xj−1) for days 3 and 24.

2 You can have training examples of different sizes.

Same model can be used for any number of days.
We could even treat the data as one long Markov chain (n = 1).

We’ve seen parameter tieing before:

In 340 we discussed convolutional neural networks, which repeat same filters.
Throughout 340/540, we’ve assumed tied parameters across training examples.

That you use the same parameter for xi and xj .
Can think of mixtures models as relaxing this (same parameters only within cluster).
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Example: Modeling DNA Sequences

A nice demo of independent vs. Markov (and HMMs) for DNA sequences:
http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Independent model for elements of sequence:

http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences
Transition probabilities in a Markov chain model for elements of sequence:

(visualizing transition probabilities based on previous symbol):
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Density Estimation for MNIST Digits

We’ve previously considered density estimation for MNIST images of digits.

We saw that independent Bernoullis do terrible

We saw that a mixture of Bernoullis does better:

The shape is looking better, but it’s missing correlation between adjacent pixels.
Could we capture this with a Markov chain?
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Density Estimation for MNIST Digits
Samples from a homogeneous Markov chain (putting rows into one long vector):

Captures correlations between adjacent pixels in the same row.
But misses long-range dependencies in row and dependencies between rows.
Also, “position independence” of homogeneity means it loses position information.
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Inhomogeneous Markov Chains

Markov chains could allow a different p(xj | xj−1) for each j.

This makes sense for digits data, but probably not for the rain data.

For discrete xj we could use

p(xj = c | xj=1 = c′) = θjc,c′ .

MLE for discrete xj values is given by

θjc,c′ =
(number of transitions from c′ to c starting at (j − 1))

(number of times we saw c′ at position (j − 1))
,

Such inhomogeneous Markov chains include independent models as special case:

If we set p(xj | xj−1) = p(xj) for all j we get independent model.
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Density Estimation for MNIST Digits

Samples from an inhomogeneous Markov chain fit to digits:

We have correlations between adjacent pixels in rows and position information.
But isn’t capturing long-range dependencies or dependency between rows.
Later we’ll discuss graphical models which address this.
You could alternately consider a mixture of Markov chains.
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Summary

Markov chains model dependencies between adjacent features.

Parameter tieing uses same parameters in different parts of a model.

Example of “homogeneous” Markov chain.
Allows to use more data to estimate each parameter.
Allows models of different sizes.
But the wrong assumption for some datasets.

May prefer “inhomogeneous” Markov chain.

Next time: the other “MC” in MCMC.
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