CPSC 440: Advanced Machine Learning Kernel Density Estimation

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Bound on Progress of Expectation Maximization

• We have shown the following two bounds for EM:

• Subtracting these and using $\Theta=\Theta^{t+1}$ gives a stronger result,

 $\log p(O \mid \Theta^{t+1}) - \log p(O \mid \Theta^t) \geq Q(\Theta^{t+1} \mid \Theta^t) - Q(\Theta^t \mid \Theta^t),$

that we improve objective by at least the decrease in Q.

• This isn't enough for convergence, but EM converges under weak assumptions.

• Inequality holds for any choice of Θ^{t+1} .

• Approximate M-steps are ok: we just need to decrease Q to improve likelihood.

• Unlike imputation that optimizes MAR values, considers all possible imputations.

• MAR values "nuissance parameters": there might not be obvious "correct"

EM for MAP Estimation

• We can also use EM for MAP estimation. With a prior on Θ our objective is:

$$\underbrace{\log p(O \mid \Theta) + \log p(\Theta)}_{\text{what we optimize in MAP}} = \log \left(\sum_{H} p(O, H \mid \Theta) \right) + \log p(\Theta).$$

• EM iterations take the form of a regularized weighted "complete" NLL,

$$\Theta^{t+1} \in \operatorname*{argmax}_{\Theta} \left\{ \underbrace{\sum_{H} \alpha_{H}^{t} \log p(O, H \mid \Theta)}_{Q(\Theta \mid \Theta^{t})} + \log p(\Theta) \right\},$$

• Now guarantees monotonic improvement in MAP objective.

- This still has a closed-form solution for "conjugate" priors (defined later).
- For mixture of Gaussians with $-\log p(\Theta_c) = \lambda \text{Tr}(\Theta_c)$ for precision matrices Θ_c :
 - Closed-form solution that satisfies positive-definite constraint (no $\log |\Theta|$ needed).

Digression: Optimizing "Separable" Functions

• Consider an optimization problem of the form

 $\min_{w_1, w_2} f_1(w_1) + f_2(w_2).$

- This is called a separable function.
 - The variable w_1 only affects the first term, and w_2 only affects second.
- With separable functions, you can optimize each term separately.
 - Gradient with respect to w_1 is: $\nabla f_1(w_1)$ (not affected by w_2).
 - Gradient with repsect to w_2 is: $\nabla f_2(w_2)$ (not affected by w_1).
- Similarly, if you have $\sum_{j=1}^{d} f_j(w_j)$, you optimize each f_j separately.
 - Use this property to simplify your assignment questions.

Digression: Optimizing "Separable" Functions

• Example: product of independent distributions:

$$p(x_1^i, x_2^i, \dots, x_d^i \mid \Theta) = \prod_{j=1}^d p(x_j^i \mid \theta_j).$$

• To compute the MLE:
$$n \\ \Theta \\ = nrgmin - \log \prod_{i=1}^{n} p(x_1^i, x_2^i, \dots, x_d^i | \Theta)$$
 (NLL for IID data)

$$\equiv argmin - \sum_{i=1}^{n} \log p(x_1^i, x_2^i, \dots, x_d^i | \Theta)$$

$$\equiv argmin - \sum_{i=1}^{n} \log \prod_{j=1}^{d} p(x_j^i | \Theta_j)$$
(product of independent assumption)

$$\equiv argmin - \sum_{i=1}^{n} \sum_{j=1}^{d} \log p(x_j^i | \Theta_j))$$
(log($\alpha\beta$) = log(α) + log(β)))

$$\equiv argmin - \sum_{i=1}^{n} \sum_{j=1}^{d} \log p(x_j^i | \Theta_j))$$
(log($\alpha\beta$) = log(α) + log(β)))

$$\equiv argmin - \sum_{i=1}^{n} \sum_{j=1}^{d} \log p(x_j^i | \Theta_j))$$
(exchanging sums gives separable function: $f_j(\theta_j) = -\sum_{i=1}^{n} \log p(x_j^i | \Theta_j)$).

• Since the NLL is separable in the Θ_j , you can minimize each f_j separately.

Miscellaneous

Kernel Density Estimation

Outline

2 Kernel Density Estimation

A Non-Parametric Mixture Model

• The classic parametric mixture model has the form

$$p(x^{i}) = \sum_{c=1}^{k} p(z^{i} = c)p(x^{i} \mid z^{i} = c).$$

• A natural way to define a non-parametric mixture model is

$$p(x^{i}) = \sum_{j=1}^{n} p(z^{i} = j)p(x^{i} \mid z^{i} = j),$$

where we have one mixture for every training example i.

 \bullet Common example: z^i is uniform and $x^i \mid z^i$ is Gaussian with mean $x^j,$

$$p(x^i) = \frac{1}{n} \sum_{j=1}^n \mathcal{N}(x^i \mid x^j, \sigma^2 I),$$

and we use a shared covariance $\sigma^2 I$ (σ can be estimated with validation set). • This is a special case of kernel density estimation (or Parzen window). Miscellaneous

Kernel Density Estimation

Histogram vs. Kernel Density Estimator

• Think of kernel density estimator as a generalization of a histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

Kernel Density Estimator for Visualization

• Visualization of people's opinions about what "likely" and other words mean.

Miscellaneous

Kernel Density Estimation

Violin Plot: Added KDE to a Boxplot

• Violin plot adds KDE to a boxplot:

https://datavizcatalogue.com/methods/violin_plot.html

Violin Plot: Added KDE to a Boxplot

• Violin plot adds KDE to a boxplot:

https://seaborn.pydata.org/generated/seaborn.violinplot.html

Kernel Density Estimation

• The 1D kernel density estimation (KDE) model uses

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} k_{\sigma} \underbrace{(x^{i} - x^{j})}_{r},$$

where the PDF k is called the "kernel" and parameter σ is the "bandwidth". \bullet In the previous slide we used the (normalized) Gaussian kernel,

$$k_1(r) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r^2}{2}\right), \quad k_\sigma(r) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{r^2}{2\sigma^2}\right).$$

• Note that we can add a "bandwith" (standard deviation) σ to any PDF k_1 , using

$$k_{\sigma}(r) = \frac{1}{\sigma} k_1\left(\frac{r}{\sigma}\right),$$

from the change of variables formula for probabilities $\left(\left|\frac{d}{dr}\left[\frac{r}{\sigma}\right]\right| = \frac{1}{\sigma}\right)$.

• Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$k_1(r) = \frac{3}{4} (1 - r^2) \mathcal{I}[|r| \le 1].$$

- This kernel has two nice properties:
 - Epanechnikov showed that it is asymptotically optimal in terms of squared error.
 - It can be much faster to use since it only depends on nearby points.
 - You can use hashing to quickly find neighbours in training data.
- It is non-smooth at the boundaries but many smooth approximations exist.
 - Quartic, triweight, tricube, cosine, etc.
- For low-dimensional spaces, we can also use the fast multipole method.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Multivariate Kernel Density Estimation

• The multivariate kernel density estimation (KDE) model uses

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} k_{A}(\underbrace{x^{i} - x^{j}}_{r}),$$

• The most common kernel is a product of independent Gaussians,

$$k_I(r) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{\|r\|^2}{2}\right).$$

• We can add a bandwith matrix A to any kernel using

$$k_A(r) = \frac{1}{|A|} k_1(A^{-1}r) \qquad (\text{generalizes } k_\sigma(r) = \frac{1}{\sigma} k_1\left(\frac{r}{\sigma}\right)),$$

and in Gaussian case we get a multivariate Gaussian with $\Sigma = AA^T$.

- To reduce number of parameters, we typically:
 - Use a product of independent distributions and use $A = \sigma I$ for some σ .

KDE vs. Mixture of Gaussian

• By fixing mean/covariance/k, we don't have to worry about local optima.

KDE vs. Mixture of Gaussian

• By fixing mean/covariance/k, we don't have to worry about local optima.

Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
 - Define a KDE on the training examples, and then for test example \hat{x} :
 - Run gradient descent to maximize p(x) starting from \hat{x} .
 - Clusters are points that reach same local minimum.
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- Not sensitive to initialization, no need to choose k, can find non-convex clusters.
- Similar to density-based clustering from 340.
 - But doesn't require uniform density within cluster.
 - And can be used for vector quantization.
- "The 5 Clustering Algorithms Data Scientists Need to Know":
 - https://towardsdatascience.com/ the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Kernel Density Estimation on Digits

- Samples from a KDE model of digits:
 - Sample is on the left, right is the closest image from the training set.

- KDE basically just adds independent noise to the training examples.
 Usually makes more sense for continuous data that is densely packed.
- A variation with a location-specific variance (diagonal Σ instead of $\sigma^2 I$):

Miscellaneous

Continuous Mixture Models

 \bullet We've been discussing mixture models where z^i is discrete,

$$p(x^{i}) = \sum_{z^{i}=1}^{k} p(z^{i})p(x^{i} \mid z^{i} = c).$$

• We can also consider mixtures models where z^i is continuous,

$$p(x^i) = \int_{z^i} p(z^i) p(x^i \mid z^i = c) dz^i.$$

- Unfortunately, computing the integral might be hard.
 - But if both probabilities are Gaussian then it's straightforward.

"Component Analysis" Methods

• Probabilistic PCA

- A continuous mixture where z^i is Gaussian and $x^i \mid z^i$ is Gaussian.
- Regular PCA is a special case, and so is "fitting a Gaussian to data".
- Allows you to do things like "mixture of PCAs".
- Factor Analysis
 - Variant of probabilistic PCA with more-flexible covariance matrices.
 - Use in psychology for measuring things like intelligence and personality traits.
 - Like the OCEAN personality model.
 - In practice, performance is similar to PCA.
- Independent Component Analysis (ICA)
 - Variation on PCA where you assume noise is non-Gaussian.
 - Unlike PCA, this lets you identify "true factors".
 - Use in "blind source separation".
 - Record 5 people talking with 5 microphones, and separate sounds.
- I'm not covering these models this year, but you can see my material here: https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf

End of Part: Basic Density Estimation and Mixture Models

• We discussed mixture models:

- Write density as a convex combination of densities.
- Examples include mixture of Gaussians and mixture of Bernoullis.
- Can model multi-modal densities.
- Commonly-fit using expectation maximization.
 - Generic method for dealing with missing at random data.
 - Can be viewed as a "minimize upper bound" method.
- Kernel density estimation is a non-parametric mixture model.
 - Place on mixture component on each data point.
 - Nice for visualizing low-dimensional densities.

Summary

- Kernel density estimation: Non-parametric density estimation method.
 - Center a mixture on each datapoint.
 - Like a smooth variations on histograms.
 - Used for data visualization and low-dimensional density estimation.
 - Basis of mean-shift clustering.
- We also briefly mentioned "component/factor" analysis methods.
 - Probabilistic PCA, factor analysis, ICA.
- Next time: the sad truth about rain in Vancouver.

Scale Mixture Models

• Another weird mixture model is a scale mixture of Gaussians,

$$p(x^{i}) = \int_{\sigma^{2}} p(\sigma^{2}) \mathcal{N}(x^{i} \mid \mu, \sigma^{2}) d\sigma^{2}.$$

- Common choice for p(σ²) is a gamma distribution (which makes integral work):
 Many distributions are special cases, like Laplace and student t.
- Leads to EM algorithms for fitting Laplace and student t.