CPSC 440: Advanced Machine Learning

More EM

Mark Schmidt

University of British Columbia

Winter 2021
Expectation Maximization (Continued)

Last Time: Expectation Maximization

- EM considers learning with observed data O and hidden data H.
 - Treating the hidden/missing data H as nuisance variables.
- In this case the “marginal” log-likelihood has a nasty form,

$$
\log p(O \mid \Theta) = \log \left(\sum_H p(O, H \mid \Theta) \right).
$$

- EM applies when “complete” likelihood, $p(O, H \mid \Theta)$, has a nice form.
- EM iterations take the form of a weighted “complete” NLL,

$$
\Theta^{t+1} = \arg \max_{\Theta} \left\{ \sum_H \alpha_H^t \log p(O, H \mid \Theta) \right\},
$$

for a specific choice of the convex combination coefficients α_H^t (today).
- We looked at the simple form of the EM update for Gaussian mixture models.
 - Video: https://www.youtube.com/watch?v=B36fzChfyGU
Digression: z^i vs r^i_c vs π_c for Mixtures

- For mixtures models we have discussed the quantities z^i, r^i_c, and π_c.
 - Many students (myself included) get these confused when learning.

- Mixtures assume each example x^i is generated by exactly one of the mixtures.
 - And I use “mixture” and “cluster” interchangeably.

- z^i is a nuissance parameter that is mixture number that generated example i.
 - So if $k = 3$ then z^i is either 1, 2, or 3.

- π_c is a parameter giving our estimate of the proportion of examples in cluster c.
 - So if $\pi_2 = 0.3$, we think that 30% of our examples come from cluster 2.

- r^i_c is the probability that example i came from mixture c (given parameters).
 - It’s a quantity that appears when doing calculations with mixture models.
 - In EM, but also when you want to guess which cluster generated an example.
Expectation Maximization (Continued)

Expectation Maximization Bound

- Each iteration of EM and imputation optimize the approximation:

\[
\Theta^{t+1} \in \arg\min_{\Theta} - \sum_{H} \alpha^t_H \log p(O, H | \Theta).
\]

where the probabilities \(\alpha^t_H \) are updated after each iteration \(t \).

- Imputation sets \(\alpha^t_H = 1 \) for the most likely \(H \) given \(\Theta^t \) (all other \(\alpha^t_H = 0 \)).
 - It assumes that the imputations are correct, then optimizes with the guess

- In EM we set \(\alpha^t_H = p(H | O, \Theta^t) \), weighting \(H \) by probability given \(\Theta^t \).
 - It weighs different imputations by their probability, then optimizes.
Expectation Maximization as Bound Optimization

We’ll show that the EM approximation minimizes an upper bound,

$$- \log p(O | \Theta) \leq - \sum_H p(H | O, \Theta^t) \log p(O, H | \Theta) + \text{const.},$$

what we want

$$Q(\Theta | \Theta^t): \text{what we optimize}$$

Geometry of expectation maximization as “optimizing an upper bound”:

- At each iteration \(t \) we optimize a bound on the function.
Expectation Maximization (EM)

- So EM starts with Θ^0 and sets Θ^{t+1} to maximize $Q(\Theta \mid \Theta^t)$.

- This is typically written as two steps:

 1. **E-step**: Define expectation of complete log-likelihood given last parameters Θ^t,

 $$Q(\Theta \mid \Theta^t) = \sum_H p(H \mid O, \Theta^t) \log p(O, H \mid \Theta)$$

 which is a weighted version of the “nice” $\log p(O, H)$ values.

 - For mixtures of Gaussians, E-step updates r^i_c (like clustering step in k-means).

 2. **M-step**: Maximize this expectation to generate new parameters Θ^{t+1},

 $$\Theta^{t+1} = \arg \max_{\Theta} Q(\Theta \mid \Theta^t).$$

 - For mixture of Gaussians, M-step updates π_c, μ_c, and Σ_c (like mean in k-means).

 - But I don’t like the terms “E-step” and “M-step”.

 - For mixture models it separates into two steps, but for many models it doesn’t.
Expectation Maximization for Mixture Models

- In the case of a mixture model with extra “cluster” variables z^i, EM uses

$$ Q(\Theta \mid \Theta^t) = \mathbb{E}_{z \mid X, \Theta^t} \log p(X, z \mid \Theta) $$

$$ = \sum_{z^1=1}^k \sum_{z^2=1}^k \cdots \sum_{z^n=1}^k p(z \mid X, \Theta^t) \log p(X, z \mid \Theta) \quad (k^n \text{ terms}) $$

$$ = \sum_{z^1=1}^k \sum_{z^2=1}^k \cdots \sum_{z^n=1}^k \left(\prod_{i=1}^n p(z^i \mid x^i, \Theta^t) \right) \left(\sum_{i=1}^n \log p(x^i, z^i \mid \Theta) \right) $$

$$ = (\text{see EM notes, tedious use of distributive law and independences}) $$

$$ = \sum_{i=1}^n \sum_{z^i=1}^k p(z^i \mid x^i, \Theta^t) \log p(x^i, z^i \mid \Theta) \quad (nk \text{ terms}). $$

- Sum over k^n clusterings turns into sum over nk 1-example assignments.
- Same simplification happens for semi-supervised learning, we’ll discuss why later.
Expectation Maximization for Mixture Models

- In the case of a mixture model with extra “cluster” variables z^i EM uses

$$Q(\Theta \mid \Theta^t) = \sum_{i=1}^{n} \sum_{z^i=1}^{k} p(z^i \mid x^i, \Theta^t) \log p(x^i, z^i \mid \Theta).$$

- This is just a weighted version of the usual log-likelihood.
 - Update is solution of a weighted Gaussian, weighted Bernoulli, and so on.
 - Closed-form solution in these simple cases.

- To derive the simple EM updates that were shown for mixture of Gaussians:
 - Take gradient of above and set it to 0, then solve for π_c, μ_c and Σ_c.
 - Then you re-compute responsibilities and repeat.
Discussing of EM for Mixtures of Gaussians

- EM and mixture models are used in a ton of applications.
 - One of the default unsupervised learning methods.
 - Not just for mixture models:
 - Semi-supervised learning.
 - Density estimation with missing values in matrix.

- EM usually doesn’t reach global optimum.
 - Classic solution: restart the algorithm from different initializations.
 - Lots of work in CS theory on getting better initializations (like “k-means++”).

- MLE for some clusters may not exist (e.g., only responsible for one point).
 - Use MAP estimates or remove these clusters.

- EM does not fix “propagation of errors” from imputation approach.
 - But it reduces problem by incorporating a “confidence” over different imputations.

- Can you make it robust?
 - Use mixture of Laplace of student t distributions.
 - Don’t have closed-form EM steps: compute responsibilities then need to optimize.
Outline

1. Expectation Maximization (Continued)

2. Monotonicity of EM
Monotonicity of EM

- Classic result is that EM iterations are monotonic:
 \[\log p(O \mid \Theta^{t+1}) \geq \log p(O \mid \Theta^t), \]

- We don’t need a step-size and this is useful for debugging.

- We can show this by proving that the below picture is “correct”:

 The \(Q \) function leads to a global bound on the original function.
 At \(\Theta^t \) the bound matches original function.
 So if you improve on the \(Q \) function, you improve on the original function.
Monotonicity of EM

Let's show that the Q function gives a global upper bound on NLL:

$$-\log p(O \mid \Theta) = -\log \left(\sum_H p(O, H \mid \Theta) \right)$$

(marginalization rule)

$$= -\log \left(\sum_H \alpha_H \frac{p(O, H \mid \Theta)}{\alpha_H} \right)$$

(for $\alpha_H \neq 0$)

$$\leq -\sum_H \alpha_H \log \left(\frac{p(O, H \mid \Theta)}{\alpha_H} \right),$$

because $-\log(z)$ is convex and the α_H are a convex combination.
Monotonicity of EM

- Using that log turns multiplication into addition we get

\[- \log p(O \mid \Theta) \leq - \sum_{H} \alpha_H \log \left(\frac{p(O, H \mid \Theta)}{\alpha_H} \right) \]

\[= - \sum_{H} \alpha_H \log p(O, H \mid \Theta) + \sum_{H} \alpha_H \log \alpha_H \]

\[= -Q(\Theta \mid \Theta^t) - \text{entropy}(\alpha), \]

so we have the first part of the picture, \(- \log p(O \mid \Theta^{t+1}) \leq -Q(\Theta \mid \Theta^t) + \text{const.}\)

- Entropy is a measure of how “random” the \(\alpha_H\) values are.
- \(Q\) behaves more like true objective for \(H\) that are more “predictable”.

Now we need to show that this holds with equality at \(\Theta^t\).
Bound on Progress of Expectation Maximization

- To show equality at Θ^t we use definition of conditional probability,

$$p(H \mid O, \Theta^t) = \frac{p(O, H \mid \Theta^t)}{p(O \mid \Theta^t)} \quad \text{or} \quad \log p(O \mid \Theta^t) = \log p(O, H \mid \Theta^t) - \log p(H \mid O, \Theta^t)$$

- Multiply by α_H and summing over H values,

$$\sum_H \alpha_H \log p(O \mid \Theta^t) = \sum_H \alpha_H \log p(O, H \mid \Theta^t) - \sum_H \alpha_H \log p(H \mid O, \Theta^t) = Q(\Theta^t \mid \Theta^t) + \text{entropy}(\alpha),$$

- Which gives the result we want:

$$\log p(O \mid \Theta^t) \sum_H \alpha_H = Q(\Theta^t \mid \Theta^t) + \text{entropy}(\alpha),$$
Summary

- **Expectation maximization:**
 - Optimization with MAR variables, when knowing MAR variables make problem easy.
 - Instead of imputation, works with “soft” assignments to nuisance variables.
 - Maximizes log-likelihood, weighted by all imputations of hidden variables.

- **Monotonicity of EM**: EM is guaranteed not to decrease likelihood.

- Next time: generalizing histograms?
Alternate View of EM as BCD

- We showed that given α the M-step minimizes in Θ the function

$$F(\Theta, \alpha) = -E_{\alpha}[\log p(O, H | \Theta)] - \text{entropy}(\alpha).$$

- The E-step minimizes this function in terms of α given Θ.
 - Setting $\alpha_H = p(H | O, \Theta)$ minimizes it.

- Note that F is not the NLL, but F and the NLL have same stationary points.

- From this perspective, we can view EM as a block coordinate descent method.

- This perspective is also useful if you want to do approximate E-steps.
Alternate View of EM as KL-Proximal

- Using definitions of expectation and entropy and α in the last slide gives

$$F(\Theta, \alpha) = - \sum_H p(H \mid O, \theta^t) \log p(O, H \mid \Theta) + \sum_H p(H \mid O, \theta^t) \log p(H \mid O, \theta^t)$$

$$= - \sum_H p(H \mid O, \theta^t) \log \frac{p(O, H \mid \theta)}{p(H \mid O, \theta^t)}$$

$$= - \sum_H p(H \mid O, \theta^t) \log \frac{p(H \mid O, \theta)p(O \mid \theta)}{p(H \mid O, \theta^t)}$$

$$= - \sum_H \log p(O \mid \Theta) - \sum_H p(H \mid O, \theta^t) \log \frac{p(H \mid O, \theta)}{p(H \mid O, \theta^t)}$$

$$= NLL(\Theta) + KL(p(H \mid O, \theta^t) || p(H \mid O, \theta)).$$

- From this perspective, we can view EM as a “proximal point” method.
 - Classical proximal point method uses $\frac{1}{2}\|\theta^t - \theta\|^2$, EM uses KL divergence.

- From this view we can see that EM doesn’t depend on parameterization of Θ.

- If we linearize NLL and we multiply KL term by $1/\alpha_k$ (step-size), we get the natural gradient method.