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Expectation Maximization (Continued)

Last Time: Expectation Maximization

@ EM considers learning with observed data O and hidden data H.
o Treating the hidden/missing data H as nuissance variables.

@ In this case the “marginal” log-likelihood has a nasty form,

logp(O | ©) = log (Z p(O, H | @)> :

H

EM applies when “complete” likelihood, p(O, H | ©), has a nice form.

EM iterations take the form of a weighted “complete” NLL,

O = argmax {Z alylogp(O, H | @)} ,
© H

for a specific choice of the convex combination coefficients af; (today).
@ We looked at the simple form of the EM update for Gaussian mixture models.
o Video: https://www.youtube.com/watch?v=B36fzChfyGU
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Digression: z' vs r! vs 7, for Mixtures

For mixtures models we have discussed the quantities 2, r};, and m..
e Many students (myself included) get these confused when learning.

@ Mixtures assume each example z° is generated by exactly one of the mixtures.
o And | use “mixture” and “cluster” interchangeably.

@ z' is a nuissance parameter that is mixture number that generated example i.
e Soif k = 3 then 2% is either 1, 2, or 3.

@ 7. is a parameter giving our estimate of the proportion of examples in cluster c.
e So if m3 = 0.3, we think that 30% of our examples come from cluster 2.

1)
c

is the probability that example i came from mixture ¢ (given parameters).
e It's a quantity that appears when doing calculations with mixture models.
@ In EM, but also when you want to guess which cluster generated an example.

r
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Expectation Maximization Bound

@ Each iteration of EM and imputation optimize the approximation:
O ¢ argmin — Za% logp(O, H | ©).
© H
where the probabilities o, are updated after each iteration t.

o Imputation sets a; =1 for the most likely H given O (all other af; = 0).
e It assumes that the imputations are correct, then optimizes with the guess

e In EM we set o, = p(H | O, 0"), weighting H by probability given ©.
o It weighs different imputations by their probability, then optimizes.
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Expectation Maximization as Bound Optimization

@ We'll show that the EM approximation minimizes an upper bound,

—logp(O | ©) Zp (H| 0,0 1ogp(O, H | ©) + const.,
\—,_/

what we want -

Q(O | ©t): what we optimize

o Geometry of expectation maximization as “optimizing an upper bound”:
o At each iteration t we optimize a bound on the function.

-QO]8) * eonst ~lay go]6)

Monotonicity of EM
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Expectation Maximization (EM)
@ So EM starts with ©Y and sets ©'*! to maximize Q(O | ©F).

@ This is typically written as two steps:
@ E-step: Define expectation of complete log-likelihood given last parameters ©F,

QO16")=> p(H|0,0"logp(O, H | ©)
fixed weights a; nice term
=Eg|o0,0t[logp(O, H | ©)],

which is a weighted version of the "nice” logp(O, H) values.
o For mixtures of Gaussians, E-step updates r.. (like clustering step in k-means).
@ M-step: Maximize this expectation to generate new parameters ©¢*1

O = argmaxQ(© | OY).
)

o For mixture of Gaussians, M-step updates 7¢, 1, and X. (like mean in k-means).
@ But | don't like the terms “E-step” and “M-step”.
o For mixture models it separates into two steps, but for many models it doesn't.
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Expectation Maximization for Mixture Models

@ In the case of a mixture model with extra “cluster” variables z*, EM uses

QO |0") =E. | xetllogp(X, | ©)]

ko k k
= Z Z Z (2] X, @t)logp(X z|0O) (k" terms)
zl=1z2=1 n=l a “nice”
ko k k n A
= Z Z Z (Hp(z’|:r ") ) (Zlogp:v 2! |@)>
2l=122=1  2z"=1 \i=l
= (see EM notes, tedious use of distributive law and independences)
n k
=Y ") p' | 2,0 logp(a’, 2" | ©) (nk terms).
1=1 zi=1

@ Sum over k" clusterings turns into sum over nk l-example assignments.
e Same simplification happens for semi-supervised learning, we'll discuss why later.
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Expectation Maximization for Mixture Models

@ In the case of a mixture model with extra “cluster’ variables z* EM uses

QO]6")= ZZP 1 \J 0') logp(a’, 2' | ©).
=1 zi=1 v
@ This is just a weighted version of the usual log-likelihood.
e Update is solution of a weighted Gaussian, weighted Bernoulli, and so on.

o Closed-form solution in these simple cases.

@ To derive the simple EM updates that were shown for mixture of Gaussians:
o Take gradient of above and set it to 0, then solve for 7, u. and X..
@ Then you re-compute responsibilities and repeat.
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Discussing of EM for Mixtures of Gaussians

EM and mixture models are used in a ton of applications.
e One of the default unsupervised learning methods.
o Not just for mixture models:

@ Semi-supervised learning.
@ Density estimation with missing values in matrix.

EM usually doesn't reach global optimum.

e Classic solution: restart the algorithm from different initializations.
o Lots of work in CS theory on getting better initializations (like “k-means++").

@ MLE for some clusters may not exist (e.g., only responsible for one point).

e Use MAP estimates or remove these clusters.
@ EM does not fix “propagation of errors” from imputation approach.

e But it reduces problem by incorporating a “confidence” over different imputations.
@ Can you make it robust?

o Use mixture of Laplace of student t distributions.
e Don’t have closed-form EM steps: compute responsibilities then need to optimize.
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Monotonicity of EM
@ Classic result is that EM iterations are monotonic:
log p(O | ©F1) > logp(O | ©1),

@ We don't need a step-size and this is useful for debugging.

@ We can show this by proving that the below picture is “correct”:
-Q® [ @t> + const *la} [:(0]0)

@ The @ function leads to a global bound on the original function.
e At ©! the bound matches original function.
e So if you improve on the ) function, you improve on the original function.
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Monotonicity of EM

@ Let's show that the () function gives a global upper bound on NLL:
—logp(O | ©) = —log <Zp(O,H ] @)) (marginalization rule)
:—1og<2a OH|@)> (for apr # 0)
< — Za log( PO, H‘@)>,

afg

because —log(z) is convex and the oy are a convex combination.
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Monotonicity of EM

@ Using that log turns multiplication into addition we get

—logp(O | ©) S—ZaHlog< PO, H|9)>

aH

= —ZaHlogp(O,H | ©) +ZaHlogaH
H H

Q(O | 61 negative entropy
= —Q(© | ") — entropy(a),
so we have the first part of the picture, —log p(O | /1) < —Q(0O]O) + const.

e Entropy is a measure of how “random” the ay values are.
e ( behaves more like true objective for H that are more “predictable”.

@ Now we need to show that this holds with equality at ©F.
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Bound on Progress of Expectation Maximization
@ To show equality at ©f we use definition of conditional probability,

H t
ol 0,60 = PO or ogp(0] 6) = logp(O0.H | ©1) ~ logp(H | 0.61)

e Multiply by ay and summing over H values,

Y anlogp(O 0" =) aylogp(O,H |6 =) aylogp(H | 0,6").
H H H —

aH

Q(e* | e
@ Which gives the result we want:

logp(O | ©%)) " ap = Q(O" | ©') + entropy(a),
H

——
=1
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Summary

@ Expectation maximization:

e Optimization with MAR variables, when knowing MAR variables make problem easy.
o Instead of imputation, works with “soft” assignments to nuisance variables.
e Maximizes log-likelihood, weighted by all imputations of hidden variables.

@ Monotonicity of EM: EM is guaranteed not to decrease likelihood.

@ Next time: generalizing histograms?
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Alternate View of EM as BCD

@ We showed that given o the M-step minimizes in © the function

F(©,a) = —E,[logp(O, H | ©)] — entropy(«).

The E-step minimizes this function in terms of « given ©.
o Setting ag = p(H | O, ©) minimizes it.

Note that F' is not the NLL, but F' and the NLL have same stationary points.

From this perspective, we can view EM as a block coordinate descent method.

This perspective is also useful if you want to do approximate E-steps.
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Alternate View of EM as KL-Proximal

@ Using definitions of expectation and entropy and « in the last slide gives

F(©,a) =Y p(H|O,0")logp(O,H | ©)+ > p(H | 0,6"logp(H | O,0")
H H
p(0, H | 0)
p(H | O, 6%)
p(H | 0,0)p(O | 0)
p(H | O, 6%)

== p(H| 0,0 log
H

=—> p(H|0,0"log
H

p(H | O,0)

=S logp(O | ©) — H|0,0%log ———————
%: gp(O | ©) %:p( I R AN

= NLL(®) + KL(p(H | O, 6%) || p(H | O, 6)).

@ From this perspective, we can view EM as a “proximal point” method.

o Classical proximal point method uses 1||6" — 6]|%, EM uses KL divergence.

@ From this view we can see that EM doesn't depend on parameterization of ©.

o If we linearize NLL and we multiply KL term by 1/ay (step-size), we get the
natural gradient method.
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