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Expectation Maximization (Continued) Monotonicity of EM

Last Time: Expectation Maximization
EM considers learning with observed data O and hidden data H.

Treating the hidden/missing data H as nuissance variables.

In this case the “marginal” log-likelihood has a nasty form,

log p(O | Θ) = log

(∑
H

p(O,H | Θ)

)
.

EM applies when “complete” likelihood, p(O,H | Θ), has a nice form.

EM iterations take the form of a weighted “complete” NLL,

Θt+1 = argmax
Θ

{∑
H

αtH log p(O,H | Θ)

}
,

for a specific choice of the convex combination coefficients αtH (today).
We looked at the simple form of the EM update for Gaussian mixture models.

Video: https://www.youtube.com/watch?v=B36fzChfyGU

https://www.youtube.com/watch?v=B36fzChfyGU
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Digression: zi vs ric vs πc for Mixtures
For mixtures models we have discussed the quantities zi, ric, and πc.

Many students (myself included) get these confused when learning.

Mixtures assume each example xi is generated by exactly one of the mixtures.
And I use “mixture” and “cluster” interchangeably.

zi is a nuissance parameter that is mixture number that generated example i.
So if k = 3 then zi is either 1, 2, or 3.

πc is a parameter giving our estimate of the proportion of examples in cluster c.
So if π2 = 0.3, we think that 30% of our examples come from cluster 2.

ric is the probability that example i came from mixture c (given parameters).
It’s a quantity that appears when doing calculations with mixture models.

In EM, but also when you want to guess which cluster generated an example.
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Expectation Maximization Bound

Each iteration of EM and imputation optimize the approximation:

Θt+1 ∈ argmin
Θ
−
∑
H

αtH log p(O,H | Θ).

where the probabilities αtH are updated after each iteration t.

Imputation sets αtH = 1 for the most likely H given Θt (all other αtH = 0).

It assumes that the imputations are correct, then optimizes with the guess

In EM we set αtH = p(H | O,Θt), weighting H by probability given Θt.

It weighs different imputations by their probability, then optimizes.
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Expectation Maximization as Bound Optimization

We’ll show that the EM approximation minimizes an upper bound,

− log p(O | Θ)︸ ︷︷ ︸
what we want

≤ −
∑
H

p(H | O,Θt) log p(O,H | Θ)︸ ︷︷ ︸
Q(Θ | Θt): what we optimize

+ const.,

Geometry of expectation maximization as “optimizing an upper bound”:
At each iteration t we optimize a bound on the function.
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Expectation Maximization (EM)
So EM starts with Θ0 and sets Θt+1 to maximize Q(Θ | Θt).

This is typically written as two steps:
1 E-step: Define expectation of complete log-likelihood given last parameters Θt,

Q(Θ | Θt) =
∑
H

p(H | O,Θt)︸ ︷︷ ︸
fixed weights αt

H

log p(O,H | Θ)︸ ︷︷ ︸
nice term

= EH | O,Θt [log p(O,H | Θ)],

which is a weighted version of the “nice” log p(O,H) values.
For mixtures of Gaussians, E-step updates ric (like clustering step in k-means).

2 M-step: Maximize this expectation to generate new parameters Θt+1,

Θt+1 = argmax
Θ

Q(Θ | Θt).

For mixture of Gaussians, M-step updates πc, µ, and Σc (like mean in k-means).

But I don’t like the terms “E-step” and “M-step”.
For mixture models it separates into two steps, but for many models it doesn’t.
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Expectation Maximization for Mixture Models

In the case of a mixture model with extra “cluster” variables zi, EM uses

Q(Θ | Θt) = Ez | X,Θt [log p(X, z | Θ)]

=

k∑
z1=1

k∑
z2=1

· · ·
k∑

zn=1

p(z | X,Θt)︸ ︷︷ ︸
αz

log p(X, z | Θ)︸ ︷︷ ︸
“nice”

(kn terms)

=

k∑
z1=1

k∑
z2=1

· · ·
k∑

zn=1

(
n∏
i=1

p(zi | xi,Θt)

)(
n∑
i=1

log p(xi, zi | Θ)

)
= (see EM notes, tedious use of distributive law and independences)

=

n∑
i=1

k∑
zi=1

p(zi | xi,Θt) log p(xi, zi | Θ) (nk terms).

Sum over kn clusterings turns into sum over nk 1-example assignments.
Same simplification happens for semi-supervised learning, we’ll discuss why later.
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Expectation Maximization for Mixture Models

In the case of a mixture model with extra “cluster” variables zi EM uses

Q(Θ | Θt) =

n∑
i=1

k∑
zi=1

p(zi | xi,Θt)︸ ︷︷ ︸
ric

log p(xi, zi | Θ).

This is just a weighted version of the usual log-likelihood.
Update is solution of a weighted Gaussian, weighted Bernoulli, and so on.

Closed-form solution in these simple cases.

To derive the simple EM updates that were shown for mixture of Gaussians:
Take gradient of above and set it to 0, then solve for πc, µc and Σc.

Then you re-compute responsibilities and repeat.
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Discussing of EM for Mixtures of Gaussians

EM and mixture models are used in a ton of applications.
One of the default unsupervised learning methods.
Not just for mixture models:

Semi-supervised learning.
Density estimation with missing values in matrix.

EM usually doesn’t reach global optimum.
Classic solution: restart the algorithm from different initializations.
Lots of work in CS theory on getting better initializations (like “k-means++”).

MLE for some clusters may not exist (e.g., only responsible for one point).
Use MAP estimates or remove these clusters.

EM does not fix “propagation of errors” from imputation approach.
But it reduces problem by incorporating a “confidence” over different imputations.

Can you make it robust?
Use mixture of Laplace of student t distributions.
Don’t have closed-form EM steps: compute responsibilities then need to optimize.
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Outline

1 Expectation Maximization (Continued)

2 Monotonicity of EM
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Monotonicity of EM
Classic result is that EM iterations are monotonic:

log p(O | Θt+1) ≥ log p(O | Θt),

We don’t need a step-size and this is useful for debugging.

We can show this by proving that the below picture is “correct”:

The Q function leads to a global bound on the original function.
At Θt the bound matches original function.

So if you improve on the Q function, you improve on the original function.
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Monotonicity of EM

Let’s show that the Q function gives a global upper bound on NLL:

− log p(O | Θ) = − log

(∑
H

p(O,H | Θ)

)
(marginalization rule)

= − log

(∑
H

αH
p(O,H | Θ)

αH

)
(for αH 6= 0)

≤ −
∑
H

αH log

(
p(O,H | Θ)

αH

)
,

because − log(z) is convex and the αH are a convex combination.
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Monotonicity of EM

Using that log turns multiplication into addition we get

− log p(O | Θ) ≤ −
∑
H

αH log

(
p(O,H | Θ)

αH

)
= −

∑
H

αH log p(O,H | Θ)︸ ︷︷ ︸
Q(Θ | Θt)

+
∑
H

αH logαH︸ ︷︷ ︸
negative entropy

= −Q(Θ | Θt)− entropy(α),

so we have the first part of the picture, − log p(O | Θt+1) ≤ −Q(Θ|Θt) + const.

Entropy is a measure of how “random” the αH values are.
Q behaves more like true objective for H that are more “predictable”.

Now we need to show that this holds with equality at Θt.
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Bound on Progress of Expectation Maximization

To show equality at Θt we use definition of conditional probability,

p(H | O,Θt) =
p(O,H | Θt)

p(O | Θt)
or log p(O | Θt) = log p(O,H | Θt)− log p(H | O,Θt).

Multiply by αH and summing over H values,∑
H

αH log p(O | Θt) =
∑
H

αH log p(O,H | Θt

︸ ︷︷ ︸
Q(Θt | Θt)

−
∑
H

αH log p(H | O,Θt)︸ ︷︷ ︸
αH

.

Which gives the result we want:

log p(O | Θt)
∑
H

αH︸ ︷︷ ︸
=1

= Q(Θt | Θt) + entropy(α),
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Summary

Expectation maximization:

Optimization with MAR variables, when knowing MAR variables make problem easy.
Instead of imputation, works with “soft” assignments to nuisance variables.
Maximizes log-likelihood, weighted by all imputations of hidden variables.

Monotonicity of EM: EM is guaranteed not to decrease likelihood.

Next time: generalizing histograms?
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Alternate View of EM as BCD

We showed that given α the M-step minimizes in Θ the function

F (Θ, α) = −Eα[log p(O,H | Θ)]− entropy(α).

The E-step minimizes this function in terms of α given Θ.

Setting αH = p(H | O,Θ) minimizes it.

Note that F is not the NLL, but F and the NLL have same stationary points.

From this perspective, we can view EM as a block coordinate descent method.

This perspective is also useful if you want to do approximate E-steps.
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Alternate View of EM as KL-Proximal
Using definitions of expectation and entropy and α in the last slide gives

F (Θ, α) = −
∑
H

p(H | O, θt) log p(O,H | Θ) +
∑
H

p(H | O, θt) log p(H | O, θt)

= −
∑
H

p(H | O, θt) log
p(O,H | θ)
p(H | O, θt)

= −
∑
H

p(H | O, θt) log
p(H | O, θ)p(O | θ)

p(H | O, θt)

= −
∑
H

log p(O | Θ)−
∑
H

p(H | O, θt) log
p(H | O, θ)
p(H | O, θt)

= NLL(Θ) + KL(p(H | O, θt) || p(H | O, θ)).

From this perspective, we can view EM as a “proximal point” method.

Classical proximal point method uses 1
2‖θ

t − θ‖2, EM uses KL divergence.

From this view we can see that EM doesn’t depend on parameterization of Θ.

If we linearize NLL and we multiply KL term by 1/αk (step-size), we get the
natural gradient method.
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