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Last Time: Learning with MAR Values

o We discussed learning with “missing at random” values in data:
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@ Imputation approach:
o Guess most likely value of each ?, fit model with these values (and maybe repeat).

@ Semi-supervised learning: supervised learning with labeled and unlabeled data.
e Imputation method is a form of “self-taught” learning.
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Back to Mixture Models
@ To fit mixture models we often make n MAR new variables z¢.
o Why?7?

o Consider mixture of Gaussians, and let 2z be the cluster number of example i:
o So zt € {1,2,--- ,k} tells you which Gaussian generated example i.

o Given the 2% it's easy to optimize the parameters of the mixture model.
o Solve for {m, ic, e} maximizing p(z*, z*) (learning step in GDA).

o Given {7, ., X} it's easy to optimize the clusters z':
o Find the cluster ¢ maximizing p(z*, z; = c) (prediction step in GDA).
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Imputation Approach for Mixtures of Gaussians

e Consider mixture of Gaussians with the choice 7. = 1/k and X, = [ for all c.

@ Here is the imputation approach for fitting a mixtures of Gaussian:
e Randomly pick some initial means pi.

o Assigns 2" to the closest mean (imputation of missing 2% values).

o This is how you maximize p(z?, z*) in terms of z°.

e Set i to the mean of the points assigned to cluster ¢ (parameter update).

@ This is how you maximize p(z*, z%) in terms of . given the z°.
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@ This is exactly k-means clustering.
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (common X.).
e But variable Y. in mixture of Gaussians allow non-convex clusters.
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (common X.).
o But variable X, in mixture of Gaussians allow non-convex clusters.

Partitioning of the space
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (common X.).

e But variable 3. in mixture of Gaussians allow non-convex clusters.
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https://en.wikipedia.org/wiki/K-means_clustering
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Parameters, Hyper-Parameters, and Nuisance Parameters

@ Are the 7 values “parameters” or “"hyper-parameters”?

Parameters:
e Variables in our model that we optimize based on the training set.

Hyper-Parameters:
e Variables that control model complexity, typically set using validation set.
o Often become degenerate if we set these based on training data.
o We sometimes add optimization parameters in here like step-size.
o Because “optimizing worse” can decrease overfitting.

Nuisance Parameters:
e Not part of the model and not really controlling complexity.
o An alternative to optimizing (“imputation”) is to consider all values.
@ Based on marginalization rule for probabilities.
o Consider all possible imputations, and weight them by their probability.
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Drawbacks of Imputation Approach

@ Imputation approach to MAR variables treats the 7 as parameters.

o Use density estimator to find the "best” way to “fill in” the missing values.
o Now fit the “complete data” using a standard method.

@ But "hard” assignments of missing values leads to propagation of errors.

o What if cluster is ambiguous in k-means clustering?
e What if label is ambiguous in “self-taught” learning?

e Expectation maximization (EM) treats the 7 as nuissance parameters:
o Use probabilities of different assignments ( “soft” assignments) instead of imputation.
o If the MAR values are obvious, this will act like the imputation approach.
e For ambiguous MAR values, takes into account our uncertainty.
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Example: Expectation Maximization for Mixture of Gaussians

@ EM for mixtures needs “probability that example ¢ comes from mixture ¢”.
o We call this the responsibility r of cluster ¢ for example i.
o EM computes these given parameters O at iteration t.

@ You can compute the responsibilities with Bayes rule:
p(z’ | 2" = c,0")p(z' = c| ©)
Yyt | 2 =¢,0hp(zi =¢ | O

which depends on the mixture proportions p(z* = ¢ | ©%) and the likelihood.
o Though you may get underflow when computing r’ (see bonus for log-domain tricks).

2 p(zt=c| 2’0 =

1
Te

@ Can think of imputation/k-means as using 7 = 1 for most likely cluster.
o And r¢ = 0 for all other clusters.
@ EM insteads “soft-assign” each training example to each cluster.
e Example 7 could be 40% in cluster 1, 35% in cluster 2, and 25% in cluster 3.
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Example: Expectation Maximization for Mixture of Gaussians

@ The EM algorithm for training mixtures of Gaussans repeats the following steps:
@ Computer probability that example i is in cluster ¢ based on parameters ©°.

ri=p(z' =c| 2’ 0.

@ Update cluster probabilities based on number of examples soft-assigned to clusters.

t+1 E 7,,

© Update means based on means of examples soft—a55|gned to each cluster.
t+1 _
e Z ree
Zz 1 c i=1

© Update covariances based on covariances of examples soft-assigned to each cluster.

B = e S ) T
= i=1

@ Video: https://wuw.youtube.com/watch?v=B36fzChfyGU
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Expectation Maximization Notation

@ Expectation maximization (EM) is an optimization algorithm for MAR values:

o Applies to problems that are easy to solve with “complete” data (i.e., you knew 7).
o Allows probabilistic or “soft” assignments to MAR (or other nuisance) variables.
@ Imputation approach is sometimes called “hard” EM.

@ EM is among the most cited paper in statistics.
e Special cases independently discovered in 50s-70s, general case in 1977.

@ EM notation: we use O as observed data and H as hidden (?) data.

o Semi-supervised learning: observe O = {X,y, X} but don't observe H = {y}.
o Mixture models: observe data O = {X} but don't observe clusters H = {z"}1,.

@ We use O as parameters we want to optimize.
o In Gaussian mixtures this will be the 7., u., and 3. variables.
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The Two Likelihoods: “Complete” and “Marginal”

e "“Complete” likelihood: likelihood with imputed hidden values, p(O, H | ©).
o We assume that this is “nice”. Maybe it has a closed-form MLE or is convex.

e "Marginal” likelihood: likelihood with unknown hidden values, p(O | ©).
e This is our usual likelihood, the thing we actually want to optimize.

@ The “complete” and “marginal” likelihoods are related by the marginalization rule:

0|@ ZZ ZpOH|@ > pO,H|6)

margmal “complete likelihood”

where we sum over all possible H = {H1, Ha, ..., Hp,}.

o For mixture models, this sums over all possible clusterings (k™ values).
e Replace the sums by integrals for continuous hidden values.
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Expectation Maximization Bound

@ The negative log-likelihood (that we want to optimize) thus has the form

—logp(O | ©) = —log (ZP(O,H | @)> ;
H

@ which has a sum inside the log.
e This does not preserve convexity: minimizing it is usually NP-hard.

@ Both EM and imputation are based on the approximation:

—log <Zp(O,H | @)) - Z(XH logp(O, H | ©)
H H

where af7 is some probability for the assignment H to the hidden variables.
e An expectation over “complete” log-likelihood.
e This is useful when the approximation is easier to minimize.
@ The specific ay chosen by EM makes the approximation tight at ©°.
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Summary

@ Introducing MAR variables to fit mixture models.

o Create new variables that represent “which cluster this example came from".
e K-means is a special case of imputation approach to MAR.

@ Expectation maximization:

Optimization with MAR variables, when knowing MAR variables make problem easy.
Instead of imputation, works with “soft” assignments to nuisance variables.
Maximizes log-likelihood, weighted by all imputations of hidden variables.

Simple and intuitive updates for fitting standard mixtures models.

@ Next time: properties of EM (I'm not going to pretend this is exciting).
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EM Alternatives

@ Are there alternatives to for optimizing marginal likelihood EM?
e Could use gradient descent, SGD, and so on.
o We now know that EM converges faster than gradient descent for standard mixture
models.
e Many variations on EM to speed up its convergence (for example, “adaptive” bound
optimization).
e Spectral and other recent methods have some global guarantees.
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Avoiding Underflow when Computing Responsibilities

e Computing responsibility may underflow for high-dimensional z?, due to
p(zt | 2* = ¢, ).
@ Usual ML solution: do all but last step in log-domain.

log rf: = logp(xi ] 2 =g, @t) + logp(zi =c| Sh)
k
— log (Z p(a' | 2 =c,0Np(z = | @t)>.
c/=1

@ To compute last term, use “log-sum-exp" trick.



Log-Sum-Exp Trick

@ To compute log(D, exp(v;)), set B = max;{v;} and use:
log(z exp(v;)) = log Zexp - B8+5))
= log Zexp v; — B) exp(B))
= log(exp(p Z exp(v
= log(exp(/)) + log( Z exp(v

= 8+ log( Zexp 1—5))

i pA

@ Avoids overflows due to computing exp operator.

Expectation Maximization
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