
MAR, Mixtures, and K-means? Expectation Maximization

CPSC 440: Advanced Machine Learning
Expectation Maximization

Mark Schmidt

University of British Columbia

Winter 2021

MAR, Mixtures, and K-means? Expectation Maximization

Last Time: Learning with MAR Values

We discussed learning with “missing at random” values in data:

X =

1.33 0.45 −0.05 −1.08 ?
1.49 2.36 −1.29 −0.80 ?
−0.35 −1.38 −2.89 −0.10 ?
0.10 −1.29 0.64 −0.46 ?
0.79 0.25 −0.47 −0.18 ?
2.93 −1.56 −1.11 −0.81 ?
−1.15 0.22 −0.11 −0.25 ?

Imputation approach:

Guess most likely value of each ?, fit model with these values (and maybe repeat).

Semi-supervised learning: supervised learning with labeled and unlabeled data.
Imputation method is a form of “self-taught” learning.

MAR, Mixtures, and K-means? Expectation Maximization

Back to Mixture Models

To fit mixture models we often make n MAR new variables zi.

Why???

Consider mixture of Gaussians, and let zi be the cluster number of example i:

So zi ∈ {1, 2, · · · , k} tells you which Gaussian generated example i.

Given the zi it’s easy to optimize the parameters of the mixture model.

Solve for {πc, µc,Σc} maximizing p(xi, zi) (learning step in GDA).

Given {πc, µc,Σc} it’s easy to optimize the clusters zi:

Find the cluster c maximizing p(xi, zi = c) (prediction step in GDA).

MAR, Mixtures, and K-means? Expectation Maximization

Imputation Approach for Mixtures of Gaussians

Consider mixture of Gaussians with the choice πc = 1/k and Σc = I for all c.

Here is the imputation approach for fitting a mixtures of Gaussian:

Randomly pick some initial means µc.

Assigns xi to the closest mean (imputation of missing zi values).

This is how you maximize p(xi, zi) in terms of zi.

Set µc to the mean of the points assigned to cluster c (parameter update).

This is how you maximize p(xi, zi) in terms of µc given the zi.

This is exactly k-means clustering.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).
But variable Σc in mixture of Gaussians allow non-convex clusters.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).
But variable Σc in mixture of Gaussians allow non-convex clusters.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.

MAR, Mixtures, and K-means? Expectation Maximization

K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (common Σc).

But variable Σc in mixture of Gaussians allow non-convex clusters.

https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering

MAR, Mixtures, and K-means? Expectation Maximization

Outline

1 MAR, Mixtures, and K-means?

2 Expectation Maximization

MAR, Mixtures, and K-means? Expectation Maximization

Parameters, Hyper-Parameters, and Nuisance Parameters

Are the ? values “parameters” or “hyper-parameters”?

Parameters:
Variables in our model that we optimize based on the training set.

Hyper-Parameters:
Variables that control model complexity, typically set using validation set.
Often become degenerate if we set these based on training data.
We sometimes add optimization parameters in here like step-size.

Because “optimizing worse” can decrease overfitting.

Nuisance Parameters:
Not part of the model and not really controlling complexity.
An alternative to optimizing (“imputation”) is to consider all values.

Based on marginalization rule for probabilities.
Consider all possible imputations, and weight them by their probability.

MAR, Mixtures, and K-means? Expectation Maximization

Drawbacks of Imputation Approach

Imputation approach to MAR variables treats the ? as parameters.

Use density estimator to find the “best” way to “fill in” the missing values.
Now fit the “complete data” using a standard method.

But “hard” assignments of missing values leads to propagation of errors.

What if cluster is ambiguous in k-means clustering?
What if label is ambiguous in “self-taught” learning?

Expectation maximization (EM) treats the ? as nuissance parameters:

Use probabilities of different assignments (“soft” assignments) instead of imputation.
If the MAR values are obvious, this will act like the imputation approach.
For ambiguous MAR values, takes into account our uncertainty.

MAR, Mixtures, and K-means? Expectation Maximization

Example: Expectation Maximization for Mixture of Gaussians
EM for mixtures needs “probability that example i comes from mixture c”.

We call this the responsibility ric of cluster c for example i.
EM computes these given parameters Θt at iteration t.

You can compute the responsibilities with Bayes rule:

ric , p(zi = c | xi,Θt) =
p(xi | zi = c,Θt)p(zi = c | Θt)∑k

c′=1 p(x
i | zi = c′,Θt)p(zi = c′ | Θt)

,

which depends on the mixture proportions p(zi = c | Θt) and the likelihood.
Though you may get underflow when computing ric (see bonus for log-domain tricks).

Can think of imputation/k-means as using ric = 1 for most likely cluster.
And ric = 0 for all other clusters.

EM insteads “soft-assign” each training example to each cluster.
Example i could be 40% in cluster 1, 35% in cluster 2, and 25% in cluster 3.

MAR, Mixtures, and K-means? Expectation Maximization

Example: Expectation Maximization for Mixture of Gaussians
The EM algorithm for training mixtures of Gaussans repeats the following steps:

1 Computer probability that example i is in cluster c based on parameters Θt.

ric = p(zi = c | xi,Θt).

2 Update cluster probabilities based on number of examples soft-assigned to clusters.

πt+1
c =

1

n

n∑
i=1

ric.

3 Update means based on means of examples soft-assigned to each cluster.

µt+1
c =

1∑n
i=1 r

i
c

n∑
i=1

ricx
i.

4 Update covariances based on covariances of examples soft-assigned to each cluster.

Σt+1
c =

1∑n
i=1 r

i
c

n∑
i=1

ric(x
i − µt+1

c)(xi − µt+1
c)>.

Video: https://www.youtube.com/watch?v=B36fzChfyGU

https://www.youtube.com/watch?v=B36fzChfyGU

MAR, Mixtures, and K-means? Expectation Maximization

Expectation Maximization Notation

Expectation maximization (EM) is an optimization algorithm for MAR values:

Applies to problems that are easy to solve with “complete” data (i.e., you knew ?).
Allows probabilistic or “soft” assignments to MAR (or other nuisance) variables.

Imputation approach is sometimes called “hard” EM.

EM is among the most cited paper in statistics.

Special cases independently discovered in 50s-70s, general case in 1977.

EM notation: we use O as observed data and H as hidden (?) data.

Semi-supervised learning: observe O = {X, y, X̄} but don’t observe H = {ȳ}.
Mixture models: observe data O = {X} but don’t observe clusters H = {zi}ni=1.

We use Θ as parameters we want to optimize.

In Gaussian mixtures this will be the πc, µc, and Σc variables.

MAR, Mixtures, and K-means? Expectation Maximization

The Two Likelihoods: “Complete” and “Marginal”

“Complete” likelihood: likelihood with imputed hidden values, p(O,H | Θ).

We assume that this is “nice”. Maybe it has a closed-form MLE or is convex.

“Marginal” likelihood: likelihood with unknown hidden values, p(O | Θ).

This is our usual likelihood, the thing we actually want to optimize.

The “complete” and “marginal” likelihoods are related by the marginalization rule:

p(O | Θ)︸ ︷︷ ︸
“marginal”

=
∑
H1

∑
H2

· · ·
∑
Hm

p(O,H | Θ) =
∑
H

p(O,H | Θ)︸ ︷︷ ︸
“complete likelihood”

.

where we sum over all possible H ≡ {H1, H2, . . . ,Hm}.
For mixture models, this sums over all possible clusterings (kn values).
Replace the sums by integrals for continuous hidden values.

MAR, Mixtures, and K-means? Expectation Maximization

Expectation Maximization Bound

The negative log-likelihood (that we want to optimize) thus has the form

− log p(O | Θ) = − log

(∑
H

p(O,H | Θ)

)
,

which has a sum inside the log.
This does not preserve convexity: minimizing it is usually NP-hard.

Both EM and imputation are based on the approximation:

− log

(∑
H

p(O,H | Θ)

)
≈ −

∑
H

αH log p(O,H | Θ)

where αH is some probability for the assignment H to the hidden variables.
An expectation over “complete” log-likelihood.
This is useful when the approximation is easier to minimize.

The specific αH chosen by EM makes the approximation tight at Θt.

MAR, Mixtures, and K-means? Expectation Maximization

Summary

Introducing MAR variables to fit mixture models.

Create new variables that represent “which cluster this example came from”.
K-means is a special case of imputation approach to MAR.

Expectation maximization:

Optimization with MAR variables, when knowing MAR variables make problem easy.
Instead of imputation, works with “soft” assignments to nuisance variables.
Maximizes log-likelihood, weighted by all imputations of hidden variables.
Simple and intuitive updates for fitting standard mixtures models.

Next time: properties of EM (I’m not going to pretend this is exciting).

MAR, Mixtures, and K-means? Expectation Maximization

EM Alternatives

Are there alternatives to for optimizing marginal likelihood EM?
Could use gradient descent, SGD, and so on.

We now know that EM converges faster than gradient descent for standard mixture
models.

Many variations on EM to speed up its convergence (for example, “adaptive” bound
optimization).
Spectral and other recent methods have some global guarantees.

MAR, Mixtures, and K-means? Expectation Maximization

Avoiding Underflow when Computing Responsibilities

Computing responsibility may underflow for high-dimensional xi, due to
p(xi | zi = c,Θt).

Usual ML solution: do all but last step in log-domain.

log ric = log p(xi | zi = c,Θt) + log p(zi = c | Θt)

− log

(
k∑

c′=1

p(xi | zi = c′,Θt)p(zi = c′ | Θt)

)
.

To compute last term, use “log-sum-exp” trick.

MAR, Mixtures, and K-means? Expectation Maximization

Log-Sum-Exp Trick

To compute log(
∑

i exp(vi)), set β = maxi{vi} and use:

log(
∑
c

exp(vi)) = log(
∑
i

exp(vi − β + β))

= log(
∑
i

exp(vi − β) exp(β))

= log(exp(β))
∑
i

exp(vi − β))

= log(exp(β)) + log(
∑
i

exp(vi − β))

= β + log(
∑
i

exp(vi − β)︸ ︷︷ ︸
≤1

).

Avoids overflows due to computing exp operator.

	MAR, Mixtures, and K-means?
	Expectation Maximization

