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Last Time: Mixture Models

We discussed mixture models,

p(x | µ,Σ, π) =

k∑
c=1

πcp(x | µc,Σc),

where PDF is written as a convex combination of simple PDFs.

We discussed Gaussian mixture models and Bernoulli mixture models.

With k large, can approximate any continuous/binary PDF.

More generally, we can have mixtures of any distributions.

Mixture of student t, mixture of categorical, mixture of Poisson, and so on.

Can choose k using test set likelihood.

Except if you assign p(xi) =∞ to a training point that appears in test set.
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Big Picture: Training and Inference

Mixture model training phase:

Input is a matrix X, number of clusters k, and form of individual distributions.
Output is mixture model: mixture proportions πc and parameters of each component
(the θc for Bernoulli, and the {µc,Σc} for Gaussians).

And maybe the “responsibilities”: probability of each xi belonging to each cluster.

Mixture model prediction phase

Input is a model, and possibly test data X̃.
Many possible inference tasks. For example:

Measure likelihood of test examples x̃i.
Compute probability that test example belongs to cluster c.
Compute marginal or conditional probabilities.
“Fill in” missing parts of a test example.

There is also a supervised version of mixture models...
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Generative Classifiers: Supervised Learning with Density Estimation

Density estimation can be used for supervised learning:

Generative classifiers estimate conditional by modeling joint probability of xi and yi,

p(yi | xi) ∝ p(xi, yi) (Approach 1: model joint probability of xi and yi)

= p(xi | yi)p(yi). (Approach 2: model marginal of yi and conditional)

Common generative classifiers (based on Approach 2):
Naive Bayes models p(xi | yi) as product of independent distributions.

Has recently been used for CRISPR gene editing.

Linear discriminant analysis (LDA) assumes p(xi | yi) is Gaussian (shared Σ).
Gaussian discriminant analysis (GDA) allows each class to have its own covariance.

Also known as “quadratic discriminant analysis” (QDA).

We can think of these as mixture models.
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Naive Bayes as a Mixture Model
In naive Bayes we assume xi | yi is a product of Bernoullis.

p(xi, yi = c) = p(yi)p(xi | yi = c)︸ ︷︷ ︸
product rule

= p(yi = c)︸ ︷︷ ︸
categ.

p(xi | yi = c)︸ ︷︷ ︸
Product(Bernoulli)

= πc

d∏
j=1

p(xij | θcj).

If we don’t know yi, this is actually a mixture of Bernollis model:

p(xi) =

k∑
c=1

p(xi, yi = c)︸ ︷︷ ︸
marg. rule

=

k∑
c=1

πc

d∏
j=1

p(xij | θcj).

But since we know which “cluster” each xi comes from, MLE is simple:

π̂c =
nc
n
, θcj =

1

nc

∑
yi=c

xij .

“Use the sample statistics for examples in class c”.
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Naive Bayes on Digits

Parameters of a mixture of Bernoulli model fit to MNIST with k = 10:

Shapes of samples are better, but missing within-cluster dependencies:

For naive Bayes, πc ≈ 1/10 for all c and each θc corresponds to one class:

One sample from each class:
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Gaussian Discriminant Analysis (GDA) and Closed-Form MLE

In Gaussian discriminant analysis we assume xi | yi is a Gaussian.

p(xi, yi = c) = p(yi)p(xi | yi = c)︸ ︷︷ ︸
product rule

= πc︸︷︷︸
p(yi=c)

p(xi | µc,Σc)︸ ︷︷ ︸
Gaussian PDF

.

If we don’t know yi, this is actually a mixture of Gaussians model:

p(xi) =
k∑

c=1

p(xi, yi = c) =
k∑

c=1

πcp(x
i | µc,Σc).

But since we know which “cluster” each xi comes from, MLE is simple:

π̂c =
nc
n
, µ̂c =

1

nc

∑
yi=c

xi, Σ̂c =
1

nc

∑
yi=c

(xi − µ̂c)(xi − µ̂c)T ,

“Use the sample statistics for examples in class c”.

In linear discriminant analysis (LDA), we instead use same Σ for all classes.
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Linear Discriminant Analysis (LDA)

Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Since variancs Σ are equal, class label is determined by nearest mean.

Prediction is like a “1-nearest neighbour” or k-means clustering method.
This leads to a linear classiifer.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Gaussian Discriminant Analysis (GDA)

Example of fitting Gaussian discriminant analysis (GDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Different Σc for each class c leads to a quadratic classifier.

Class label is determined by means and variances.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Digression: Beyond Naive Bayes and GDA

GDA and naive Bayes make strong assumptions.

That features xi are independent or Gaussian (respectively) given labels yi.

You can get a better model of each class by using a mixture model for p(xi | yi).

Or any of the more-advanced methods we’ll discuss.

Generative models were unpopular for a while, but are coming back:
Generative adversarial networks (GANs) and variational autoencoders.

Deep generative models (later in course).

We believe that most human learning is unsupervised.

There may not be enough information in class labels to learn quickly.
Instead of searching for features that indicate “dog”, try to model all aspects of dogs.
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Less-Naive Bayes on Digits

Naive Bayes θc values (independent Bernoullis for each class):

One sample from each class:

Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

One sample from each class:
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Digression: Generative Models for Structured Prediction

Consider a structured prediction problem where target yi is a vector:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 , Y =


1 0 0
0 0 1
0 0 0
0 1 0

 .
Modeling xi | yi leads to too many yi potential values.

But you could model joint probability of xi and yi,

Z =


1 0 0 0 1 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 1 0 1 0

 .
So any density estimation method can be used (like mixture of Bernoullis).

Given p(xi, yi) use conditioning to get p(yi | xi) to make predictions.
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Learning with Hidden Values

We often want to learn with unobserved/missing/hidden/latent values.

For example, we could have a dataset like this:

X =


N 33 5
L 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Or we could be fitting a mixture model without knowing the clusters.

Missing values are very common in real datasets.

An important issue to consider: why is data missing?
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Missing at Random (MAR)

We’ll focus on data that is missing at random (MAR):
Assume that the reason ? is missing does not depend on the missing value.

Formal definition in bonus slides.

This definition doesn’t agree with intuitive notion of “random”:

A variable that is always missing would be “missing at random”.
The intuitive/stronger version is missing completely at random (MCAR).

Examples of MCAR and MAR for digit data:

Missing random pixels/labels: MCAR.
Hide the the top half of every digit: MAR.
Hide the labels of all the “2” examples: not MAR.

We’ll consider MAR, because otherwise you need to model why data is missing.
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Imputation Approach to MAR Variables

Consider a dataset with MAR values:

X =


N 33 5
F 10 1
F ? 2
M 22 0

 , y =


−1
+1
−1
?

 .
Imputation method is one of the first things we might try:

0 Initialization: find parameters of a density model (often using “complete” examples).
1 Imputation: replace each ? with the most likely value.
2 Estimation: fit model with these imputed values.

You could also alternate between imputation and estimation.
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Semi-Supervised Learning

Important special case of MAR is semi-supervised learning.

X =

[ ]
, y =

[]
,

X̄ =


 , ȳ =


?
?
?
?
?

 .
Motivation for training on labeled data (X, y) and unlabeled data X̄:

Getting labeled data is usually expensive, but unlabeled data is usually cheap.

For speech recognition: easy to get speech data, hard to get annotated speech data.
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Semi-Supervised Learning

Why should unlabeled data tell us anything about labels?

Usually, we assume that similar features → similar labels.
Consider the following example where we have one labeled example for each class.
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Semi-Supervised Learning

Why should unlabeled data tell us anything about labels?

Usually, we assume that similar features → similar labels.
Consider the following example where we have one labeled example for each class.
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Semi-Supervised Learning

Important special case of MAR is semi-supervised learning.

X =

[ ]
, y =

[]
,

X̄ =


 , ȳ =


?
?
?
?
?

 ,
Imputation approach is called self-taught learning:

Alternate between guessing ȳ and fitting the model with these values.
If you use LDA, you get a semi-supervised version of k-means.

Alternatve between updating means of clusters, and update the “unknown clusters” ȳ.
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Summary

Generative classifiers turn supervised learning into density estimation.

Naive Bayes and GDA are popular, but make strong assumptions.
Can be used for structured prediction.

Missing at random: fact that variable is missing does not depend on its value.

Imputation approach to handling missing data.

Guess values of hidden variables, then fit the model (and usually repeat).
Example of imutation approach for semi-supervised learning.

Next time: one of the most cited papers in statistics.
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Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

p(yi | xi) ∝ p(xi | yi)p(yi),

and typically p(xi | yi) is assumed Gaussian (LDA) or independent (naive Bayes).

But we could allow more flexibility by using a mixture model,

p(xi | yi) =

k∑
c=1

p(zi = c | yi)p(xi | zi = c, yi).

Another variation is a mixture of disciminative models (like logistic regression),

p(yi | xi) =
k∑

c=1

p(zi = c | xi)p(yi | zi = c, xi).

Called a “mixture of experts” model:
Each regression model becomes an “expert” for certain values of xi.
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Missing at Random (MAR) Formally

Let’s formally define MAR in the context of density estimation.

Our “observed” data would be a matrix X containing ? values.

Our “complete” data would be the matrix X with the ? values “filled in”.
We know all xij values in this matrix, even the ones that are ? in the observed data.

Use zij = 1 if xji is ? in the “observed” data.

We say that data is MAR in the observed data X if

zij ⊥ xij ,

that the fact that xij is missing (zij) is independent of the value of xij .
Specific values of the variables are not being hidden.
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Missing at Random: Example
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