
CPSC 340 Assignment 3 (due Monday October 17 at 11:55pm)

1 More Unsupervised Learning

1.1 Vector Quantization

Discovering object groups is one motivation for clustering. Another motivation is vector quantization, where
we find a prototype point for each cluster and replace points in the cluster by their prototype. If our inputs
are images, we could use vector quantization on the set of RGB pixel values as a simple image compression
algorithm.

Your task is to implement this simple image compression algorithm by writing a quantizeImage and a
deQuantizeImage function. The quantizeImage function should take the name of an image file (like
“dog.png” for the provided image) and a number b as input. It should use the pixels in the image as
examples and the 3 colour channels as features, and run k-means clustering on this data with 2b clusters.
The code should store the cluster means and return four arguments: the cluster assignments y, the means
W , the number of rows in the image nRows, and the number of columns nCols. The deQuantizeImage

function should take these four arguments and return a version of the image (the same size as the original)
where each pixel’s original colour is replaced with the nearest prototype colour.

To understand why this is compression, consider the original image space. Say the image can take on the
values 0, 1, . . . , 254, 255 in each colour channel. Since 28 = 256 this means we need 8 bits to represent each
colour channel, for a total of 24 bits per pixel. Using our method, we are restricting each pixel to only take
on one of 2b colour values. In other words, we are compressing each pixel from a 24-bit colour representation
to a b-bit colour representation by picking the 2b prototype colours that are “most representative” given the
content of the image. So, for example, if b = 6 then we have 4x compression.

Note: the script example image.jl shows how to read an image file using Images package, how to display an
image using the Plots package, and how to convert images to/from the feature representation of their pixels.

1. Hand in your quantizeImage and deQuantizeImage functions.
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2. Show the image obtained if you encode the colours using 1, 2, 4, and 6 bits per pixel (instead of the
original 24-bits).

3. Save the image with 6 bits per pixel to a .PNG file with the save function. By going from 24-bits
(8-bits for each of the three colour channels) to 6-bits to store the colour of each pixel we would expect
the PNG file to be 25% the size of the original image. Explain why you think the actual PNG file is
larger or smaller than this compression value.

2



1.2 Density-Based Clustering

If you run the function example dbCluster, it will apply the basic density-based clustering algorithm to the
dataset from the previous part. The final output should look like this:

(The right plot is zoomed in to show the non-outlier part of the data.) Even though we know that each
object was generated from one of four clusters (and we have 4 outliers), the algorithm finds 6 clusters and
does not assign some of the original non-outlier objects to any cluster (points not assigned to any cluster
and displayed as small black circles). However, the clusters will change if we change the parameters of the
algorithm. Find and report values for the two parameters (radius and minPts) such that the density-based
clustering method finds:

1. The 4 “true” clusters.

2. 3 clusters (merging the top two, which also seems like a reasonable interpretaition).

3. 2 clusters.

4. 1 cluster (consisting of the non-outlier points).
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2 Matrix Notation and Linear Regression

2.1 Converting to Matrix/Vector/Norm Notation

Using our standard supervised learning notation (X, y, w) express the following functions in terms of vectors,
matrices, and norms (there should be no summations or maximums).

1.
∑n
i=1 |wTxi − yi|+ λ

∑d
j=1 |wj |.

2.
∑n
i=1 vi(w

Txi − yi)2 +
∑d
j=1 λjw

2
j .

3.
(
maxi∈{1,2,...,n} |wTxi − yi|

)2
+ 1

2

∑d
j=1 λj |wj |.

You can use V to denote a diagonal matrix that has the (non-negative) “weights” vi along the diagonal. The
value λ (the “regularization parameter”) is a non-negative scalar. You can Λ as a diagonal matrix that has
the (non-negative) λj values along the diagonal.
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2.2 Minimizing Quadratic Functions as Linear Systems

Write finding a minimizer w of the functions below as a system of linear equations (using vector/matrix
notation and simplifying as much as possible). Note that all the functions below are convex so finding a w
with ∇f(w) = 0 is sufficient to minimize the functions (but show your work in getting to this point).

1. f(w) = 1
2‖w − u‖

2 (projection of u onto real space).

2. f(w) = 1
2

∑n
i=1 vi(w

Txi − yi)2 + λwTu (weighted and tilted least squares).

3. f(w) = 1
2‖Xw − y‖

2 + λ
2 ‖w − w

0‖2 (least squares shrunk towards non-zero w0).

Above we assume that u and w0 are d by 1 vectors, that v is a n by 1 vector. You can use V as a diagonal
matrix containing the vi values along the diagonal.

Hint: Once you convert to vector/matrix notation, you can use the results from class to quickly compute
these quantities term-wise. As a sanity check for your derivation, make sure that your results have the right
dimensions. As a sanity check, make that the dimensions match for all quantities/operations. In order to
make the dimensions match you may need to introduce an identity matrix. For example, XTXw + λw can
be re-written as (XTX + λI)w.
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2.3 Convex Functions

Recall that convex loss functions are typically easier to minimize than non-convex functions, so it’s important
to be able to identify whether a function is convex.

Show that the following functions are convex:

1. f(w) = 1
2w

2 + w−1 with w > 0.

2. f(w) = maxi wi with w ∈ Rn (maximum).

3. f(y) = max(0, 1− t · y) with y ∈ R and t ∈ {−1,+1} (hinge loss).

4. f(w) = ‖Xw − y‖2 + λ‖w‖1 with w ∈ Rd, λ ≥ 0 (L1-regularized least squares).

5. f(w) =
∑n
i=1 log(1 + exp(−yiwTxi)) with w ∈ Rd (logistic regression).

Hint for Part 5: this function may seem non-convex since it contains log(z) and log is concave, but there is a
flaw in that reasoning: for example log(exp(z)) = z is convex despite containing a log. To show convexity, it
may be helpful to show that log(1+exp(z)) is convex, which can be done by computing the second derivative.

It may simplify matters to note that exp(z)
1+exp(z) = 1

1+exp(−z) .
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3 Linear and Nonlinear Regression

If you run the script example nonLinear, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Report the training error.

4. Report the test error (on a dataset not used for training).

5. Draw a figure showing the training data and what the linear model looks like.

Unfortunately, this is an awful model of the data. The average squared training error on the data set is over
28000 (as is the test error), and the figure produced by the demo confirms that the predictions are usually
nowhere near the training data:

3.1 Linear Regresion with Bias Variable

The y-intercept of this data is clearly not zero (it looks like it’s closer to 200), so we should expect to improve
performance by adding a bias variable, so that our model is

yi = wTxi + w0.

instead of
yi = wTxi.

Write a new function, leastSquaresBias, that has the same input/model/predict format as the leastSquares
function, but that adds a bias variable w0. Hand in your new function, the updated plot, and the updated
training/test error.

Hint: recall that adding a bias w0 is equivalent to adding a column of ones to the matrix X. Don’t forget
that you need to do the same transformation in the predict function.
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3.2 Linear Regression with Polynomial Basis

Adding a bias variable improves the prediction substantially, but the model is still problematic because the
target seems to be a non-linear function of the input. Write a new function, leastSquaresBasis(x,y,p), that
takes a data vector x (i.e., assuming we only have one feature) and the polynomial order p. The function
should perform a least squares fit based on a matrix Z where each of its rows contains the values (xi)

j for
j = 0 up to p. E.g., leastSquaresBasis(x,y,3) should form the matrix

Z =


1 x1 (x1)2 (x1)3

1 x2 (x2)2 (x2)3

...
1 xn (xn)2 (xN )3

 ,
and fit a least squares model based on it. Hand in the new function, and report the training and test error
for p = 0 through p = 10. Explain the effect of p on the training error and on the test error.

Note: for this question you should assume that you only have one feature (d = 1). We will discuss polynomial
bases with more input features later in the course.

Hints: To keep the code simple and reduce the chance of having errors, you may want to write a new function
polyBasis that you can use for transforming both the training and testing data.
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3.3 Gaussian RBFs

A popular alternative to using polynomials is to use Gaussian radial basis functions, with one basis function
centered on each training example. For a generic feature x̃i, the transformed feature vector with this choise
is given by

z̃i =

exp

(
− (x̃i − x1)2

2σ2

)
︸ ︷︷ ︸

feature 1

exp

(
− (x̃i − x2)2

2σ2

)
︸ ︷︷ ︸

feature 2

· · · exp

(
− (x̃i − xn)2

2σ2

)
︸ ︷︷ ︸

feature n

 ,
where σ2 is a hyper-parameter. With n training examples, this generates a set of n features based on
a transformation of the distance between the example and each training example. Hand in a function
implementing least squares under this basis, and the plots obtained by σ = 10, σ = 1, and σ = 0.1. How
does the value of σ2 affect the fundamental trade-off?
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4 Robust Regression and Gradient Descent

The script example outliers loads a one-dimensional regression dataset that has a non-trivial number of
‘outlier’ data points. These points do not fit the general trend of the rest of the data, and pull the least
squares model away from the main downward trend that most data points exhibit:
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4.1 Weighted Least Squares in One Dimension

One of the most common variations on least squares is weighted least squares. In this formulation, we have
a weight vi for every training example. To fit the model, we minimize the weighted squared error,

f(w) =
1

2

n∑
i=1

vi(w
Txi − yi)2.

In this formulation, the model focuses on making the error small for examples i where vi is high. Similarly,
if vi is low then the model allows a larger error.

Write a model function, weightedLeastSquares(X,y,v), that implements this model (note that this can be
solved as a linear system). Apply this model to the data containing outliers, setting vi = 1 for the first 400
data points and vi = 0.1 for the last 100 data points (which are the outliers). Hand in your function and
the updated plot.
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4.2 Smooth Approximation to the L1-Norm

Unfortunately, we typically do not know the identities of the outliers. In situations where we suspect that
there are outliers, but we do not know which examples are outliers, it makes sense to use a loss function that
is more robust to outliers. In class, we discussed using the Huber loss,

f(w) =

n∑
i=1

h(wTxi − yi),

where

h(ri) =

{
1
2r

2
i for |ri| ≤ ε

ε(|ri| − 1
2ε) otherwise

.

This is less sensitive to outliers than least squares, although it can no longer be minimized by solving a linear
system. Derive the gradient ∇f of this function with respect to w. You should show your work but you do
not have to express the final result in matrix notation. Hint: you can start by computing the derivative of
h with respect to ri and then get the gradient using the chain rule. You can use sgn(ri) as a function that
returns 1 if ri is positive and −1 if it is negative.
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4.3 Robust Regression

The function example gradient is the same as example outlier, except that it fits the least squares model
using a gradient descent method. You’ll see that it produces the same fit as we obtained using the normal
equations.

The typical input to a gradient method is a function that, given w, returns f(w) and ∇f(w). See funObj
in the leastSquaresGradient function for an example. Note that leastSquaresGradient also has a numerical
check that the gradient code is approximately correct, since implementing gradients is often error-prone.1

An advantage of gradient-based strategies is that they are able to solve problems that do not have closed-
form solutions, such as the formulation from the previous section. The function robustRegression has most
of the implementation of a gradient-based strategy for fitting the Huber regression model. The only part
missing is the function and gradient calculation inside the funObj code. Modify this function to implement
the objective function and gradient based on the Huber loss (from the previous section). Hand in your code,
as well as the plot obtained using this robust regression approach with ε = 1.

1Though sometimes the numerical gradient checker itself can be wrong. For a lot more on numerical differentiation you can
take CPSC 303.
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5 Very-Short Answer Questions

1. Describe a dataset with k clusters where k-means cannot find the true clusters.

2. Why do we need random restarts for k-means but not for density-based clustering?

3. Why is it not a good idea to create an ensemble out of multiple k-means runs with random restarts
and, for each example, output the mode of the label assignments (voting)?

4. For each outlier detection method below, list an example method and a problem with identifying
outliers using this method:

• Model-based outlier detection.

• Graphical-based outlier detection.

• Supervised outlier detection.

5. Why do we minimize 1
2

∑n
i=1(wxi − yi)2 instead of the actual mean squared error 1

n

∑n
i=1(wxi − yi)2

in (1D) least squares?

6. Give an example of a feature matrix X for which the least squares problem cannot be solved as
w = (X>X)−1(X>y).

7. Why do we typically add a column of 1 values to X when we do linear regression? Should we do this
if we’re using decision trees?

8. When should we consider using gradient descent to approximate the solution to the least squares
problem instead of exactly solving it with the closed form solution?

9. If a function is convex, what does that say about stationary points of the function? Does convexity
imply that a stationary points exists?

10. For robust regression based on the L1-norm error, why can’t we just set the gradient to 0 and solve
a linear system? In this setting, why we would want to use a smooth approximation to the absolute
value?

11. What is the problem with having too small of a learning rate in gradient descent?

12. What is the problem with having too large of a learning rate in gradient descent?
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