CPSC 340: Machine Learning and Data Mining

K-Means Clustering

Andreas Lehrmann and Mark Schmidt
University of British Columbia, Fall 2022

https://www.students.cs.ubc.ca/~cs-340
Last Time: Ensemble Methods

• **Ensemble methods** are models that use other models as input.
 – The ensemble can often achieve higher accuracy than individual models.
• One of the simplest ensemble methods is **voting**:
 – Take the mode of the predictions across the classifiers.
 – Higher accuracy than individual classifiers if error are independent.
• **Random forests**:
 – Ensemble method based on deep decision trees, incorporating two forms of randomness.
 – Each tree is trained on a **bootstrap sample** of the data (‘n’ examples sampled with replacement).
 – We use random trees (covered today) to further encourage errors to be independent.

Assignment 2:

• [Code Update] example_Kmeans.jl in a2.zip now loads clusterData.jld instead of clusterData2.jld (l.2)
• [Due Date] Monday, October 3rd instead of Friday, September 30th
Random Forest Ingredient 1: Bootstrap/Bagging

• **Bootstrap sample** of a list of ‘n’ training examples:
 – A new set of size ‘n’ chosen independently with replacement.
 \[
 \text{For } i \text{ in } 1:n \\
 j = \text{rand}(1:n) \quad \# \text{pick a random number from } \{1, 2, \ldots, n\} \\
 X_{\text{bootstrap}}[i, :] = X[j, :] \quad \# \text{use the random sample } j \\
 y_{\text{bootstrap}}[i] = y[j] \quad \# \text{as training example } i.
 \]
 – Gives new dataset of ‘n’ examples, with some duplicated and some missing.
 • For large ‘n’, approximately 63% of original examples are included at least once in bootstrap.

• **Bagging**: ensemble where you apply same classifier to different bootstraps.
 1. Generate several **bootstrap samples of the dataset**.
 2. Fit the **classifier to each bootstrap sample**.
 – To make predictions, take **vote based on the predictions**.
 • Random forests are a **special case of bagging**, using random trees as the classifier.
Random Forest Ingredient 2: Random Trees

• For each split in a random tree model:
 – Randomly sample a small number of possible features (typically \sqrt{d}).
 – Only consider these random features when searching for the optimal rule.
 • So splits will tend to use different features in different trees.

Random tree 1:
- Sample (milk, oranges) $\text{milk} > 0.5$

Random tree 2:
- Sample (egg, lactase) $\text{egg} > 0$
Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.
- So splits will tend to use different features in different trees.

Random tree 1:
- Sample (milk, oranges)
 - Sample (egg, peanut)
 - Sample (lactase, gluten)
 - $\text{egg} > 1$
 - $\text{lactase} > 0$

Random tree 2:
- Sample (egg, lactase)
 - $\text{egg} > 0$
 - Sample (gluten, oranges)
 - Sample (peanut, lactase)
 - $\text{gluten} > 50$
 - $\text{lactase} > 0$
Random Forests: Putting it all Together

• Training:

\[X = [] \quad Y = [] \]

\[X_1 = [] \quad Y_1 = [] \]
\[X_2 = [] \quad Y_2 = [] \]
\[X_3 = [] \quad Y_3 = [] \]
Random Forests: Putting it all Together

• Prediction:
Random Forests: Discussion

- Random forest implementations use **deep random trees**.
 - Often splitting until all leaves have only one label.
 - So the individual trees tend to **overfit**.
 - But bootstrapping and random trees makes errors more independent.
 - So the vote tends to have a **much lower test error** than individual trees.

- **Empirically, random forests are often one of the “best” classifiers.**
 - Fernandez-Delgado et al. [2014]:
 - Compared 179 classifiers on 121 datasets.
 - Random forests were **most likely to be the best classifier.**
 - Grinsztajn et al. [2022]:
 - “Why do tree-based models still outperform deep learning on tabular data?”
Beyond Voting: Model Averaging

• Voting is a special case of “averaging” ensemble methods.
 – Where we somehow “average” the predictions of different models.

• Other averaging methods:
 – For “regression” (where y_i is continuous), take average y_i predictions:
 $\hat{y}_i = \frac{\hat{y}_{i1} + \hat{y}_{i2} + \hat{y}_{i3}}{3}$
 – With probabilistic classifiers, take the average probabilities:
 $p(y_i = 1 \mid x_i) = \frac{1}{3} p_1(y_i = 1 \mid x_i) + \frac{1}{3} p_2(y_i = 1 \mid x_i) + \frac{1}{3} p_3(y_i = 1 \mid x_i)$
 – And there are variations where some classifiers get more weight (see bonus):
 $p(y_i = 1 \mid x_i) = \frac{1}{5} p_1(y_i = 1 \mid x_i) + \frac{3}{5} p_2(y_i = 1 \mid x_i) + \frac{1}{5} p_3(y_i = 1 \mid x_i)$
Types and Goals of Ensemble Methods

• Remember the fundamental trade-off:
 1. E_{train}: How small you can make the training error. vs.
 2. E_{approx}: How well training error approximates the test error.

• Goal of ensemble methods is that meta-classifier:
 – Does much better on one of these than individual classifiers.
 – Does not do too much worse on the other.

• This suggests two types of ensemble methods:
 1. **Averaging**: improves approximation error of classifiers with high E_{approx}.
 • This is the point of “voting”.
 2. **Boosting**: improves training error of classifiers with high E_{train}.
 • Covered later in course.
End of Part 1: Key Concepts

• Fundamental ideas:
 – Training vs. test error (memorization vs. learning).
 – IID assumption (examples come independently from same distribution).
 – Golden rule of ML (test set should not influence training).
 – Fundamental trade-off (between training error vs. approximation error).
 – Validation sets and cross-validation (can approximate test error).
 – Optimization bias (we can overfit the training set and the validation set).
 – Decision theory (we should consider costs of predictions).
 – Parametric vs. non-parametric (whether model size depends on ‘n’).
 – No free lunch theorem (there is no universally “best” model).
End of Part 1: Key Concepts

• We saw 3 ways of “learning”:
 – Searching for rules.
 • Decision trees (greedy recursive splitting using decision stumps).
 – Counting frequencies.
 • Naïve Bayes (probabilistic classifier based on conditional independence).
 – Measuring distances.
 • K-nearest neighbours (non-parametric classifier with universal consistency).

• We saw 2 generic ways of improving performance:
 – Encouraging invariances with data augmentation.
 – Ensemble methods (combine predictions of several models).
 • Random forests (averaging plus randomization to reduce overfitting).
Next Topic: Unsupervised Learning (Part 2)
Application: Classifying Cancer Types

• “I collected gene expression data for 1000 different types of cancer cells, can you tell me the different classes of cancer?”

 \[X = \]

• We are not given the class labels \(y \), but want meaningful labels.
• An example of unsupervised learning.
Unsupervised Learning

• Supervised learning:
 – We have features x_i and class labels y_i.
 – Write a program that produces y_i from x_i.

• Unsupervised learning:
 – We only have x_i values, but no explicit target labels.
 – You want to do “something” with them.

• Some unsupervised learning tasks:
 – Outlier detection: Is this a ‘normal’ x_i?
 – Similarity search: Which examples look like this x_i?
 – Association rules: Which x_j occur together?
 – Latent-factors: What ‘parts’ are the x_i made from?
 – Data visualization: What does the high-dimensional X look like?
 – Ranking: Which are the most important x_i?
 – Clustering: What types of x_i are there?
Clustering Example

- In **clustering** we want to **assign examples to “groups”**:

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix}
\]
Clustering Example

- In clustering we want to assign examples to “groups”:

Input: data matrix ‘X’.

$X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.6 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots \\
\end{bmatrix}$

Output: clusters \hat{y}.

$\hat{y} = \begin{bmatrix}
2 \\
2 \\
3 \\
3 \\
1 \\
\vdots \\
\end{bmatrix}$
Clustering

• Clustering:
 – Input: set of examples described by features \(x_i \).
 – Output: an assignment of examples to ‘groups’.

• Unlike classification, we are not given the ‘groups’.
 – Algorithm must discover groups.

• Example of groups we might discover in e-mail spam:
 – ‘Lucky winner’ group.
 – ‘Weight loss’ group.
 – ‘I need your help’ group.
 – ‘Mail-order bride’ group.
Data Clustering

• General goal of clustering algorithms:
 – Examples in the same group should be ‘similar’.
 – Examples in different groups should be ‘different’.

• But the ‘best’ clustering is hard to define:
 – We don’t have a test error.
 – Generally, there is no ‘best’ method in unsupervised learning.
 • So there are lots of methods: we’ll focus on important/representative ones.

• Why cluster?
 – You could want to know what the groups are.
 – You could want to find the group for a new example \(x_i \).
 – You could want to find examples related to a new example \(x_i \).
 – You could want a ‘prototype’ example for each group.
 • For example, what does a typical breakfast look like?
Clustering of Epstein-Barr Virus

http://jvi.asm.org/content/86/20/11096.abstract
Other Clustering Applications

• NASA: what types of stars are there?
• Biology: are there sub-species?
• Documents: what kinds of documents are on my HD?
• Commercial: what kinds of customers do I have?

http://www.biology-online.org/articles/canine_genomics_genetics_running/figures.html
K-Means

• Most popular clustering method is k-means.

• Input:
 – The number of clusters ‘k’ (hyper-parameter).
 – Initial guess of the center (the “mean”) of each cluster.

• K-Means Algorithm for Finding Means:
 – Assign each x_i to its closest mean.
 – Update the means based on the assignment.
 – Repeat until convergence.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Start with ‘k’ initial ‘means’ (usually, random data points)
K-Means Example

Assign each example to the closest mean.

Input: data matrix ‘X’.

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots \\
\end{bmatrix} \]
K-Means Example

Input: data matrix ‘X’.

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix} \]

Update the mean of each group.
K-Means Example

Input: data matrix ‘\(X\).

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix}
\]

Assign each example to the closest mean.
Update the mean of each group.

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix}
\]
K-Means Example

Input: data matrix 'X'.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.6 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Assign each example to the closest mean.
Input: data matrix ‘X’.

$$X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}$$
K-Means Example

Assign each example to the closest mean.

Input: data matrix 'X'.

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.6 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots \\
\end{bmatrix} \]
K-Means Example

Input: data matrix ‘X’.

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -8.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix} \]

Stop if no examples change groups.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & 9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Output:
- Clusters ‘\(\hat{y}\)’.
- Means ‘\(W\)’.

\[
\hat{y} = \begin{bmatrix}
2 \\
2 \\
3 \\
3 \\
1 \\
\vdots
\end{bmatrix}
\]

\[
W = \begin{bmatrix}
-1.2 & 17.8 \\
-10.2 & -8.0 \\
11.0 & 19.5 \\
11.8 & -3.6
\end{bmatrix}
\]

Interactive demo:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering
K-Means Issues

• Guaranteed to converge when using Euclidean distance.

• Given a new test example:
 – Assign it to the nearest mean to cluster it.

• Assumes you know number of clusters ‘k’.
 – Lots of heuristics to pick ‘k’, none satisfying:
 • https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

• Each example is assigned to one (and only one) cluster:
 – No possibility for overlapping clusters or leaving examples unassigned.

• It may converge to sub-optimal solution...
K-Means Clustering with Different Initialization

- Classic approach to dealing with sensitivity to initialization: random restarts.
 - Try several different random starting points, choose the “best”.
- See bonus slides for a more clever approach called k-means++.
Don’t confuse KNN classification and k-means clustering:

<table>
<thead>
<tr>
<th>Property</th>
<th>KNN Classification</th>
<th>K-Means Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Supervised learning (given y_i)</td>
<td>Unsupervised learning (no given y_i).</td>
</tr>
<tr>
<td>Meaning of ‘k’</td>
<td>Number of neighbours to consider (not number of classes).</td>
<td>Number of clusters (always consider single nearest mean).</td>
</tr>
<tr>
<td>Initialization</td>
<td>No training phase.</td>
<td>Training that is sensitive to initialization.</td>
</tr>
<tr>
<td>Model complexity</td>
<td>Model is complicated for small ‘k’, simple for large ‘k’.</td>
<td>Model is simple for small ‘k’, complicated for large ‘k’.</td>
</tr>
<tr>
<td>Parametric?</td>
<td>Non-parametric: - Stores data ‘X’</td>
<td>Parametric (for ‘k’ not depending on ‘n’) - Stores means ‘W’</td>
</tr>
</tbody>
</table>
What is K-Means Doing?

• We can interpret K-means steps as minimizing an objective:
 – Total sum of squared distances from each example x_i to its center $w_{\hat{y}_i}$:
 $$f(w_1, w_2, \ldots, w_K, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{j=1}^{n} \|w_{\hat{y}_i} - x_i\|^2$$

• The k-means steps:
 – Minimize ‘f’ in terms of the \hat{y}_i (update cluster assignments).
 – Minimize ‘f’ in terms of the w_c (update means).

• Termination of the algorithm follows because:
 – Each step does not increase the objective.
 – There are a finite number of assignments to k clusters.
What is K-Means Doing?

• We can interpret K-means steps as minimizing an objective:
 – Total sum of squared distances from each example \(x_i \) to its center \(w_{\hat{y}_i} \):
 \[
 f(w_1, w_2, \ldots, w_K, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} \| w_{\hat{y}_i} - x_i \|^2
 \]

• The k-means steps:
 – Minimize ‘f’ in terms of the \(\hat{y}_i \) (update cluster assignments).
 – Minimize ‘f’ in terms of the \(w_c \) (update means).

• Use ‘f’ to choose between initializations (fixed ‘k’).

• Need to change \(w_c \) update under other distances:
 – L1-norm: set \(w_c \) to median (“k-medians”, see bonus).
Cost of K-means

- Bottleneck is calculating distance from each x_i to each mean w_c:

$$|| w_c - x_i ||^2 = \sum_{j=1}^{d} (w_{cj} - x_{ij})^2$$

$w_2 = [13, 17]$
Cost of K-means

• Bottleneck is calculating distance from each \(x_i \) to each mean \(w_c \):

\[
\| w_c - x_i \| ^2 = \sum_{j=1}^{d} (w_{cj} - x_{ij})^2
\]

– Each time we do this costs O(d).

• We need to compute distance from ‘n’ examples to ‘k’ clusters.

• Total cost of assigning examples to clusters is O(ndk).
 – Fast if k is not too large.

• Updating means is cheaper: O(nd).

 For each cluster ‘c’, compute

 \[
 w_c = \frac{1}{n_c} \sum_{i \in C} x_i
 \]
Vector Quantization

• K-means originally comes from signal processing.
• Designed for vector quantization:
 – Replace examples with the mean of their cluster (“prototype”).

• Example:
 – Facebook places: 1 location summarizes many.
 – What sizes of clothing should I make?
Vector Quantization for Basketball Players

• Clustering NBA basketball players based on shot type/percentage:

• The “prototypes” (means) give offensive styles (like “catch and shoot”).

Vector Quantization Example

\[X = \begin{bmatrix} -9.0 & -7.3 \\ -16.9 & -9.0 \\ 13.7 & 19.3 \\ 13.8 & 20.4 \\ 12.8 & 20.6 \\ \vdots & \vdots \end{bmatrix}_{n \times d} \]

Run k-means

\[W = \begin{bmatrix} -12 & 17.8 \\ -10.2 & -8.0 \\ 11.0 & 19.5 \\ 11.8 & -3.6 \end{bmatrix}_{k \times d} \]

\[\hat{Y} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 3 \\ \vdots \end{bmatrix}_{n \times 1} \]

Approximate objects with means.

\[X = \begin{bmatrix} -10.2 & -8.0 \\ -10.2 & -8.0 \\ 11.0 & 19.5 \\ 11.0 & 19.5 \\ 12.2 & 17.9 \\ \vdots \end{bmatrix} \]

Assume each example can be approximated by prototype mean values are the prototypes.
(Bad) Vector Quantization in Practice

• Political parties can be thought as a form of vector quantization:

 – Hope is that parties represent what a cluster of voters want.
 • With larger ‘k’ more voters have a party that closely reflects them.
 • With smaller ‘k’, parties are less accurate reflections of people’s views.
Summary

• **Bagging:**
 • Ensemble method where we apply same classifier to bootstrap samples.

• **Random forests:** bagging of deep randomized decision trees.
 • One of the best “out of the box” classifiers.

• **Type of ensemble methods:**
 – “Boosting” reduces E_{train} and “averaging” reduces E_{approx}.

• **Unsupervised learning:** fitting data without explicit labels.

• **Clustering:** finding ‘groups’ of related examples.
 • **K-means:** simple iterative clustering strategy.
 – Fast but sensitive to initialization.

• **Vector quantization:**
 – Compressing examples by replacing them with the mean of their cluster.

• **Next time:**
 – John Snow and non-parametric clustering.
Extremely-Randomized Trees

• Extremely-randomized trees add an extra level of randomization:
 1. Each tree is fit to a bootstrap sample.
 2. Each split only considers a random subset of the features.
 3. Each split only considers a random subset of the possible thresholds.

• So instead of considering up to ‘n’ thresholds, only consider 10 or something small.
 – Leads to different partitions so potentially more independence.
Bayesian Model Averaging

• Recall the key observation regarding ensemble methods:
 – If models overfit in “different” ways, averaging gives better performance.

• But should all models get equal weight?
 – E.g., decision trees of different depths, when lower depths have low training error.
 – E.g., a random forest where one tree does very well (on validation error) and others do horribly.
 – In science, research may be fraudulent or not based on evidence.

• In these cases, naïve averaging may do worse.
Bayesian Model Averaging

• Suppose we have a set of ‘m’ probabilistic binary classifiers w_j.
• If each one gets equal weight, then we predict using:

$$p(y_i | x_i) = \frac{1}{m} p(y_i | w_1, x_i) + \frac{1}{m} p(y_i | w_2, x_i) + \cdots + \frac{1}{m} p(y_i | w_m, x_i)$$

• Bayesian model averaging treats model ‘w_j’ as a random variable:

$$p(y_i | x_i) = \sum_{j=1}^{m} p(y_i | w_j, x_i) = \sum_{j=1}^{m} p(y_i | w_j, x_i) p(w_j | x_i) = \sum_{j=1}^{m} p(y_i | w_j, x_i) p(w_j)$$

• So we should weight by probability that w_j is the correct model:
 – Equal weights assume all models are equally probable.
Bayesian Model Averaging

• Can get better weights by conditioning on training set:
 \[p(w_j | X, y) \propto p(y | w_j, X) p(w_j | X) = p(y | w_j, X) p(w_j) \]

• The ‘likelihood’ \(p(y | w_j, X) \) makes sense:
 – We should give more weight to models that predict ‘y’ well.
 – Note that hidden denominator penalizes complex models.

• The ‘prior’ \(p(w_j) \) is our ‘belief’ that \(w_j \) is the correct model.

• This is how rules of probability say we should weigh models.
 – The ‘correct’ way to predict given what we know.
 – But it makes some people unhappy because it is subjective.
What is K-Means Doing?

• How are k-means step decreasing this objective?

\[f(w_1, w_2, \ldots, w_k, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} ||w_{\hat{y}_i} - x_i||^2 \]

• If we just write as function of a particular \(\hat{y}_i\), we get:

\[f(\hat{y}_i) = ||w_{\hat{y}_i} - x_i||^2 + \text{(constant)} \]

 – The “constant” includes all other terms, and doesn’t affect location of min.
 – We can minimize in terms of \(\hat{y}_i\) by setting it to the ‘c’ with \(w_c\) closest to \(x_i\).
What is K-Means Doing?

• How are k-means step decreasing this objective?

\[f(w_1, w_2, \ldots, w_k, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} ||w_{\hat{y}_i} - x_i||^2 \]

• If we just write as function of a particular \(w_{c_j} \) we get:

\[f(w_{c_j}) = \sum_{i \in C} \sum_{j' \in C} (w_{c_j} - x_{ij}')^2 + \text{(constant)} \]

\(\rightarrow \text{set of examples with } \hat{y}_i = 1 \)

• Derivative is given by:

\[f'(w_{c_j}) = 2 \sum_{i \in C} (w_{c_j} - x_{ij}) \]

• Setting equal to 0 and solving for \(w_{c_j} \) gives:

\[\sum_{i \in C} w_{c_j} = \sum_{i \in C} x_{ij} \quad \text{or} \quad w_{c_j} \cdot n = \sum_{i \in C} x_{ij} \]

\[\text{or} \quad w_{c_j} = \frac{1}{n} \sum_{i \in C} x_{ij} \]
K-Medians Clustering

• With other distances k-means may not converge.
 – But we can make it converge by changing the updates so that they are minimizing an objective function.
• E.g., we can use the L1-norm objective: $\sum_{i=1}^{n} \|w_i \hat{y}_i - y_i\|_1$

• Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:
 – Assign points to clusters by finding “mean” with smallest L1-norm distance.
 – Update ‘means’ as median value (dimension-wise) of each cluster.
 • This minimizes the L1-norm distance to all the points in the cluster.
• This approach is more robust to outliers.
What is the “L1-norm and median” connection?

- Point that minimizes the sum of squared L2-norms to all points:
 \[f(w) = \sum_{i=1}^{n} \| w - x_i \|^2 \]
 - Is given by the mean (just take derivative and set to 0):
 \[w = \frac{1}{n} \sum_{i=1}^{n} x_i \]

- Point that minimizes the sum of L1-norms to all all points:
 \[f(w) = \sum_{i=1}^{n} \| w - x_i \|_1 \]
 - Is given by the median (derivative of absolute value is +1 if positive and -1 if negative, so any point with half of points larger and half of points smaller is a solution).
K-Medoids Clustering

• A disadvantage of k-means in some applications:
 – The means might not be valid data points.
 – May be important for vector quantization.
• E.g., consider bag of words features like [0,0,1,1,0].
 – We have words 3 and 4 in the document.
• A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].
 – What does it mean to have 0.3 of word 2 in a document?
• Alternative to k-means is k-medoids:
 – Same algorithm as k-means, except the means must be data points.
 – Update the means by finding example in cluster minimizing squared L2-norm distance to all points in the cluster.
K-Means Initialization

• K-means is fast but sensitive to initialization.

• Classic approach to initialization: random restarts.
 – Run to convergence using different random initializations.
 – Choose the one that minimizes average squared distance of data to means.

• Newer approach: k-means++
 – Random initialization that prefers means that are far apart.
 – Yields provable bounds on expected approximation ratio.
K-Means++

• Steps of k-means++:
 1. Select initial mean \(w_1 \) as a random \(x_i \).
 2. Compute distance \(d_{ic} \) of each example \(x_i \) to each mean \(w_c \).
 \[
 d_{ic} = \sqrt{\sum_{j=1}^{d} (x_{ij} - w_{cj})^2} = \| x_i - w_c \|_2
 \]
 3. For each example ‘i’ set \(d_i \) to the distance to the closest mean.
 \[
 d_i = \min_c \{ d_{ic} \}
 \]
 4. Choose next mean by sampling an example ‘i’ proportional to \((d_i)^2 \).
 \[
 \rho_i \propto d_i^2 \implies \rho_i = \frac{d_i^2}{\sum_{j=1}^{n} d_j^2}
 \]

 5. Keep returning to step 2 until we have k-means.

• Expected approximation ratio is \(O(\log(k)) \).
K-Means++
K-Means++

First mean is a random example.
K-Means++

Weight examples by distance to mean squared.
K-Means++

Sample mean proportional to distances squared.
K-Means++

Weight examples by squared distance to nearest mean.
K-Means++

Sample mean proportional to minimum distances squared.
K-Means++

Weight examples by squared distance to mean.
K-Means++

Sample mean proportional to distances squared.
(Now hit chosen target k=4.)
K-Means++

Start k-means: assign examples to the closest mean.
K-Means++

Update the mean of each cluster.
K-Means++

In this case: just 2 iterations!

Update the mean of each cluster.
Discussion of K-Means++

- Recall the objective function k-means tries to minimize:
 \[
 f(W, c) = \sum_{i=1}^{n} \sum_{c(i)} \| x_i - w_{c(i)} \|^2
 \]

- The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:
 \[
 \mathbb{E} \left[\frac{f(W, c)}{f(W^*, c^*)} \right] = O\left(\log(k) \right)
 \]

- Get good clustering with high probability by re-running.
- However, there is no guarantee that c^* is a good clustering.
Uniform Sampling

• Standard approach to generating a random number from \{1,2,...,n\}:
 1. Generate a uniform random number ‘u’ in the interval [0,1].
 2. Return the largest index ‘i’ such that u ≤ i/n.

• Conceptually, this divides interval [0,1] into ‘n’ equal-size pieces:

• This assumes p_i = 1/n for all ‘i’.

↑ probability of picking number ‘i’.
Non-Uniform Sampling

• Standard approach to generating a random number for general p_i.
 1. Generate a uniform random number ‘u’ in the interval $[0,1]$.
 2. Return the largest index ‘i’ such that $u \leq \sum_{j=1}^{i} p_i$

• Conceptually, this divides interval $[0,1]$ into non-equal-size pieces:

• Can sample from a generic discrete probability distribution in $O(n)$.
• If you need to generate ‘m’ samples:
 – Cost is $O(n + m \log (n))$ with binary search and storing cumulative sums.
How many iterations does k-means take?

- Each update of the \hat{y}_i or w_c does not increase the objective f.
- And there are k^n possible assignments of the \hat{y}_i to ‘k’ clusters.
- So within k^n iterations you cannot improve the objective by changing \hat{y}_i, and the algorithm stops.

- Tighter-but-more-complicated “smoothed” analysis:
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241 \ 13 \ 50]\) = □.
 – Can apply k-means to find set of prototype colours.
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, $[241\ 13\ 50]$ = ।.
 – Can apply k-means to find set of prototype colours.
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241\ 13\ 50]\) = 🟠.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

Run k-means with \(2^6\) clusters:

K-means predictions: (3-bits/pixel)

Replace cluster with mean:
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241 \ 13 \ 50]\) = ☐.
 – Can apply k-means to find set of prototype colours.

Original:
(24-bits/pixel)

Run k-means with
2^6 clusters:

Average red, green,
and blue values in
cluster 1.

K-means predictions:
(2-bits/pixel)

Replace cluster with mean:

\(\hat{\mathbf{X}} = \begin{bmatrix} 3 \end{bmatrix} \quad \# \text{pixels} \)
\(\mathbf{W} = \begin{bmatrix} 3 \end{bmatrix} \quad 2^2 = 4 \)
\(\mathbf{Y} = \begin{bmatrix} 1 \ 2 \ 3 \ 2 \ 2 \ 2 \end{bmatrix} \quad \text{cluster for each pixel} \)

1 2-bit number
which refers to
one of \(2^2\) colours.
Vector Quantization: Image Colors

• Usual RGB representation of a pixel's color: three 8-bit numbers.
 – For example, \([241, 13, 50]\) = 🟢.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)
K-means predictions: (1-bit/pixel)

Run k-means with 2^6 clusters:

Replace cluster with mean: