CPSC 340: Machine Learning and Data Mining

Ensemble Methods Fall 2022

Last Time: K-Nearest Neighbours (KNN)

- K-nearest neighbours algorithm for classifying \tilde{x}_i : (with hyper-parameter 'k').
 - Find 'k' values of x_i that are most similar to \tilde{x}_i .
 - Use mode of corresponding y_i.
- Lazy learning:
 - To "train" you just store X and y.
- High prediction and storage cost.
- Non-parametric:
 - Size of model grows with 'n' (number of examples)
- Universal consistency:
 - Optimal test error with infinite data for appropriately-growing 'k'.

- "Curse of dimensionality": volume grows exponentially with dimension.
 - Consider the interval from 0 to 1 (d=1).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon)$ points.
 - With 4 well-placed points you can guarantee that you have a "neighbor" within 0.1.

- "Curse of dimensionality": volume grows exponentially with dimension.
 - Consider the interval from 0 to 1 (d=1).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon)$ points.
 - With 4 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit square (d=2).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^2)$ points.
 - With 49 well-placed points you can guarantee that you have a "neighbor" within 0.1.

- "Curse of dimensionality": volume grows exponentially with dimension.
 - Consider the interval from 0 to 1 (d=1).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon)$ points.
 - With 4 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit square (d=2).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^2)$ points.
 - With 49 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit cube (d=3).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^3)$ points.
 - Wtih 512 well-placed points you can guarantee that you have a "neighbor" within 0.1.

- "Curse of dimensionality": volume grows exponentially with dimension.
 - Consider the interval from 0 to 1 (d=1).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon)$ points.
 - With 4 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit square (d=2).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^2)$ points.
 - With 49 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit cube (d=3).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^3)$ points.
 - With 512 well-placed points you can guarantee that you have a "neighbor" within 0.1.
 - Consider the unit hyper-cube (d=4).
 - If want every location on to have a "neighbor" with distance ϵ , need at least $O(1/\epsilon^4)$ points.
 - With 6561 well-placed points you can guarantee that you have a "neighbor" within 0.1.

- Need exponentially more points to "fill" a high-dimensional space.
 - Need at least $O(1/\epsilon^d)$ points to guarantee "close" points exist everywhere.
 - In worst case, "nearest" neighbours in high-dimensions may be really far.

- Need exponentially more points to "fill" a high-dimensional space.
 - Need at least $O(1/\epsilon^d)$ points to guarantee "close" points exist everywhere.
 - In worst case, "nearest" neighbours in high-dimensions may be really far.
- KNN is also problematic if features have very different scales.
 - Comparing a feature measured in grams vs one measured in kilograms.
 - Measurement in grams can have much more influence (values 1000 times larger).
- Nevertheless, KNN is really easy to use and often hard to beat!
 - Classes are often far apart, so neighbours do not need to be "close".

Defining "Distance" with "Norms"

- A common way to define the "distance" between examples:
 - Take the "norm" of the difference between feature vectors.

$$||x_i - \tilde{x}_i||_2 = \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{x}_{ij}^n)^2}$$
train
$$||x_i - \tilde{x}_i||_2 = \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{x}_{ij}^n)^2}$$
example
$$||x_i - \tilde{x}_i||_2 = \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{x}_{ij}^n)^2}$$
example
$$||x_i - \tilde{x}_i||_2 = \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{x}_{ij}^n)^2}$$

- Norms are a way to measure the "size" of a vector.
 - The most common norm is the "L2-norm" (or "Euclidean norm"):

• The L2-norm is simply the length of the vector.

L2-norm, L1-norm, and L∞-Norms.

- The three most common norms: L2-norm, L1-norm, and L∞-norm.
 - Definitions of these norms with two-dimensions:

La or "Euclidean" norm.

La or "Manhatlan" norm:

$$||r||_2 = \sqrt{r_1^2 + r_2^2}$$

La or "Manhatlan" norm:

 $||r||_2 = |r_1| + |r_2|$
 $||r||_3 = |r_1| + |r_2|$
 $||r||_4 = |r||_4 + |r|$

Definitions of these norms in d-dimensions.

$$L_{2}: ||r||_{2} = \int_{j=1}^{d} r_{j}^{2} \qquad L_{1}: ||r||_{1} = \frac{1}{2} |r_{j}| \qquad L_{\infty}: \max_{j=1}^{d} \left\{ |r_{j}| \right\}$$

Norm and Norm^p Notation (MEMORIZE)

- Notation:

 - We use superscripts for raising norms to powers: We use $||r||^2$ for $(||r||)^2$
 - You should understand why all of the following quantities are equal:

$$||r||^2 = ||r||_2^2 = (||r||_2)^2 = (||\vec{z}_1|_2^2)^2 = |\vec{z}_1|_2^2 = ||\vec{z}_1|_2^2 = ||\vec{z$$

Norms as Measures of Distance

Can define a "distance" between vectors by taking norm of difference:

$$||r - s||_2 = \sqrt{(r_1 - s_1)^2 + (r_2 - s_2)^2}$$

 $= ||r - s||$ "Enclidean distance" $||r - s||_2 = ||r_1 - s_1|| + ||r_2 - s_2||$ "Number of blocks you need to walk to get from r to s."

 $||r - s||_2 = max \{ |r_1 - s_1|_2 | |r_2 - s_2| \}$ "Most number of blocks in any licection was had

"Most number of blocks in any direction you would

- Place different "weights" on large differences: have to walk
 - L₁: differences are equally notable.
 - $-L_2$: bigger differences are more important (because of squaring).
 - $-L_{\infty}$: only biggest difference is important.

KNN Distance Functions

- Most common KNN distance functions are of form: $norm(x_i x_i)$.
- ost common KNN distance runction.

 L1-, L2-, and L∞-norm.

 Weighted norms (if some features are more important):

 V; | X; |

 V; | X; |

- But we can consider other distance/similarity functions:
 - Jaccard similarity (if x_i are sets).
 - Edit distance (if x_i are strings).
 - Metric learning (learn the best distance function).

Decision Trees vs. Naïve Bayes vs. KNN

$$(milk = 0.6, egg = 2, lactase = 0, ?)$$
 is close to $(milk = 0.7, egg = 2, lactase = 0, sick)$ so predict sick.

Application: Optical Character Recognition

How can we convert handwritten zip/postal codes to strings?

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

```
(6,6)(3,3)(7,7)(5,5)(8,8)(0,0)
(3,1)(0,0)(3,3)(4,6)(2,2)(8,8)(3,3)(3,3)
    (4,4)(7,7)(2,2)(0,0)(6.
(9,9)(8,8)(9,9)(2,2)(2,2)
          ([6,6)([4],4)([3],3)([1],1
    (3,3)(9,9)(0,0)(5,5)(9,9)
         (1,1)(3,3)(4,4)(4,4)
                     (|5|, 5)
```

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

– Turning this into a supervised learning problem (with 28 by 28 images):

	(1,1)	(2,1)	(3,1)	•••	(28,1)	(1,2)	(2,2)	•••	(14,14)		(28,28)			char	r
X= (0	0	0		0	0	0		1		0)	y =	3	
	0	0	0		0	0	0		1		0			6	
	0	0	0		0	0	0		0		0			0	
	-0	0	0		0	0	0		1		0			9	
	Each feature is graysrule intensity of one of the 784 pixels														

Human vs. Machine Perception

There is huge difference between what we see and what KNN sees:

What we see:

3

What the computer "sees":

Actually, it's worse:

What the Computer Sees

Are these two images "similar"?

What the Computer Sees

Are these two images "similar"?

Difference:

KNN does not know that labels should be translation invariant.

Encouraging Invariance with Data Augmentation

- May want classifier to be invariant to certain feature transforms.
 - Images: translations, small rotations, changes in size, mild warping,...
 - Recognize same signal in different-looking images.
- The hard/slow way is to modify your distance function:
 - Find neighbours that require the "smallest" transformation of image.
- The easy/fast way is to use data augmentation.
 - Just add transformed versions of your training examples to the training set.
 - Make translated/rotate/resized/warped versions of training images, and add them to train set.

- Crucial part of many successful vision systems.
- Also really important for sound (translate, change volume, and so on).

Encouraging Invariance with Data Augmentation

Augmented "3"

Augmented "9"

Application: Body-Part Recognition

- Microsoft Kinect:
 - Real-time recognition of 31 body parts from laser depth data.

How could we write a program to do this?

Some Ingredients of Kinect

- 1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
- 2. Build a simulator that fills space of images by making even more images.

- 3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
- 4. Treat classifying body part of a pixel as a supervised learning problem.
- 5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

ALL steps are important, but we'll focus on the learning step.

- Do we have any classifiers that are accurate and run in real time?
 - Decision trees and naïve Bayes are fast, but often not very accurate.
 - KNN is often accurate, but not very fast.

Deployed system uses an ensemble method called random forests.

Ensemble Methods

- Ensemble methods are classifiers that have classifiers as input.
 - Also called "meta-learning".
- They have the best names:
 - Averaging.
 - Blending.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
 - Voting.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Method Example: Voting

- Ensemble methods use predictions of a set of models.
 - For example, we could have:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- One of the simplest ensemble methods is voting:
 - Take the mode of the predictions across the classifiers.

Digression: Stacking

- Another variation on voting is stacking
 - Fit another classifier that uses the predictions as features.

- Can tune second classifier with validation data.
 - Sometimes called "blending".
- Stacking often performs better than individual models.
 - Typically used by Kaggle winners.
 - E.g., Netflix \$1M user-rating competition winner was stacked classifier.

Why can Voting Work?

- Consider 3 binary classifiers, each independently correct with probability 0.80:
- With voting, ensemble prediction is correct if we have "at least 2 right":
 - P(all 3 right) = $0.8^3 = 0.512$.
 - P(2 rights, 1 wrong) = $3*0.8^2(1-0.8) = 0.384$.
 - P(1 right, 2 wrongs) = $3*(1-0.8)^20.8 = 0.096$.
 - P(all 3 wrong) = $(1-0.8)^3 = 0.008$.
 - So ensemble is right with probability 0.896 (which is 0.512+0.384).
 - You can derive the precise probability with <u>binomial probabilities</u>.

Notes:

- For voting to work, errors of classifiers need to be at least somewhat independent.
- You also want the probability of being right to be > 0.5, otherwise it can do much worse.
 - But accuracy does not have to the same across classifiers ("weak" classifiers can help "strong" ones).

Why can Voting Work?

- Consider a set of classifiers that make these predictions:
 - Classifier 1: "spam".
 - Classifier 2: "spam".
 - Classifier 3: "spam".
 - Classifier 4: "not spam".
 - Classifier 5: "spam".
 - Classifier 6: "not spam".
 - Classifier 7: "spam".
 - Classifier 8: "spam".
 - Classifier 9: "spam".
 - Classifier 10: "spam".
- If these independently get 80% accuracy, mode will be close to 100%.
 - In practice errors will not be completely independent.
 - For a variety of reasons (incorrect labels, classifiers use same training set, and so on).

Why can Voting Work?

Why can voting lead to better results?

- Consider classifiers that overfit (like deep decision trees):
 - If they all overfit in exactly the same way, voting does nothing.

- But if they make independent errors:
 - Probability that "vote" is wrong can be lower than for each classifier.
 - Less attention to specific overfitting of each classifier.

Random Forests

- Random forests take vote from a set of deep decision trees.
 - Tend to be one of the best "out of the box" classifiers.
 - Often close to the best performance of any method on the first run.
 - And predictions are very fast.
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree.
- Two key ingredients in random forests:
 - Bootstrapping: a way to generate different "versions" of your dataset.
 - Random trees: a way to grow decision trees incorporating randomness.

Overview of Random Forests

Random forests train on different "bootstrap samples" of your dataset:

- And models vote to make final decision.
 - The hope is that the "boostrap samples" make errors more independent.

Bootstrap Sampling

- Start with a standard deck of 52 cards:
 - 1. Sample a random card: (put it back and re-shuffle)
 - 2. Sample a random card: (put it back and re-shuffle)
 - 3. Sample a random card: (put it back and re-shuffle)
 - **—** ...
 - 52. Sample a random card: (which may be a repeat)
- Makes a new deck of the 52 samples:

Bootstrap Sampling

 New 52-card deck is called a "bootstrap sample":

- Some cards will be missing, and some cards will be duplicated.
 - So calculations on the bootstrap sample will give different results than original data.
- However, the bootstrap sample roughly maintains trends:
 - Roughly 25% of the cards will be diamonds.
 - Roughly 3/13 of the cards will be "face" cards.
 - There will be roughly four "10" cards.
- Bootstrap sampling is a general technique that is used in many settings:
 - Sample 'n' examples with replacement from your set of size 'n'.
 - Repeat this several times, and compute some statistic on each bootstrap sample.
 - Gives you an idea of how the statistic varies as you vary the data.

Summary

- Curse of dimensionality:
 - Number of points to "fill" a space grows exponentially with dimension.
- Data augmentation:
 - Add transformed data to be invariant to transformations that preserve label.
- Ensemble methods take multiplier classifiers as inputs.
- Voting ensemble method:
 - Improves predictions of multiple classifiers if errors are independent.
- Bootstrap sampling:
 - Generating a new dataset, by sampling 'n' examples with replacement.
- Next time:
 - We start unsupervised learning.

3 Defining Properties of Norms

- A "norm" is any function satisfying the following 3 properties:
 - 1. Only '0' has a 'length' of zero.
 - 2. Multiplying 'r' by constant ' α ' multiplies length by $|\alpha|$
 - "If be will twice as long if you multiply by 2": $||\alpha r|| = |\alpha| \cdot ||r||$.
 - Implication is that norms cannot be negative.
 - 3. Length of 'r+s' is not more than length of 'r' plus length of 's':
 - "You can't get there faster by a detour".
 - "Triangle inequality": ||r + s|| ≤ ||r|| + ||s||.

Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

$$||x||_2 = \sqrt{\sum_{j=1}^d w_j^2}.$$

 $||x||_1 = \sum_{j=1}^d |w_j|.$

If the subscript is omitted, we mean the 2-norm:

$$||x|| = ||x||_2$$
.

If we want to talk about the squared value of the norm we use a superscript of "2":

$$\|x\|_2^2 = \sum_{j=1}^d w_j^2$$
.
 $\|x\|_1^2 = \left(\sum_{j=1}^d |w_j|\right)^2$.

If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

$$||x||^2 = \sum_{j=1}^d w_j^2$$

Lp-norms

• The L_1 -, L_2 -, and L_{∞} -norms are special cases of Lp-norms:

$$\left\|x
ight\|_{p}=\left(\left|x_{1}
ight|^{p}+\left|x_{2}
ight|^{p}+\cdots+\left|x_{n}
ight|^{p}
ight)^{1/p}$$

- This gives a norm for any (real-valued) p ≥ 1.
 - The L_{∞} -norm is the limit as 'p' goes to ∞.
- For p < 1, not a norm because triangle inequality not satisfied.

Why does Bootstrapping select approximately 63%?

• Probability of an arbitrary x_i being selected in a bootstrap sample:

p(selected at least once in 'n' trials)

$$= 1 - p(\text{not selected in any of 'n' trials})$$

$$= 1 - (p(\text{not selected in one trial}))^n \qquad (trials are independent)$$

$$= 1 - (1 - 1/n)^n \qquad (prob = \frac{n-1}{n} \text{ for choosing any of the } n-1 \text{ other sample})$$

$$\approx 1 - 1/e \qquad (1-1/n)^n \rightarrow e^{-1} \text{ as } n \rightarrow \infty)$$

Why Averaging Works

- Consider 'k' independent classifiers, whose errors have a variance of σ^2 .
- If the errors are IID, the variance of the vote is σ^2/k .
 - So the more classifiers that vote, the more you decrease error variance.
 (And the more the training error approximates the test error.)
- Generalization to case where classifiers are not independent is:

$$co^{2} + (1-c)o^{2}$$

- Where 'c' is the correlation.
- So the less correlation you have the closer you get to independent case.
- Randomization in random forests decreases correlation between trees.
 - See also "Sensitivity of Independence Assumptions".

How these concepts often show up in practice

- Here is an e-mail related to many ideas we've recently covered:
 - "However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?"

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.