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Last Time: K-Nearest Neighbours (KNN)

K-nearest neighbours algorithm for classifying X;: (with hyper-parameter ‘k’).
— Find ‘k’ values of x; that are most similar to X..
— Use mode of corresponding y..
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— Size of model grows with ‘n” (humber of examples)

Universal consistency:
— Optimal test error with infinite data for appropriately-growing ‘Kk’.



Curse of Dimensionality

e “Curse of dimensionality”: volume grows exponentially with dimension.
— Consider the interval from 0 to 1 (d=1).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢) points.

— With 4 well-placed points you can guarantee that you have a “neighbor” within 0.1.
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Curse of Dimensionality

e “Curse of dimensionality”: volume grows exponentially with dimension.
— Consider the interval from 0 to 1 (d=1).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢) points.

— With 4 well-placed points you can guarantee that you have a “neighbor” within 0.1.

— Consider the unit square (d=2).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢?%) points.

— With 49 well-placed points you can guarantee that you have a “neighbor” within 0.1.
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Curse of Dimensionality

e “Curse of dimensionality”: volume grows exponentially with dimension.
— Consider the interval from 0 to 1 (d=1).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢) points.

— With 4 well-placed points you can guarantee that you have a “neighbor” within 0.1.

— Consider the unit square (d=2).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢?%) points.

— With 49 well-placed points you can guarantee that you have a “neighbor” within 0.1.

— Consider the unit cube (d=3).

* If want every location on to have a “neighbor” with distance €, need at least O(1/€?) points.

— Wtih 512 well-placed points you can guarantee that you have a “neighbor” within 0.1. | s o v \
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Curse of Dimensionality

e “Curse of dimensionality”: volume grows exponentially with dimension.
— Consider the interval from 0 to 1 (d=1).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢) points.

— With 4 well-placed points you can guarantee that you have a “neighbor” within 0.1.

— Consider the unit square (d=2).

* If want every location on to have a “neighbor” with distance €, need at least O(1/€?) points.

— With 49 well-placed points you can guarantee that you have a “neighbor” within 0.1.

— Consider the unit cube (d=3).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢e?) points.

— With 512 well-placed points you can guarantee that you have a “neighbor” within 0.1.
— Consider the unit hyper-cube (d=4).

* If want every location on to have a “neighbor” with distance €, need at least O(1/¢*) points.

— With 6561 well-placed points you can guarantee that you have a “neighbor” within 0.1.



Curse of Dimensionality

* Need exponentially more points to “fill” a high-dimensional space.

— Need at least O(1/€%) points to guarantee “close” points exist everywhere.
— In worst case, “nearest” neighbours in high-dimensions may be really far.
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Curse of Dimensionality

* Need exponentially more points to “fill” a high-dimensional space.

— Need at least O(1/e?) points to guarantee “close” points exist everywhere.
— |In worst case, “nearest” neighbours in high-dimensions may be really far.

* KNN is also problematic if features have very different scales.

— Comparing a feature measured in grams vs one measured in kilograms.

 Measurement in grams can have much more influence (values 1000 times larger).

* Nevertheless, KNN is really easy to use and often hard to beat!

— Classes are often far apart, so neighbours do not need to be “close”.



Defining “Distance” with “Norms”

A common way to define the “distance” between examples:
— Take the “norm” of the difference between feature vectors.
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* Norms are a way to measure the “size” of a vector.

— The most common norm is the “L2-norm” (or “Euclidean norm”):
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* The L2-norm is simply the length of the vector.




L2-norm, L1-norm, and Le=-Norm:s.

* The three most common norms: L2-norm, L1-norm, and Lee-norm.

— Definitions of these norms with two-dimensions:
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— Definitions of these norms in d-dimensions.

d 4 ,‘ - 2 '
L;l: “r”; :{él r) Ll' ”r“, é,’ri, L"O‘ ""‘j“({ 'rJ ’;

Infinite Series Video



https://www.youtube.com/watch?v=ineO1tIyPfM

Norm and NormP Notation (MEMORIZE)

* Notation:
— We often leave out the “2” for the L2-norm: l/ll,: USe l/p// ]Cof H/ /

— We use superscripts for raising norms to powers: |f/. c. HF//Z ]Cor (Ur );1

— You should understand why all of the following quantltles are egual
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Norms as Measures of Distance

 Can define a “distance” between vectors by taking norm of difference:

—_— - ”
fle =<l = \‘?r“g')l * )’ %’\%“ h
= ”r "5“ l|£"\c"c]~eo\¢\ (jiﬂlm(e“ <

' - S” ‘r SI, + \r ,z l “/Vuw»l;fr of bLlocks yov\ /)Q.pJ ‘lo
walk Jo )c+ from 1o _g.“
“r -5“0()-: VV\\Y? ’r|~5|)7 ‘fz _SJ,§ ,|/V|O$+ /\V!Wl’yer ()f L/a(K)

N 0Ny d rec’hoV\ you would
* Place different “weights” on large differences: jwe }o wolk
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— L,: bigger differences are more important (because of squaring).
— L..: only biggest difference is important.



KNN Distance Functions

* Most common KNN distance functions are of form: norm(x; — xj).
— L1-, L2-, and Lee-norm.
— Weighted norms (if some features are more important): df l)‘ ’
“Mahalanobis” distance (takes into account correlations). wf,ﬂm

* See bonus slide for what functions define a “norm”. {}afwf /1
J

* But we can consider other distance/similarity functions:
— Jaccard similarity (if x, are sets).
— Edit distance (if x. are strings).
— Metric learning (learn the best distance function).



Decision Trees vs. Naive Bayes vs. KNN
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Application: Optical Character Recognition

* How can we convert handwritten zip/postal codes to strings?

]

Tone Doe
1095 Venture Dr.

v A D P
F’.l*,-"'.:'.fz')) \/‘A "'"I""Jl

jOhn (3. SG’”P\i
‘ MO\]n S'}/(éd
/Z"fﬁow“; Us 12345




Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
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Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
— “Optical character recognition” (OCR).
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— Turning this into a supervised learning problem (with 28 by 28 images):
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KNN for Optical Character Recognition
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KNN for Optical Character Recognition
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KNN for Optical Character Recognition




KNN for Optical Character Recognition




Human vs. Machine Perception

* There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”:  Actually, it’s worse:
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What the Computer Sees

* Are these two images “similar”?




What the Computer Sees

* Are these two images “similar”? .
Difference:

-
-
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e KNN does not know that labels should be translation invariant.



Encouraging Invariance with Data Augmentation

* May want classifier to be invariant to certain feature transforms.

— Images: translations, small rotations, changes in size, mild warping,...
* Recognize same signal in different-looking images.

* The hard/slow way is to modify your distance function:
— Find neighbours that require the “smallest” transformation of image.

 The easy/fast way is to use data augmentation.

— Just add transformed versions of your training examples to the training set.
* Make translated/rotate/resized/warped versions of training images, and add them to train set.

3—3 33

— Crucial part of many successful vision systems.
— Also really important for sound (translate, change volume, and so on).




Encouraging Invariance with Data Augmentation
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Application: Body-Part Recognition

* Microsoft Kinect:
— Real-time recognition of 31 body parts from laser depth data.

 How could we write a program to do this?



Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.
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3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby:.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

real (test)

synthetic (train & test)



Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

Do we have any classifiers that are accurate and run in real time?
— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.



Ensemble Methods

* Ensemble methods are classifiers that have classifiers as input.
— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Blending.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.
— Voting.
* Ensemble methods often have higher accuracy than input classifiers.



Ensemble Method Example: Voting

 Ensemble methods use predictions of a set of models.

— For example, we could have:
e Decision trees make one prediction.
* Naive Bayes makes another prediction.
 KNN makes another prediction.

* One of the simplest ensemble methods is voting:
— Take the mode of the predictions across the classifiers.
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Digression: Stacking

* Another variation on voting is stacking
— Fit another classifier that uses the predictions as features.
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better than individual models. f

— Typically used by Kaggle winners.
— E.g., Netflix S1M user-rating competition winner was stacked classifier.
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Why can Voting Work?

* Consider 3 binary classifiers, each independently correct with probability 0.80:

* With voting, ensemble prediction is correct if we have “at least 2 right”:
— P(all 3 right) =0.83=0.512.
— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)%0.8 = 0.096.
— P(all 3 wrong) = (1-0.8)3 = 0.008.
— So ensemble is right with probability 0.896 (which is 0.512+0.384).

* You can derive the precise probability with binomial probabilities.

* Notes:
— For voting to work, errors of classifiers need to be at least somewhat independent.

— You also want the probability of being right to be > 0.5, otherwise it can do much worse.
* But accuracy does not have to the same across classifiers (“weak” classifiers can help “strong” ones).


https://datagenetics.com/blog/february22021/index.html

Why can Voting Work?

* Consider a set of classifiers that make these predictions:

— Classifier 1: “spam”.

— Classifier 2: “spam”.

— Classifier 3: “spam”.

— Classifier 4: “not spam”.
— Classifier 5: “spam”.

— Classifier 6: “not spam”.
— Classifier 7: “spam”.

— Classifier 8: “spam”.

— Classifier 9: “spam”.

— Classifier 10: “spam”.

* If these independently get 80% accuracy, mode will be close to 100%.

— In practice errors will not be completely independent.
* For a variety of reasons (incorrect labels, classifiers use same training set, and so on).



Why can Voting Work?

 Why can voting lead to better results?

e Consider classifiers that overfit (like deep decision trees):
— If they all overfit in exactly the same way, voting does nothing.

* But if they make independent errors:
— Probability that “vote” is wrong can be lower than for each classifier.
— Less attention to specific overfitting of each classifier.



Random Forests

« Random forests take vote from a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
e Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?
— No: with the same training data you’ll get the same decision tree.

* Two key ingredients in random forests:
— Bootstrapping: a way to generate different “versions” of your dataset.
— Random trees: a way to grow decision trees incorporating randomness.



Overview of Random Forests

 Random forests train on different “bootstrap samples” of your dataset:
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* And models vote to make final decision. Candom 17
— The hope is that the “boostrap samples” make errors more independent.



Bootstrap Sampling

e Start with a standard deck of 52 cards

1. Sample a random card:

A A
[

(put it back and re-shuffle)
2. Sample a random card:

L
LI
L
L
——

(put it back and re-shuffle)
3. Sample a random card:
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[+ &
L]
L]
L

(put it back and re-shuffle) +*

+

52. Sample a random card:

- - - >
b b
.

(which may be a repeat)

 Makes a new deck of the 52 samples




Bootstrap Sampling
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— Some cards will be missing, and some cards will be duplicated.
* So calculations on the bootstrap sample will give different results than original data.

— However, the bootstrap sample roughly maintains trends:
* Roughly 25% of the cards will be diamonds.
* Roughly 3/13 of the cards will be “face” cards.
* There will be roughly four “10” cards.

— Bootstrap sampling is a general technique that is used in many settings:

e Sample ‘n” examples with replacement from your set of size ‘n’.

* Repeat this several times, and compute some statistic on each bootstrap sample.
— Gives you an idea of how the statistic varies as you vary the data.



Summary

Curse of dimensionality:
— Number of points to “fill” a space grows exponentially with dimension.

Data augmentation:
* Add transformed data to be invariant to transformations that preserve label.
Ensemble methods take multiplier classifiers as inputs.
Voting ensemble method:
* Improves predictions of multiple classifiers if errors are independent.

Bootstrap sampling:
— Generating a new dataset, by sampling ‘n’ examples with replacement.

Next time:
e We start unsupervised learning.



3 Defining Properties of Norms

* A “norm” is any function satisfying the following 3 properties:
1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘a” multiplies length by | a
“If be will twice as long if you multiply by 2”: | [ar|]| = |a|e]|]|r]].
* Implication is that norms cannot be negative.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:

*  “You can’t get there faster by a detour”.
“Triangle inequality”: | |r+s|| < |]|r]] + |]|s]|].
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Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
|zl = Ej:] wf
)l = 355 |wj]-

If the subscript is omitted, we mean the 2-norm:
]| = ll]l2-

It we want to talk about the sguared value of the norm we use a superscript of "2"
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2
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It we omit the subscript and have a superscript of "2, we're taking about the squared L2-norm:

2 = 325, w}



Lp-norms

* Thel,-, L,-, and L_-norms are special cases of Lp-norms:
|zll, = (|21 + |2’ + -+ + |zal”)"

* This gives a norm for any (real-valued) p > 1.
— The L_.-norm is the limit as ‘p’ goes to e-.

* For p <1, notanorm because triangle inequality not satisfied.



Why does Bootstrapping select approximately 63%?

* Probability of an arbitrary x, being selected in a bootstrap sample:
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Why Averaging Works

Consider ‘k” independent classifiers, whose errors have a variance of o2.
If the errors are IID, the variance of the vote is o%/k.

— So the more classifiers that vote, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:

C (92 + U ‘6792
K

— Where ‘c’ is the correlation.
So the less correlation you have the closer you get to independent case.
Randomization in random forests decreases correlation between trees.

— See also “Sensitivity of Independence Assumptions”.



https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/

How these concepts often show up in practice

* Hereis an e-mail related to many ideas we’ve recently covered:

— “However, the performance did not improve while the model goes deeper and with
augmentation. The best result | got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation | got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so | trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

| really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that | have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

 Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.



