CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models
Fall 2022

Admin

 Welcome to the course!
— If you have remaining forms, bring them to me after class and good luck.

* Assignment 1:
— 1 late day to hand in tonight, 2 for Friday.

* Assignment 2 is out.
— Due Friday of next week. It is long so start early.

Last Time: E-mail Spam Filtering

 Want a build a system that filters spam e-mails:

 We formulated as supervised learning:
— (y, = 1) if e-mail V" is spam, (y, = 0) if e-mail is not spam.

Jannie Keenan You wed $24,718.11
Abby uabera USB Drives with y
Rosemarie Pag Re: New request created with 1D: ##62
Shawna Bulg RE: New request created with 1D: ##63
Gary ualbera Cooperation

— (x; = 1) if word/phrase ‘j’ is in e-mail ¥, (x; = 0) if it is not.

"5 Thi | cpsc | 340 | Vicodin | ofer | ..
1 1 0 0 1 0

0
0

0
1

0
1

0
1

1
0

1
0

Last Time: Nalve Bayes

* We considered spam filtering methods based on naive Bayes:

F(y.l _ '|§Pa|m“ | X,‘> = E()g , \/’, = I’Sf“m'\>()(y,‘ — "S}Dam“)
PLx)

* Makes conditional independence assumption to make learning practical:

f (Ae//ﬂ = ,)VII(DJ:n: 0} gqo.:’ ISTQM) //‘V/ f(}l(//oi//s an)f(Vl.(ann:O/[/¢”)/_)(?70£ //S/)GM)
HARD ey ey vy

* Predict “spam” if p(y, = “spam” | x.) > p(y, = “not spam” | x.).
— We don’t need p(x;) to test this.

Nalve Bayes

* Naive Bayes formally:

F(Y' xi) = (’(X ,}'1 >(>()’,) (‘F}U"’ use Bayw ru/e>

p(x)

! ngJor Jo 't Ma#@f“) same Fo e
<><(>(x [y f yi) (Agw/\ip—//?fwﬁ

A . \/ot/me

W[O 1y, 7]/’7) (condibial independoce ==

J'-" aSSMMF"10n>
W

On’y 0 eeds €\G_$y
froLa\o"lf'ff

* Post-lecture slides: how to train/test by hand on a simple example.

Laplace Smoothing

* Our estimate of p(‘lactase’ = 1| ‘spam’) is:

H:SFQWI mesSqgqes wiﬂu /qcfa)”é

SFGM MeSS‘ag (S3

— But there is a problem if you have no spam messages with lactase:

* p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing:

* Add 1 to numerator, g
and 2 to denominator (for binary features). (#'Sfﬂw‘ W\eSS"‘jU>

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.

(ﬂSrGW\ messa jes wifh lactase + |

Laplace Smoothing

* Laplace smoothing: (#spam messages wifh ‘“L’“’Q—t,

———

(#sfw;,messmjt)? A

— Typically you do this for all features.

* Helps against overfitting by biasing towards the uniform distribution.

* A common variation is to use a real number B rather than 1.
— Add ‘Bk’ to denominator if feature has ‘k’ possible values (so it sums to 1).

f . | =
ﬁ)(chl\'/FC'“‘)x (hf\\/\W\L*f 0 fxqmr;’vj in clas wifh X; () + 5

(pumber of quma,'u In c|mss)4[3l\/

This is a “maximum a posteriori” (MAP) estimate of the probabiliy. We’ll discuss MAP and how to derive this formula later.

Decision Trees vs. Nalve Bayes

e Decision trees:

ok wneE

N

mlle 7 0.5

Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

Interpretability: easy to see how decisions
are made.

* Naive Bayes:

P(sic)(| milk, €99 Ia(,‘fan’)
i ()(vni”(l;ick)[)(c(ﬁ Jsic ’\’>)o (lactase Isick)f(st@")

o UusEWN e

N

Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (bag of words).

Interpretability: can see how each feature
influences decision.

Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs of mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.

Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’

* Instead of most probable label, take . minimizing expected cost:

EE[COj_f(y,7§’/,>]
e‘l'o\ LON WC OA{\ o /\ L) y
s AP TG ¢ st 05 el
* Even if “spam” has a higher probability,
predicting “spam” might have a expected higher cost.

Decision Theory Example

Predict ‘not spam’ 10 0

* Consider a test example we have p(y, = “spam” | X¥,) = 0.6, then:

N 1 WA _
E[C05+(y,' = SF”'M 3 yl>} = '0(}’," ff""" ,)’.)CO;WL()/ = Sf«m y = S/mm))
'O(y[’ m'fflmn ’)/ (p;f()/-" Sfaw\)y'\ Mofj/aw,

— (0¢)(0) + (0 (100> = %0
@ [cost (= nof srm"{‘y’)): (0.62(10) +(04)(0)= 6

* Even though “spam” is more likely, we should predict “not spam”.
— With above costs, only classify as “spam” if p(y. = “spam” | X¥.) = 0.91.

Decision Theory Discussion

* |n other applications, the costs could be different.

— In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

* Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

* Decision theory and video poker:
— http://datagenetics.com/blog/july32019/index.html

http://www.datagenetics.com/blog/january12012/index.html
http://datagenetics.com/blog/july32019/index.html

Decision Theory and Basketball

 “How Mapping Shots In The NBA Changed It Forever”
Pro L«.foi//‘f‘/ of

é ‘fa isn| POINTS PER SHOT

F ~pec 1 2013-14 TO 2017-18
BETWEEN 2013-14 AND EVEN SHOTS WAY OUT HERE
2017-18, THE AVERAGE NBA ARE WORTH MORE THAN
SHOT YIELDED 1.02 ELBOW JUMPERS
POINTS

A 0.85-0.90 :
“UNDER 0.85 : UNDER D.85

45-50% =)

SHOT ATTEMPTS FROM
L THESE TWO AREAS GO
— IN AT THE SAME RATES

3P0l oA _ NO WONDER THE
: = . /", MIDRANGE IS DYING, . |
Ao et > oo Sl 1T'S BASIC ECONOMICS | |
FIELD GOAL PERCENTAGE BY AREA N
|

AVERAGE POINTS PER FIELD GOAL ATTEMPY
o] O

<y < T
Sho()hn(j here LS CELSE S
o bad decisioN

Unbalanced Class Labels

 Arelated idea is that of “unbalanced” class labels.

— If 99% of the e-mails are spam,
you can get 99% accuracy by always predicting spam.

* There are a variety of other performance measures available:
— Weighted classification error. :
— Jaccard similarity.
— Precision and recall.
— False positive and false negative rate.
— ROC curves.

Positive Rate
()
o

* See the post-lecture bonus slides for additional details.

Next Topic: Non-Parametric Models

Digression: “Debugging by Frustration/TA”

 Here is one way to write a complicated program:

Write the entire function at once.

Try it out to “see if it works”.

Spend hours fiddling with commands, to find magic working combination.

> w N e

Send code to the TA, asking “what is wrong?”

* If you are lucky, Step 2 works and you are done!

* If you are not lucky, takes way longer than principled coding methods.
— This is also a great way to introduce bugs into your code.
— And you will not be able to do Step 4 when you graduate.

Digression: Debugging 101

What strategies could we use to debug an ML implementation?

— Use “print” statements to see what is happening at each step of the code.
* Or use a debugger.

— Develop one or more simple “test cases”, were you worked out the result by hand.
* Maybe one of the functions you are using does not work the way you think it does.

— Check if the “predict” functionality works correctly on its own.
* Maybe the training works but the prediction does not.

— Check if the “training” functionality works correctly on its own.
* Maybe the prediction works but the training does not.

— Try the implementation with only one training example or only one feature.
* Maybe there is an indexing problem, or things are not being aggregated properly.

— Try the implementation with only two features so you can visualize the decision surface.
* May be able to see obvious problems.

— Make a “brute force” implementation to compare to your “fast/clever” implementation.
* Maybe you made a mistake when trying to be fast/clever.

With these strategies, you should be able to diagnose locations of problems.

Back to ML: Geometric Motivation

* Do you think the green example should be orange or blue?

A

test example

Feature space

Back to ML: Geometric Motivation

* Do you think the green example should be orange or blue?
— In the feafure space, it is close to examples labeled orange (“neighbours”).

®:, ©®

90 ® o0
Q0. @ 9O ®
® @ O

test example

Feature space

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.

F2 |

1R < o T+ t

13 " o 0 o + ot o+ 4
2 3 ‘ + 2 o 60 ¢ +
3 2 ‘ + D OOOO +1—++,_

25 1 0]

35 1 ‘ + / X OO © ¥ T

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.

" a
1 3 ‘ 0]
2 3 ‘ +
3 2 ‘ +
25 1 ‘ 0]
: 1 +
3.5 ‘

[pew exam le

0 o 7 + 1T 1 new example
o 0 ++?‘{

o %90 9 4 Ty
0 0 F T
0

1
2
3
2.5
3.5

nn
3
3
2
1
1

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.

F2

[pew exam le

O F'-T—I-"F'!'

67
0 @ : + @ new examp le
0 @@ + @ e
0 @®é/§ I’\Ea/!ﬁ r\elﬂhéou\rs
0 o, Z»O +
O "
§ "neerad nei%bst“

/ 2 3 4

1
2
3
2.5
3.5

nn
3
3
2
1
1

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.

F2

[pew exam le

O F'-T—I-"F'!'

67
0 @ : + @ new examp le
0 @@ + @ e
0 @®é/§ I’\Ea/!ﬁ r\elﬂhéou\rs
0 o, Z»O +
O "
§ "neerad nei%bst“

/ 2 3 4

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::
1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.

ag | il Fish Fag | Wil Fish
07 0 Hmm——) 03 06 05 EEE——)

04 06 0)) @ — \ﬁ/{j

0 0 0 — X; Y

0.1
—>
X

N D Mes (emon
)73 f\ew TS V\Cialﬂl‘ww’g_ [aéz?/‘)

\\
"scck

O T
\~\/~
Y

/

K-Nearest Neighbours (KNN)

* Assumption:
— Examples with similar features are likely to have similar labels.

* Seems strong, but all good classifiers basically rely on this assumption.
— If not true there may be nothing to learn and you are in “no free lunch” territory.
— Methods just differ in how you define “similarity”.

e Most common distance function is Euclidean distance:
N C— - N
”X,‘“XT“ = \‘g,(xb”xg)?

— X is features of training example ‘', and X; is features of test example 7.
— Costs O(d) to calculate for a pair of examples.

Effect of ‘k” in KNN.

With large ‘k’ (hyper-parameter), KNN model will be very simple.
— With k=n, you just predict the mode of the labels.
— Model gets more complicated as ‘k’ decreases (with k=1 it’s very sensitive).

K= k=3 k=10

Effect of ‘k” on fundamental trade-off:
— As ‘k’ grows, training error tends to increase.
— As ‘k’ grows, approximation error tends to decrease.

KNN Implementation

* There is no training phase in KNN (“lazy” learning).
— You just store the training data.
— Costs O(1) if you use a pointer.

e But predictions are expensive: O(nd) to classify 1 test example.
— Need to do O(d) distance calculation for all ‘'n’ training examples.

— So prediction time grows with number of training examples.
* Tons of work on reducing this cost (for example, “condensed nearest neighbor”).

e But storage is expensive: needs O(nd) memory to store X’ and ‘y’.
— So memory grows with number of training examples.
— When storage depends on ‘n’, we call it a non-parametric model.

Parametric vs. Non-Parametric

e Parametric models:

— Have fixed number of parameters: trained “mode
* E.g., naive Bayes just stores counts.
* E.g., fixed-depth decision tree just stores rules for that depth.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data does not help: model is too simple.

III

size is O(1) in terms ‘n’.

* Non-parametric models:
— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

— Model gets more complicated as you get more data.
e E.g., KNN stores all the training data, so size of “model” is O(nd).
* E.g., decision tree whose depth grows with the number of examples.

Parametric vs. Non-Parametric Models

* Parametric models have bounded memory.

 Non-parametric models can have unbounded memory.

ﬂ’l@”ﬂ@/‘)/(mm/e/)

Effect of ‘n” in KNN.

* With a small ‘n’, KNN model will be very simple.

nN=2, K= n=20, k=|
— —
)
X X
X R\) X)()(X 0
x O
X 0
O x /06
(7‘00 2
. L

* Model gets more complicated as ‘n’ increases.
— Requires more memory, but detects subtle differences between examples.

Consistency of KNN (‘n’ going to ‘oo’)

* KNN has appealing consistency properties:

— As ‘n’ goes to oo, KNN test error is less than twice best possible error.
* For fixed ‘k” and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to ==, converges to the best possible error.
* For example, k = log(n).
* First algorithm shown to have this property.

* Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.

— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).
* The “speed” at which universal consistency happens is exponential in the dimension ‘d’.

https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ;).

Yo X
Q//U r—

PO\I‘QM{ t, i model

i YA

ﬂV\M[)Yr o‘F e}(qm(/” '\\

Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ;).

 Many non-parametric models (like KNN) converge to optimal error.
— Though may also.converge to needing infinite memory.

Summary

Decision theory allows us to consider costs of predictions.
Debugging 101: ideas to find bugs and write code with fewer bugs.

K-Nearest Neighbours: use most common label of nearest examples.
 Often works surprisingly well.

e Suffers from high prediction and memory cost.

 Canonical example of a “non-parametric” model.

Non-parametric models grow with number of training examples.
— Can have appealing “consistency” properties.

Next Time:
* Fighting the fundamental trade-off and Microsoft Kinect.

Naive Bayes Training Phase

* Training a naive Bayes model:

S O O = O

l@l—‘@@@b—‘-b—‘@b—‘b—‘l

’y:

RS

Naive Bayes Training Phase

* Training a naive Bayes model:
l. Set N ’ra The m«mlwr o‘f Times (\/‘-: a>.

mF) R RO RRORO

= O OO O -

ﬁé"ﬂljé

Naive Bayes Training Phase Py =L
* Training a naive Bayes model: 01
l, Sc‘f (\C 'h? '“\6 VHAML{f o_'l‘ -/'I’Mf-S (\/":0) 1 1
,) m 0 0
1 Estimate F(V*' c) af K\V__c -
1 1
X =10 o
1 0
1 0
1 1
1 0
-n)=4 N
f)(&' 0) _laé/— 0

Naive Bayes Training Phase (0= e n=b

i

P

* Training a naive Bayes model:

0 (1

[, Set n, to The number of Times (\/,-‘-‘c>. 1 L
0 0

~ o = S N —
1 Estimate (?(7, c) @ _V__c . [1
5 Seft Nejk as the pumbtc oF Fimes (yi: ¢ Xi)':k) Y — (1] [1)
1 0

1 0

1 1

-1 0-

Naive Bayes Training Phase oy =6 o 1 =6

* Training a naive Bayes model:

[~

[, Set n, to The number of Times (\/,-:c) 1

A Estimate ‘)(75 c) a$ K\V__c (1)[(1)__

5 Set Nejk AS the pwnb<c oF fimes (yi: Cs X,')':k) Y _ (1) [1)

. Es{imate lo(xi;\“: ksy.<c) as Agk 10
1 0
1 1
1 0]

Naive Bayes Training Phase oy =6 &=
’ lo

* Training a naive Bayes model:]

0 (1
l, Sc‘f (\C Jra '“\6 VNAMLff o‘f 7Lime§ (\/,-:&) 1 E
0 0]
_ E ""ma\ff (= 67 al V\c, —
;1 ST F y — 1 [1
Lf, ES’fihmﬂl@ /0()(i:)“—"/(7)/,':-6) as .’_\%Lk’ 1 0 Q/)/
1 0
5 U;g 'Ho,f F()(O--: /(l)/,.:c):: 'D(Y,J--:/{) y,--:c,‘) 1 1 hlll
phi=c) 1 o] /
_ Nejk/n — Nesue () _”); U
N /n e | e LY== 6
(&:0:_(1 Y\O

Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

Given @ Ces] CXamY’&),(\,/ we <.t ffeliu‘(on ;i 3, The ‘¢! V"‘“X"”"’.ij P()?: I%:C>

Under The M asfwvv(:fm" we can maximzl)
‘3(7\ C/IY> Ve —T[‘) X'J 'y——cﬂ’py, c,)

Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@V\sltl{’r)/(\::CI /:) /N T his Aaf/n sel —=)

S O O = O

IOD—‘ODOHP—‘OP—‘P—‘l

’y:

RS

* Prediction in a naive Bayes model:

Naive Bayes Prediction Phase

C@V\sltl{’r)/(V:CI /:] /N T his Aaf/n sel —=)
///'0) (5,=1) ‘7) (7.0)

P(

7(>jas(

—

N

(0. 25)

(04) 0.|

X:

'+—1+—1+—1+—1C>+—*r—tc>r—l©'

l@l—"@@@b—‘b—‘@b—‘b—‘l

’y:

.

Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@ms'ul{’r)/(V:CI /:] /N T his Aaf/n sel —=)

P(N 0’)(7(03(///—0> ()(2',} 0) (l/-—
= (0257 (OL/) 0| x-=

\/\"llﬂ)o&() I/ /),’J(XQ ’)/ 0,0(/*’)

(
P S 05 (0ck) (00)=02

lb—tb—tb—tb—LCJHr—LCDr—lO'

IOI—‘OOOP—‘P—‘QP—‘F—‘I

’y:

.

Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

C@V\sltl{’r)/(V:CI /:) /N T his Aaf/n sel —=)

pl7i70 1 7ojf(21150 pls;=1)50)pl7.=0)

= (0257 (04) 0| x= y =

Fel LDl [pla=t 1720 plGi=1)

(
P S 05 (0ck) (00)=02

RS

S O O = O

IOD—‘ODOHP—‘OP—‘P—‘l

SinCC F(y‘:,))Z) 5) Ai”rr ﬂ\an F(y.:O,)?T)) WGI'V(Bal/a) ‘Orﬁlicf; </\4:l

(OO/\\ f $ m 10 l lo)’((,u/lyf Wc\n: ',/erinl' r(j}:))

“Proportional to” for Probabilities

* When we say “p(y) x exp(-y?)” for a function ‘p’, we mean:

P(\/7: ﬁﬁxﬂ(“yz) for Some constant /ﬁ\

e However, if ‘p’ is a probability then it must sum to 1.

—Ify € {1,2,3,4} then P()) +,0 (2>+F(g)+f)(q) — I

* Using this fact, we can find [3:
Bes(-194 Bespl2)t fexp [-3)+ pespl-) =
(:7 @[E/(]O (-]2)‘1' P,\P(..,li“) +3/<F (_;Z) +€/('0 (_ sz) _ l

Sk e xp -12) texp(-77) t Exp (- BZ)fexf (-4

Probability of Paying Back a Loan and Ethics

Article discussing predicting “whether someone will pay back a loan”:

— https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-
application-reveal.html

Words that increase probability of paying back the most:
— debt-free, lower interest rate, after-tax, minimum payment, graduate.

Words that decrease probability of paying back the most:
— God, promise, will pay, thank you, hospital.

Article also discusses an important issue: are all these features ethical?
— Should you deny a loan because of religion or a family member in the hospital?
— |ICBC is limited in the features it is allowed to use for prediction.

https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html

Avoiding Underflow

* During the prediction, the probability can underflow:

F(y-/(/lx>b< _T[F 1) ‘,"C—ﬂ'ﬁ[,
p_\/‘—‘/)
7 Al ﬂw;e are < || so The

P,(,Aucf gets \M/,

e Standard fix is to (equivalently) maximize the logarithm of the probability:
Rember Tl lbg(alﬂ < 109 (a) + |o9 b) so 109 (T q-) = 2 |(99 (o\,'7

gll/‘(l [@? is momﬂlom(7l[’lc c fWaXMI?lV\ﬂ]0(\/ C'X> q'Sﬂ MUX 175 09 r(/ C')()

SO Mayxmize '0((U [X0y \/vc>1 Yi© ()> é 'OCJ f()() 0 (>7 = ,ogqp/«c\)

Less-Nalve Bayes

* Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
ply Ly, ,m><>< F(/)p(x,)yz).,.))gl\/) producl rule applinl repeatedl,

=l plaly)pls ”">/>F(’3 ey i) plct baoy - iyy)
f(‘/) f()(, \/) f £ /)P Xs 177 ,O(XO/ ,y} (’\aive ﬂfny(_\ asz.m'J'ian)
 The assumption is very strong, and there are “less naive” versions:
— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.

e E.g., naive Bayes has k=0 and with k=2 we would have:

* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.

Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:

63()5) = Z F(X,)/ L? (/Marﬂmq/fzqf/on /‘M/C>

Z ()<Xl I)/ L),o(}/ L) (ch)dmc'f fvnl>

— i EH P(y) /— c)] l}’ c) (y\m»e ga)/czr af;uu,}gf)

W

’L“'Sf Gre ‘“'\9 (’Ula.u“/l-fﬁ
weé (OMrufe Au/ln? fra:'nmo.

Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x; | y.), probability of features given the class.
* How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x. | y,) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.

Other Performance Measures

e Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

* Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”
e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.

Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x;) > t, for threshold ‘t’.
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.

l H

Higarithm 1 —
BRlgorithm 2

ool

Precision

0 0.2 0.4 0.6 0.8 1
E=call

ROC Curve

* Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

True Positive Rate

Algorithm 1
Rlgorithm 2 -

0 0.2 0.4 0.6 0.8 1

False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.

More on Unbalanced Classes

 With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

 Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
e https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.

https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs” (even with random data):

* Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing

https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t’ test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

“n-xﬂpffhﬂﬂ-lﬁu3fﬂgﬂz

where ‘i’ is a training example and ‘j’ is a test example.

— We can compute D in Julia using:
X1.%2*ones (d,t) .+ ones(n,d)*(X2'")."2 .- 2X1*X2'"

— And you get an extra boost because Julia uses multiple cores.

Condensed Nearest Neighbours

» Disadvantage of KNN is slow prediction time (depending on ‘n’).
* Condensed nearest neighbours:

)

— |ldentify a set of ‘m’” “prototype” training examples.

— Make predictions by using these “prototypes” as the training data.

e Reduces runtime from O(nd) down to O(md).

/y I ,
){N/\/ (/*’3 ’) o AMSu‘ VE IS 16N
- Same
o Devision f)/ee(id/cm
= WO\«U F A }
)/()V\ remove. exqu S

+hs 0OnE

Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
— Start with no examples among prototypes.
— Loop through the non-prototype examples ‘i’ in some order:

* Classify x; based on the current prototypes.
* If prediction is not the true y, add it to the prototypes.

— Repeat the above loop until all examples are classified correctly.

 Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).

Condensed Nearest Neighbours

* Classic condensed nearest neighbours:

® ogﬁ’ao g @ @ ° ¢) @ % 2 @ 2 %5 g 5]
] . u
! o0 C‘éooo ® 4 & oa@cg%oo * £ s ° O ’ 2?9:1%%00 & *
* Og . N Py %o @ @ ooog
AJn o e R : RN
e %y ° @ L o e 2 R o °g ™ g 3
: SRR . profo)/'OC :
*0
@ ® o 00 . ®]
L) @ .
@ @ @ { r a
Pt : S . - O:removec . . = s
; e » ° O e 5 % o8 o °
L]

@
@
* o ® ° K S S
og 2 @ - ® od® L
¢ ® @ A . a
2e (p%oo g o %0 {'. .) - o cpcb°°
] ° * og oF H \ 4 [? r " x o [] o
] e o o - 15% 7% 78% a
- p LY (- [V§) /l/lf 3 W) 17% 15% 6%, X

o o
B o8°

* Recent work shows that finding optimal compression is NP-hard.
— An approximation algorithm algorithm was published in 2018:

 “Near optimal sample compression for nearest neighbors”

https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf

Refined Fundamental Trade-Off

* Let E . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_.;:

éff)’t - <E{/5T B Effaff‘) * (é rainNn — Eées‘/) v Eée)f
______~{»——-__J _ _ ~

VvV
"o \
éarrra\(EMOA'C’ notyg
 E measures how sensitive we are to training data.

approx
* E, 4o Measures if our model is complicated enough to fit data.

E,.. measures how low can any model make test error.
E,.: does not depend on what model you choose.

Consistency and Universal Consistency

A model is consistent for a particular learning problem if:
— E,.. converges to E, ., as ‘n’ goes to infinity, for that particular problem.

A model is universally consistent for a class of learning problems if:
— E,.: cOnverges to E, ., as ‘n’ goes to infinity, for all problems in the class.

* Class of learning problems will usually be “all problems satisfying”:
— A continuity assumption on the labels y' as a function of x.

* E.g., if x'is close to x then they are likely to receive the same label.

— A boundedness assumption of the set of x'.

Consistency of KNN (Discrete/Deterministic Case)

e Let’s show universal consistency of KNN in a simplified setting.

— The x' and y' are binary, and y' being a deterministic function of x.
* Deterministic y' implies that E, ., is O.

e Consider KNN with k=1:

— After we observe an x,, KNN makes right test prediction for that vector.
— As ‘n’ goes to oo, each feature vectors with non-zero probability is observed.
— We have E,_, = 0 once we’ve seen all feature vectors with non-zero probability.

* Notes:

— “No free lunch” isn’t relevant as ‘n’ goes to o=: we eventually see everything.
* But there are 29 possible feature vectors, so might need a huge number of training examples.

— It’s more complicated if labels aren’t deterministic and features are continuous.

Consistency of Non-Parametric Models

* Universal consistency can be been shown for many models we’ll cover:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelU, etc.

* But it’s always the non-parametric versions that are consistent:
— Where size of model is a function of ‘n’.
— Examples:

* KNN needs to store all ‘n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
* Number of hidden units must grow with ‘n’ (not true for fixed neural network).

