CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models
Fall 2022



Admin

 Welcome to the course!
— If you have remaining forms, bring them to me after class and good luck.

* Assignment 1:
— 1 late day to hand in tonight, 2 for Friday.

* Assignment 2 is out.
— Due Friday of next week. It is long so start early.



Last Time: E-mail Spam Filtering

 Want a build a system that filters spam e-mails:

 We formulated as supervised learning:
— (y, = 1) if e-mail V" is spam, (y, = 0) if e-mail is not spam.
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— (x; = 1) if word/phrase ‘j’ is in e-mail ¥, (x; = 0) if it is not.
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Last Time: Nalve Bayes

* We considered spam filtering methods based on naive Bayes:
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* Makes conditional independence assumption to make learning practical:
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* Predict “spam” if p(y, = “spam” | x.) > p(y, = “not spam” | x.).
— We don’t need p(x;) to test this.




Nalve Bayes

* Naive Bayes formally:
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* Post-lecture slides: how to train/test by hand on a simple example.




Laplace Smoothing

* Our estimate of p(‘lactase’ = 1| ‘spam’) is:
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— But there is a problem if you have no spam messages with lactase:

* p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing:

* Add 1 to numerator, g
and 2 to denominator (for binary features). (#'Sfﬂw‘ W\eSS"‘jU>

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.
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Laplace Smoothing

* Laplace smoothing: (#spam messages wifh ‘“L’“’Q—t,

———

(#sfw;,messmjt)? A

— Typically you do this for all features.

* Helps against overfitting by biasing towards the uniform distribution.

* A common variation is to use a real number B rather than 1.
— Add ‘Bk’ to denominator if feature has ‘k’ possible values (so it sums to 1).
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This is a “maximum a posteriori” (MAP) estimate of the probabiliy. We’ll discuss MAP and how to derive this formula later.



Decision Trees vs. Nalve Bayes

e Decision trees:
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Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

Interpretability: easy to see how decisions
are made.

* Naive Bayes:

P(sic)( | milk, €99 Ia(,‘fan’)
i ()(vni”( l;ick)[)(c(ﬁ Jsic ’\’>)o (lactase Isick)f(st@")

o UusEWN e

N

Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (bag of words).

Interpretability: can see how each feature
influences decision.



Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs of mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’

* Instead of most probable label, take . minimizing expected cost:
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* Even if “spam” has a higher probability,
predicting “spam” might have a expected higher cost.



Decision Theory Example

Predict ‘not spam’ 10 0

* Consider a test example we have p(y, = “spam” | X¥,) = 0.6, then:
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* Even though “spam” is more likely, we should predict “not spam”.
— With above costs, only classify as “spam” if p(y. = “spam” | X¥.) = 0.91.



Decision Theory Discussion

* |n other applications, the costs could be different.

— In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

* Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

* Decision theory and video poker:
— http://datagenetics.com/blog/july32019/index.html



http://www.datagenetics.com/blog/january12012/index.html
http://datagenetics.com/blog/july32019/index.html

Decision Theory and Basketball
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Unbalanced Class Labels

 Arelated idea is that of “unbalanced” class labels.

— If 99% of the e-mails are spam,
you can get 99% accuracy by always predicting spam.

* There are a variety of other performance measures available:
— Weighted classification error. :
— Jaccard similarity.
— Precision and recall.
— False positive and false negative rate.
— ROC curves.
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()
o

* See the post-lecture bonus slides for additional details.



Next Topic: Non-Parametric Models



Digression: “Debugging by Frustration/TA”

 Here is one way to write a complicated program:

Write the entire function at once.

Try it out to “see if it works”.

Spend hours fiddling with commands, to find magic working combination.
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Send code to the TA, asking “what is wrong?”

* If you are lucky, Step 2 works and you are done!

* If you are not lucky, takes way longer than principled coding methods.
— This is also a great way to introduce bugs into your code.
— And you will not be able to do Step 4 when you graduate.



Digression: Debugging 101

What strategies could we use to debug an ML implementation?

— Use “print” statements to see what is happening at each step of the code.
* Or use a debugger.

— Develop one or more simple “test cases”, were you worked out the result by hand.
* Maybe one of the functions you are using does not work the way you think it does.

— Check if the “predict” functionality works correctly on its own.
* Maybe the training works but the prediction does not.

— Check if the “training” functionality works correctly on its own.
* Maybe the prediction works but the training does not.

— Try the implementation with only one training example or only one feature.
* Maybe there is an indexing problem, or things are not being aggregated properly.

— Try the implementation with only two features so you can visualize the decision surface.
* May be able to see obvious problems.

— Make a “brute force” implementation to compare to your “fast/clever” implementation.
* Maybe you made a mistake when trying to be fast/clever.

With these strategies, you should be able to diagnose locations of problems.



Back to ML: Geometric Motivation

* Do you think the green example should be orange or blue?
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Feature space



Back to ML: Geometric Motivation

* Do you think the green example should be orange or blue?
— In the feafure space, it is close to examples labeled orange (“neighbours”).
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X::
1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* Assumption:
— Examples with similar features are likely to have similar labels.

* Seems strong, but all good classifiers basically rely on this assumption.
— If not true there may be nothing to learn and you are in “no free lunch” territory.
— Methods just differ in how you define “similarity”.

e Most common distance function is Euclidean distance:
N C— - N
”X,‘“XT“ = \‘g,(xb”xg)?

— X is features of training example ‘', and X; is features of test example 7.
— Costs O(d) to calculate for a pair of examples.




Effect of ‘k” in KNN.

With large ‘k’ (hyper-parameter), KNN model will be very simple.
— With k=n, you just predict the mode of the labels.
— Model gets more complicated as ‘k’ decreases (with k=1 it’s very sensitive).

K= k=3 k=10

Effect of ‘k” on fundamental trade-off:
— As ‘k’ grows, training error tends to increase.
— As ‘k’ grows, approximation error tends to decrease.



KNN Implementation

* There is no training phase in KNN (“lazy” learning).
— You just store the training data.
— Costs O(1) if you use a pointer.

e But predictions are expensive: O(nd) to classify 1 test example.
— Need to do O(d) distance calculation for all ‘'n’ training examples.

— So prediction time grows with number of training examples.
* Tons of work on reducing this cost (for example, “condensed nearest neighbor”).

e But storage is expensive: needs O(nd) memory to store X’ and ‘y’.
— So memory grows with number of training examples.
— When storage depends on ‘n’, we call it a non-parametric model.



Parametric vs. Non-Parametric

e Parametric models:

— Have fixed number of parameters: trained “mode
* E.g., naive Bayes just stores counts.
* E.g., fixed-depth decision tree just stores rules for that depth.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data does not help: model is too simple.

III

size is O(1) in terms ‘n’.

* Non-parametric models:
— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

— Model gets more complicated as you get more data.
e E.g., KNN stores all the training data, so size of “model” is O(nd).
* E.g., decision tree whose depth grows with the number of examples.



Parametric vs. Non-Parametric Models

* Parametric models have bounded memory.

 Non-parametric models can have unbounded memory.
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Effect of ‘n” in KNN.

* With a small ‘n’, KNN model will be very simple.

nN=2, K= n=20, k=|
— —
)
X X
X R\) X)()(X 0
x O
X 0
O x /06
(7‘00 2
. L

* Model gets more complicated as ‘n’ increases.
— Requires more memory, but detects subtle differences between examples.



Consistency of KNN (‘n’ going to ‘oo’)

* KNN has appealing consistency properties:

— As ‘n’ goes to oo, KNN test error is less than twice best possible error.
* For fixed ‘k” and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to ==, converges to the best possible error.
* For example, k = log(n).
* First algorithm shown to have this property.

* Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.

— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).
* The “speed” at which universal consistency happens is exponential in the dimension ‘d’.



https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ;).
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Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ;).

 Many non-parametric models (like KNN) converge to optimal error.
— Though may also.converge to needing infinite memory.




Summary

Decision theory allows us to consider costs of predictions.
Debugging 101: ideas to find bugs and write code with fewer bugs.

K-Nearest Neighbours: use most common label of nearest examples.
 Often works surprisingly well.

e Suffers from high prediction and memory cost.

 Canonical example of a “non-parametric” model.

Non-parametric models grow with number of training examples.
— Can have appealing “consistency” properties.

Next Time:
* Fighting the fundamental trade-off and Microsoft Kinect.



Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase Py =L
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Naive Bayes Training Phase (0= e n=b
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* Training a naive Bayes model:
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Naive Bayes Training Phase oy =6 o 1 =6

* Training a naive Bayes model:
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Naive Bayes Training Phase oy =6 &=
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* Training a naive Bayes model: ]
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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* Prediction in a naive Bayes model:

Naive Bayes Prediction Phase
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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“Proportional to” for Probabilities

* When we say “p(y) x exp(-y?)” for a function ‘p’, we mean:

P(\/7: ﬁﬁxﬂ(“yz) for Some constant /ﬁ\

e However, if ‘p’ is a probability then it must sum to 1.

—Ify € {1,2,3,4} then P()) +,0 (2>+F(g)+f)(q) — I

* Using this fact, we can find [3:
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Probability of Paying Back a Loan and Ethics

Article discussing predicting “whether someone will pay back a loan”:

— https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-
application-reveal.html

Words that increase probability of paying back the most:
— debt-free, lower interest rate, after-tax, minimum payment, graduate.

Words that decrease probability of paying back the most:
— God, promise, will pay, thank you, hospital.

Article also discusses an important issue: are all these features ethical?
— Should you deny a loan because of religion or a family member in the hospital?
— |ICBC is limited in the features it is allowed to use for prediction.


https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html

Avoiding Underflow

* During the prediction, the probability can underflow:

F(y-/(/lx>b< _T[F 1) ‘,"C—ﬂ'ﬁ[,
p_\/‘—‘/)
7 Al ﬂw;e are < || so The

P,(,Aucf gets \M/,

e Standard fix is to (equivalently) maximize the logarithm of the probability:
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Less-Nalve Bayes

* Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
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 The assumption is very strong, and there are “less naive” versions:
— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.

e E.g., naive Bayes has k=0 and with k=2 we would have:

* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.



Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:
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Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x; | y.), probability of features given the class.
* How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x. | y,) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.



Other Performance Measures

e Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

* Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”
e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.



Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x;) > t, for threshold ‘t’.
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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ROC Curve

* Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

True Positive Rate
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— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.



More on Unbalanced Classes

 With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

 Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
e https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.



https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs” (even with random data):

* Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing



https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t’ test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

“n-xﬂpffhﬂﬂ-lﬁu3fﬂgﬂz

where ‘i’ is a training example and ‘j’ is a test example.

— We can compute D in Julia using:
X1.%2*ones (d,t) .+ ones(n,d)*(X2'")."2 .- 2X1*X2'"

— And you get an extra boost because Julia uses multiple cores.



Condensed Nearest Neighbours

» Disadvantage of KNN is slow prediction time (depending on ‘n’).
* Condensed nearest neighbours:

)

— |ldentify a set of ‘m’” “prototype” training examples.

— Make predictions by using these “prototypes” as the training data.

e Reduces runtime from O(nd) down to O(md).
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Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
— Start with no examples among prototypes.
— Loop through the non-prototype examples ‘i’ in some order:

* Classify x; based on the current prototypes.
* If prediction is not the true y, add it to the prototypes.

— Repeat the above loop until all examples are classified correctly.

 Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).



Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
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* Recent work shows that finding optimal compression is NP-hard.
— An approximation algorithm algorithm was published in 2018:

 “Near optimal sample compression for nearest neighbors”



https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf

Refined Fundamental Trade-Off

* Let E . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_.;:

éff)’t - <E{/5T B Effaff‘) * (é rainNn — Eées‘/) v Eée)f
\\______~{»——-__J \_ _ ~

VvV
"o \
éarrra\( EMOA'C’ notyg
 E measures how sensitive we are to training data.

approx
* E, 4o Measures if our model is complicated enough to fit data.

E,.. measures how low can any model make test error.
E,.: does not depend on what model you choose.



Consistency and Universal Consistency

A model is consistent for a particular learning problem if:
— E,.. converges to E, ., as ‘n’ goes to infinity, for that particular problem.

A model is universally consistent for a class of learning problems if:
— E,.: cOnverges to E, ., as ‘n’ goes to infinity, for all problems in the class.

* Class of learning problems will usually be “all problems satisfying”:
— A continuity assumption on the labels y' as a function of x.

* E.g., if x'is close to x then they are likely to receive the same label.

— A boundedness assumption of the set of x'.



Consistency of KNN (Discrete/Deterministic Case)

e Let’s show universal consistency of KNN in a simplified setting.

— The x' and y' are binary, and y' being a deterministic function of x.
* Deterministic y' implies that E, ., is O.

e Consider KNN with k=1:

— After we observe an x,, KNN makes right test prediction for that vector.
— As ‘n’ goes to oo, each feature vectors with non-zero probability is observed.
— We have E,_, = 0 once we’ve seen all feature vectors with non-zero probability.

* Notes:

— “No free lunch” isn’t relevant as ‘n’ goes to o=: we eventually see everything.
* But there are 29 possible feature vectors, so might need a huge number of training examples.

— It’s more complicated if labels aren’t deterministic and features are continuous.



Consistency of Non-Parametric Models

* Universal consistency can be been shown for many models we’ll cover:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelU, etc.

* But it’s always the non-parametric versions that are consistent:
— Where size of model is a function of ‘n’.
— Examples:

* KNN needs to store all ‘n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
* Number of hidden units must grow with ‘n’ (not true for fixed neural network).



