CPSC 340: Machine Learning and Data Mining

Probabilistic Classification Andreas Lehrmann and Mark Schmidt University of British Columbia, Fall 2022 https://www.students.cs.ubc.ca/~cs-340

Admin

- Course webpage:
 - <u>https://www.students.cs.ubc.ca/~cs-340/</u>
 - Check for tutorial times/locations, instructor office hours, lecture materials, etc.
- Assignment 1:
 - Due tonight, you should be almost done.
 - Gradescope code available on Piazza ("Assignment Submission Instructions").
- Add/drop deadline:
 - Next Tuesday, September 20th.
 - Everyone on the waiting list should get in.
- Auditors and exchange students:
 - Bring your forms at the end of class.

Last Time: Training, Testing, and Validation

• Training step:

Input: set of 'n' training examples
$$x_i$$
 with labels y_i
Output: a model that maps from arbitrary x_i to a $\hat{y_i}$

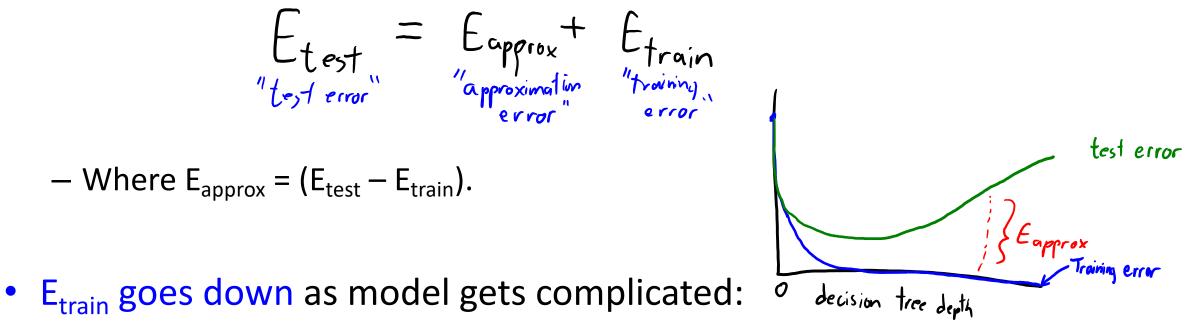
• Prediction step:

Inputi set of 't' testing examples
$$\tilde{x}_i$$
 and a model.
Output predictions \hat{y}_i for the testing examples.

- What we are interested in is the test error:
 - Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

• We decomposed test error to get a fundamental trade-off:

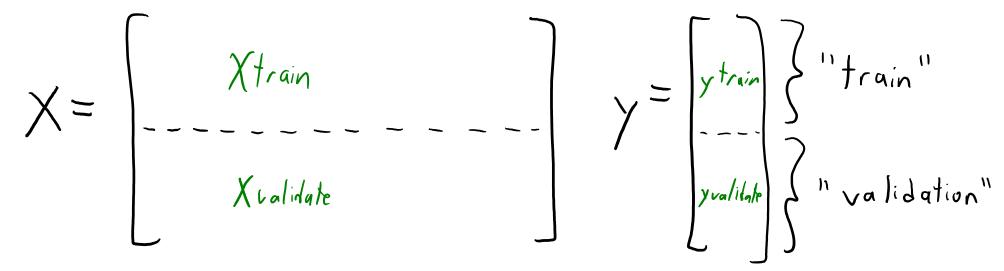


– Training error goes down as a decision tree gets deeper.

- But E_{approx} goes up as model gets complicated:
 - Training error becomes a worse approximation of test error.

Last Time: Validation Error

- Golden rule: we can't look at test data during training.
- But we can approximate E_{test} with a validation error:
 - Error on a set of training examples we "hid" during training.



- Find the decision tree based on the "train" rows.
- Validation error is the error of the decision tree on the "validation" rows.
 - We typically choose "hyper-parameters" like depth to minimize the validation error.

Digression: Optimization Bias

- Another name for overfitting is "optimization bias":
 - How biased is an "error" that we optimized over many possibilities?
- Optimization bias of parameter learning:
 - During learning, we could search over tons of different decision trees.
 - So we can get "lucky" and find one with low training error by chance.
 - "Overfitting of the training error".
- Optimization bias of hyper-parameter tuning:
 - Here, we might optimize the validation error over 20 values of "depth".
 - One of the 20 trees might have low validation error by chance.
 - "Overfitting of the validation error".

Digression: Example of Optimization Bias

- Consider a multiple-choice (a,b,c,d) "test" with 10 questions:
 - If you choose answers randomly, expected grade is 25% (no bias).
 - If you fill out two tests randomly and pick the best, expected grade is 33%.
 - Optimization bias of ~8%.
 - If you take the best among 10 random tests, expected grade is ~47%.
 - If you take the best among 100, expected grade is ~62%.
 - If you take the best among 1000, expected grade is ~73%.
 - If you take the best among 10000, expected grade is ~82%.
 - You have so many "chances" that you expect to do well.
- But on new questions the "random choice" accuracy is still 25%.

Factors Affecting Optimization Bias

- If we instead used a 100-question test then:
 - Expected grade from best over 1 randomly-filled test is 25%.
 - Expected grade from best over 2 randomly-filled test is ~27%.
 - Expected grade from best over 10 randomly-filled test is ~32%.
 - Expected grade from best over 100 randomly-filled test is ~36%.
 - Expected grade from best over 1000 randomly-filled test is ~40%.
 - Expected grade from best over 10000 randomly-filled test is ~47%.
- The optimization bias grows with the number of things we try.
 - "Complexity" of the set of models we search over.
- But, optimization bias shrinks fast with number of validation examples.
 - But it's still non-zero and growing if you over-use your validation set!

Overfitting to the Validation Set?

- Validation error usually has lower optimization bias than training error.
 Might optimize over 20 values of "depth", instead of millions+ of possible trees.
- But we can still overfit to the validation error (common in practice):
 Validation error is only an unbiased approximation if you use it once.
 - Once you start optimizing it, you start to overfit to the validation set.
- This is most important when the validation set is "small":
 - The optimization bias decreases as the number of validation examples increases.
- Remember, our goal is still to do well on the test set (new data), not the validation set (where we already know the labels).

- Scenario 1:
 - "I built a model based on the data you gave me."
 - "It classified your data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably not:
 - They are reporting training error.
 - This might have nothing to do with test error.
 - E.g., they could have fit a very deep decision tree.
- Why 'probably'?
 - If they only tried a few very simple models, the 98% might be reliable.
 - E.g., they only considered decision stumps with simple 1-variable rules.

- Scenario 2:
 - "I built a model based on half of the data you gave me."
 - "It classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the validation error once.
 - This is an unbiased approximation of the test error.
 - Trust them if you believe they didn't violate the golden rule.

- Scenario 3:
 - "I built 10 models based on half of the data you gave me."
 - "One of them classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the validation error a small number of times.
 - Maximizing over these errors is a biased approximation of test error.
 - But they only maximized it over 10 models, so bias is probably small.
 - They probably know about the golden rule.

- Scenario 4:
 - "I built 1 billion models based on half of the data you gave me."
 - "One of them classified the other half of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably not:
 - They computed the validation error a huge number of times.
 - They tried so many models, one of them is likely to work by chance.
- Why 'probably'?
 - If the 1 billion models were all extremely-simple, 98% might be reliable.

- Scenario 5:
 - "I built 1 billion models based on the first third of the data you gave me."
 - "One of them classified the second third of the data with 98% accuracy."
 - "It also classified the last third of the data with 98% accuracy."
 - "It should get 98% accuracy on the rest of your data."
- Probably:
 - They computed the first validation error a huge number of times.
 - But they had a second validation set that they only looked at once.
 - The second validation set gives unbiased test error approximation.
 - This is ideal, as long as they didn't violate golden rule on the last third.
 - And assuming you are using IID data in the first place.

Train/Validation/Test Terminology

- Training set: used (a lot) to set parameters.
- Validation set: used (a few times) to set hyper-parameters.
- Testing set: used (once) to evaluate final performance.
- **Deployment** (real-world): what you really care about.

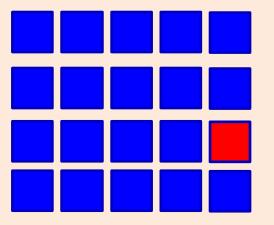
	fit	score	predict
Train	\checkmark	\checkmark	\checkmark
Validation		\checkmark	\checkmark
Test		once	once
Deployment			\checkmark

Validation Error and Optimization Bias

- Optimization bias is small if you only compare a few models:
 - Best decision tree on the training set among depths 1, 2, 3,..., 10.
 - Risk of overfitting to validation set is low if we try 10 things.
- Optimization bias is large if you compare a lot of models:
 - All possible decision trees of depth 10 or less.
 - Here we're using the validation set to pick between a billion+ models:
 - Risk of overfitting to validation set is high: could have low validation error by chance.
 - If you did this, you might want a second validation set to detect overfitting.
- And optimization bias shrinks as you grow size of validation set.

Aside: Optimization Bias leads to Publication Bias

• Suppose that 20 researchers perform the exact same experiment:



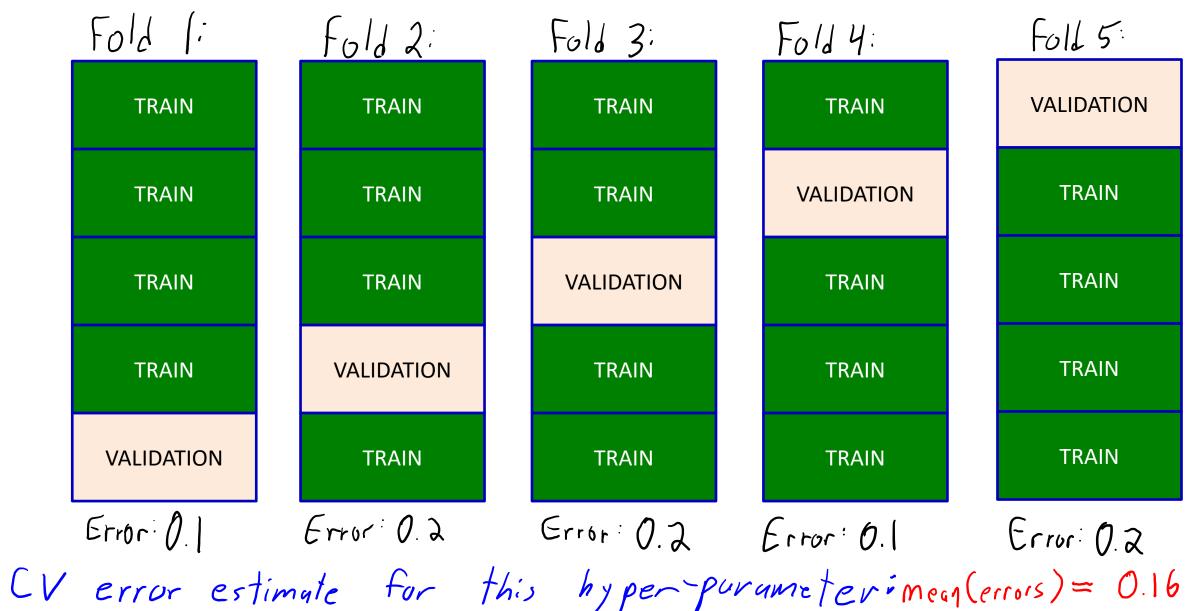
- They each test whether their effect is "significant" (p < 0.05).
 - 19/20 find that it is not significant.
 - But the 1 group finding it's significant publishes a paper about the effect.
- This is again optimization bias, contributing to publication bias.
 A contributing factor to many reported effects being wrong.

Cross-Validation (CV)

- Isn't it wasteful to only use part of your data?
- 5-fold cross-validation:
 - Train on 80% of the data, validate on the other 20%.
 - Repeat this 5 more times with different splits, and average the score.

$$X = \begin{bmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\$$

Cross-Validation (CV)



Cross-Validation Pseudo-Code

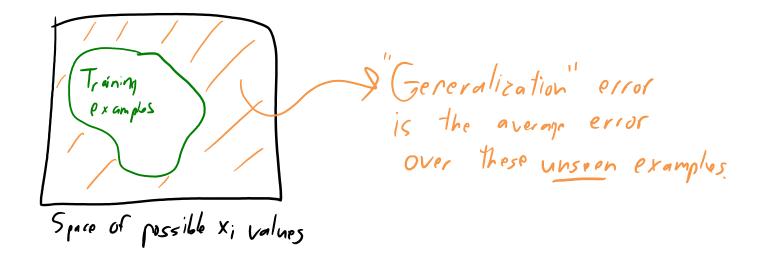
Cross-Validation (CV)

- You can take this idea further ("k-fold cross-validation"):
 - 10-fold cross-validation: train on 90% of data and validate on 10%.
 - Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),
 - Leave-one-out cross-validation: train on all but one training example.
 - Repeat n times and average.
- Gets more accurate but more expensive with more folds.
 - To choose depth we compute the cross-validation score for each depth.
- As before, if data is ordered then folds should be random splits.
 Randomize first, then split into fixed folds.

Next Topic: Probabilistic Classifiers

Generalization Error

- An alternative to test error is the generalization error:
 - Average error over all x_i vectos that are not seen in the training set.
 - "How well we expect to do for a *completely unseen* feature vector".



The "Best" Machine Learning Model

- Decision trees are not always most accurate on test error.
- What is the "best" machine learning model?

- No free lunch theorem (proof in bonus slides):
 - There is **no** "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
- This question is like asking which is "best" among "rock", "paper", and "scissors".

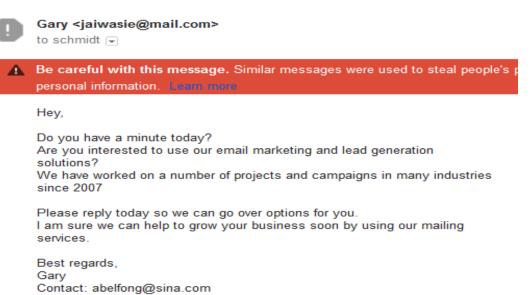
The "Best" Machine Learning Model

- Implications of the lack of a "best" model:
 - We need to learn about and try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate each method by a specific application.
 - But we're focusing on models that have been effective in many applications.
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured.
 - But proof of the no-free-lunch theorem assumes any map from x_i to y_i is equally likely.
 - Some datasets are more likely than others.
 - Model A really could be better than model B on every real dataset in practice.
- Machine learning research:
 - Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

- Want to build a system that detects spam e-mails.
 - Context: spam used to be a big problem.

			to schmidt 🗔
Jannie Keenan	ualberta You are owed \$24,718.11	A	Be careful v personal info
Abby	ualberta USB Drives with your Logo		Hey,
Rosemarie Page	Re: New request created with ID: ##62		Do you have Are you inter solutions?
Shawna Bulger	RE: New request created with ID: ##63		We have wor since 2007
Gary	ualberta Cooperation		Please reply I am sure we services.
			Best regards



• Can we formulate as supervised learning?

Spam Filtering as Supervised Learning

• Collect a large number of e-mails, gets users to label them.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0
			•••				

- We can use $(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
- Extract features of each e-mail (like bag of words).

- $(x_{ij} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{ij} = 0)$ if it is not.

Feature Representation for Spam

- Are there better features than bag of words?
 - We add bigrams (sets of two words):
 - "CPSC 340", "wait list", "special deal".
 - Or trigrams (sets of three words):
 - "Limited time offer", "course registration deadline", "you're a winner".
 - We might include the sender domain:
 - <sender domain == "mail.com">.
 - We might include regular expressions:
 - <your first and last name>.

Review of Supervised Learning Notation

• We have been using the notation 'X' and 'y' for supervised learning:

- X is matrix of all features, y is vector of all labels.
 - We use y_i for the label of example 'i' (element 'i' of 'y').
 - We use x_{ii} for feature 'j' of example 'i'.
 - We use x_i as the list of features of example 'i' (row 'i' of 'X').
 - So in the above x₃ = [0 1 1 1 0 0 ...].
 - In practice, only store list of non-zero features for each x_i (small memory requirement).

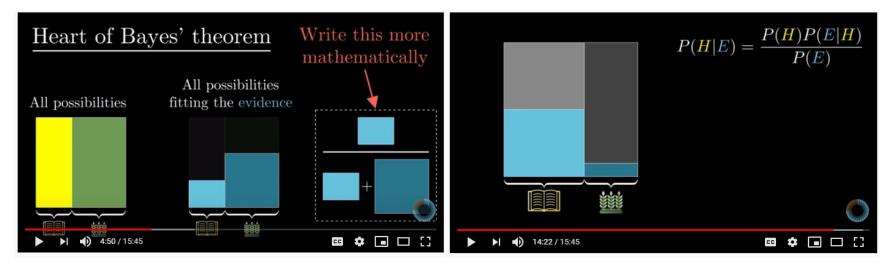
Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - A probabilistic classifier based on Bayes rule.
 - It tends to work well with bag of words.
 - Recently shown to improve on state of the art for CRISPR "gene editing" (link).
- Probabilistic classifiers build a model of the conditional probability, p(y_i | x_i).
 - "If a message has words x_i , what is probability that message is spam?"
- Classify it as spam if probability of spam is higher than not spam:
 - If $p(y_i = "spam" | x_i) > p(y_i = "not spam" | x_i)$
 - return "spam".
 - Else
 - return "not spam".

• To model conditional probability, naïve Bayes uses Bayes rule:

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

• Nice video giving visual intuition for Bayes rule <u>here</u>:



• To model conditional probability, naïve Bayes uses Bayes rule:

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

- On the right we have three terms:
 - Marginal probability $p(y_i)$ that an e-mail is spam.
 - Marginal probability $p(x_i)$ that an e-mail has the set of words x_i .
 - Conditional probability $p(x_i | y_i)$ that a spam e-mail has the words x_i .
 - And the same for non-spam e-mails.

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

• What do these terms mean?

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

- p(y_i = "spam") is probability that a random e-mail is spam.
 - This is easy to approximate from data: use the proportion in your data.

This is an "estimate" of the true probability. In particular, this formula is a "maximum likelihood estimate" (MLE). We will cover likelihoods and MLEs later in the course.

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

- p(x_i) is probability that a random e-mail has features x_i:
 - Hard to approximate: with 'd' words we need to collect 2^d "coupons", and that's just to see each word combination once.

 $p(x_i) = \frac{\#e-mails}{\#e-mails}$ with features x_i #e-mails total ALL E-MAILS (including duplicates)

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam")$$

 $p(x_i)$

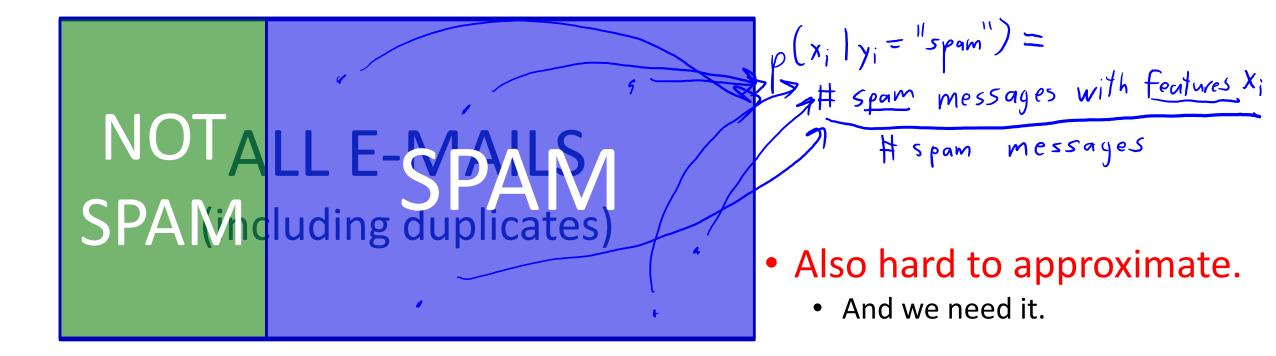
- $p(x_i)$ is probability that a random e-mail has features x_i :
 - Hard to approximate: with 'd' words we need to collect 2^d "coupons", but it turns out we can ignore it:

Naive Bayes returns "spam" if
$$p(y_i = "spam" \mid x_i) > p(y_i = "not spam" \mid x_i)$$
.
By Bayes rule this means $p(x_i \mid y_i = "spam")p(y_i = "spam") > p(x_i \mid y_i = "not spam")dy_i = "not spam")dy_i = "not spam" dy_i = "not spam")dy_i = "not spam" dy_i = "not spam" dy_i = "not spam")dy_i = "not spam" dy_i = "not spam" dy_i = "not spam" dy_i = "not spam")dy_i = "not spam" dy_i = "not spam"$

Spam Filtering with Bayes Rule

$$p(y_i = "spam" | x_i) = p(x_i | y_i = "spam")p(y_i = "spam") p(x_i)$$

• $p(x_i | y_i = "spam")$ is probability that spam has features x_i .



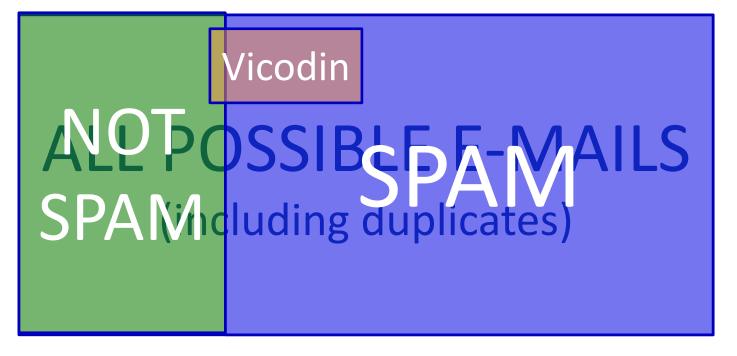
Naïve Bayes

• Naïve Bayes makes a big assumption to make things easier:

- We assume *all* features x_i are conditionally independent give label y_i.
 - Once you know it's spam, probability of "vicodin" doesn't depend on "340".
 - Definitely not true, but sometimes a good approximation.
- And now we only need easy quantities like p("vicodin" = 0 | y_i = "spam").

Naïve Bayes

• p("vicodin" = 1 | "spam" = 1) is probability of seeing "vicodin" in spam.

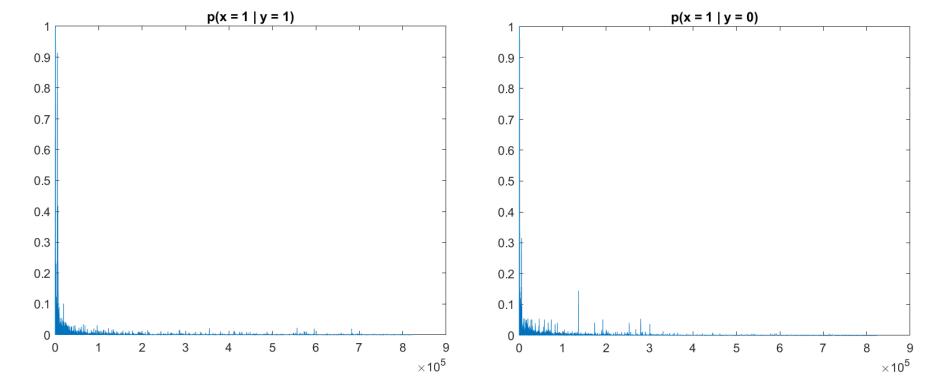


• Easy to estimate: p(vicodin=1/spam=1)= # spam messages w/vicodin # spam messages

Again, this is a "maximum likelihood estimate" (MLE). We will cover how to derive this later.

Naïve Bayes

• Comparing p(x | y = c) for "spam" and "not spam":



• Even though independence is not true, these values may be enough to distinguish the classes.

Summary

- Optimization bias: using a validation set too much overfits.
- Cross-validation: allows better use of data to estimate test error.
- No free lunch theorem: there is no "best" ML model.
- Probabilistic classifiers: try to estimate $p(y_i | x_i)$.
- Naïve Bayes: simple probabilistic classifier based on counting.
 - Uses conditional independence assumptions to make training practical.

- Next time:
 - A "best" machine learning model as 'n' goes to ∞ .

Back to Decision Trees

• Instead of validation set, you can use CV to select tree depth.

- But you can also use these to decide whether to split:
 - Don't split if validation/CV error doesn't improve.
 - Different parts of the tree will have different depths.
- Or fit deep decision tree and use [cross-]validation to prune:
 Remove leaf nodes that don't improve CV error.
- Popular implementations that have these tricks and others.

Random Subsamples

- Instead of splitting into k-folds, consider "random subsample" method:
 - At each "round", choose a random set of size 'm'.
 - Train on all examples except these 'm' examples.
 - Compute validation error on these 'm' examples.
- Advantages:
 - Still an unbiased estimator of error.
 - Number of "rounds" does not need to be related to "n".
- Disadvantage:
 - Examples that are sampled more often get more "weight".

Cross-Validation Theory

- Does CV give unbiased estimate of test error?
 - Yes!
 - Since each data point is only used once in validation, expected validation error on each data point is test error.
 - But again, if you use CV to select among models then it is no longer unbiased.
- What about variance of CV?
 - Hard to characterize.
 - CV variance on 'n' data points is worse than with a validation set of size 'n'.
 - But we believe it is close.
- Does cross-validation remove optimization bias?
 - No, but the bias might be smaller since you have more "test" points.

Handling Data Sparsity

- Do we need to store the full bag of words 0/1 variables?
 - No: only need list of non-zero features for each e-mail.

\$	Hi	CPSC	340	Vicodin	Offer		Non-Zeroes
1	1	0	0	1	0		{1,2,5,}
0	0	0	0	1	1	 VS.	{5 <i>,</i> 6 <i>,</i> }
0	1	1	1	0	0		{2,3,4,}
1	1	0	0	0	1		{1,2,6,}

Math/model doesn't change, but more efficient storage.

Generalization Error

- An alternative measure of performance is the generalization error:
 - Average error over the set of xⁱ values that are not seen in the training set.
 "How well we expect to do for a *completely unseen* feature vector".
- Test error vs. generalization error when labels are deterministic:

"Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
 Models with lower generalization error than "predict 0" for all problems.
- No free lunch theorem:
 - There is **no** "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.

No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
- With 'd' features, each "learning problem" is a map from {0,1}^d -> {0,1}.

– Assigning a binary label to each of the 2^d feature combinations.

Feature 1	Feature 2	Feature 3	y (map 1)	y (map 2)	y (map 3)	•••
0	0	0	0	1	0	
0	0	1	0	0	1	
0	1	0	0	0	0	

- Let's pick one of these 'y' vectors ("maps" or "learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

No Free Lunch Theorem

- Define the "unseen" examples as the (2^d n) not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels yⁱ disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 The xⁱ and yⁱ are binary, and yⁱ being a deterministic function of xⁱ.
- With 'd' features, each "learning problem" is a map from each of the 2^d feature combinations to 0 or 1: {0,1}^d -> {0,1}

Feature 1	Feature 2	Feature 3	Map 1	Map 2	Map 3	•••
0	0	0	0	1	0	
0	0	1	0	0	1	
0	1	0	0	0	0	

- Let's pick one of these maps ("learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

Proof of No Free Lunch Theorem

- Define the "unseen" examples as the (2^d n) not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels y_i disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
 - Average generalization error of **every** model is 50% on unseen examples.
 - It's right on each unseen example in exactly half the learning problems.
 - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
 - For general problems, no "machine learning" is better than "predict 0".
- But the proof also reveals the problem with the NFL theorem:
 - Assumes every "learning problem" is equally likely.
 - World encourages patterns like "similar features implies similar labels".