CPSC 340:
Machine Learning and Data Mining

Probabilistic Classification

Andreas Lehrmann and Mark Schmidt
University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Admin

Course webpage:
— https://www.students.cs.ubc.ca/~cs-340/

— Check for tutorial times/locations, instructor office hours, lecture materials, etc.

Assignment 1:
— Due tonight, you should be almost done.
— Gradescope code available on Piazza (“Assignment Submission Instructions”).

Add/drop deadline:

— Next Tuesday, September 20,
— Everyone on the waiting list should get in.

Auditors and exchange students:
— Bring your forms at the end of class.

https://www.students.cs.ubc.ca/~cs-340/

Last Time: Training, Testing, and Validation

* Training step:

1\

_Lnfocff set of 'n' iraining examples x; wiTh | abels)
J L

OVAPV&‘IQ @QC\—QJ .H\Gl-f qu.g FVOM Ou'()i‘/rary X; ‘}0 a\/f}

* Prediction step:

‘IV\@\A*‘ gel of /{) ‘fw)?,/ ond @ M_QA_Q/,
Ova[evr\'l ‘)reé'\dim\j)/l\. {Or ‘l’he 7‘@57%9 excqw;r’f;_

e What we are interested in is the test error:
— Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

* We decomposed test error to get a fundamental trade-off:

EJL est B rf”’" Efmm
4 o X ximal v 1wwm) .
t)_/ i r‘”:(rrar error j
test error
— Where Eapprox = (Etest - Etrain)- :
" géﬂ'vrrox
. ! ’ /Tmnq Crror
* E,.,goesdown as model gets complicated: 9 dession 1 Jet
— Training error goes down as a decision tree gets deeper.
e ButE goes up as model gets complicated:

approx
— Training error becomes a worse approximation of test error.

Last Time: Validation Error

* Golden rule: we can’t look at test data during training.

* But we can approximate E, . with a validation error:
— Error on a set of training examples we “hid” during training.
— ~ —
, W N 0
Xff““’) _ y+/a/}' frcxm

\
—

X(/a/ir/qﬁ: yw/i/.,ﬁo " v a ,icltﬂlior\“

_ - L

— Find the decision tree based on the “train” rows.

— Validation error is the error of the decision tree on the “validation” rows.
* We typically choose “hyper-parameters” like depth to minimize the validation error.

Digression: Optimization Bias

 Another name for overfitting is “optimization bias”:
— How biased is an “error” that we optimized over many possibilities?

* Optimization bias of parameter learning:
— During learning, we could search over tons of different decision trees.

— So we can get “lucky” and find one with low training error by chance.
* “Overfitting of the training error”.

* Optimization bias of hyper-parameter tuning:
— Here, we might optimize the validation error over 20 values of “depth”.

— One of the 20 trees might have low validation error by chance.
e “Overfitting of the validation error”.

Digression: Example of Optimization Bias

* Consider a multiple-choice (a,b,c,d) “test” with 10 questions:

— If you choose answers randomly, expected grade is 25% (no bias).

— If you fill out two tests randomly and pick the best, expected grade is 33%.
e Optimization bias of ~8%.

— If you take the best among 10 random tests, expected grade is ~47%.

— If you take the best among 100, expected grade is ~62%.

— If you take the best among 1000, expected grade is ~73%.

— |f you take the best among 10000, expected grade is ~82%.

* You have so many “chances” that you expect to do well.

* But on new questions the “random choice” accuracy is still 25%.

Factors Affecting Optimization Bias

* If we instead used a 100-question test then:

— Expected grade from best over 1 randomly-filled test is 25%.

— Expected grade from best over 2 randomly-filled test is ~27%.

— Expected grade from best over 10 randomly-filled test is ~32%.

— Expected grade from best over 100 randomly-filled test is ~36%.

— Expected grade from best over 1000 randomly-filled test is ~40%.
— Expected grade from best over 10000 randomly-filled test is ~47%.

* The optimization bias grows with the number of things we try.
— “Complexity” of the set of models we search over.

* But, optimization bias shrinks fast with number of validation examples.
— But it’s still non-zero and growing if you over-use your validation set!

Overfitting to the Validation Set?

Validation error usually has lower optimization bias than training error.
— Might optimize over 20 values of “depth”, instead of millions+ of possible trees.

But we can still overfit to the validation error (common in practice):
— Validation error is only an unbiased approximation if you use it once.
— Once you start optimizing it, you start to overfit to the validation set.

This is most important when the validation set is “small”:
— The optimization bias decreases as the number of validation examples increases.

Remember, our goal is still to do well on the test set (new data),
not the validation set (where we already know the labels).

Should you trust them?

* Scenario 1:
— “I' built a model based on the data you gave me.”
— “It classified your data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They are reporting training error.
— This might have nothing to do with test error.
— E.g., they could have fit a very deep decision tree.
* Why ‘probably’?
— If they only tried a few very simple models, the 98% might be reliable.
— E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them?

e Scenario 2:

— “I built a model based on half of the data you gave me.”
— “It classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error once.
— This is an unbiased approximation of the test error.
— Trust them if you believe they didn’t violate the golden rule.

Should you trust them?

e Scenario 3:

— “I built 10 models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error a small number of times.
— Maximizing over these errors is a biased approximation of test error.
— But they only maximized it over 10 models, so bias is probably small.
— They probably know about the golden rule.

Should you trust them?

e Scenario 4:

— “I' built 1 billion models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:

— They computed the validation error a huge number of times.
— They tried so many models, one of them is likely to work by chance.

* Why ‘probably’?

— If the 1 billion models were all extremely-simple, 98% might be reliable.

Should you trust them?

* Scenario 5:
— “I'built 1 billion models based on the first third of the data you gave me.”
— “One of them classified the second third of the data with 98% accuracy.”
— “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the first validation error a huge number of times.
— But they had a second validation set that they only looked at once.
— The second validation set gives unbiased test error approximation.
— This is ideal, as long as they didn’t violate golden rule on the last third.
— And assuming you are using |ID data in the first place.

Train/Validation/Test Terminology

Training set: used (a lot) to set parameters.
Validation set: used (a few times) to set hyper-parameters.
Testing set: used (once) to evaluate final performance.
Deployment (real-world): what you really care about.

fit score predict

Train v v v
Validation v v
Test once once

Deployment v

Validation Error and Optimization Bias

* Optimization bias is small if you only compare a few models:

— Best decision tree on the training set among depths 1, 2, 3,..., 10.
— Risk of overfitting to validation set is low if we try 10 things.

* Optimization bias is large if you compare a lot of models:
— All possible decision trees of depth 10 or less.

— Here we’re using the validation set to pick between a billion+ models:
* Risk of overfitting to validation set is high: could have low validation error by chance.

— If you did this, you might want a second validation set to detect overfitting.

* And optimization bias shrinks as you grow size of validation set.

Aside: Optimization Bias leads to Publication Bias

e Suppose that 20 researchers perform the exact same experiment:

* They each test whether their effect is “significant” (p < 0.05).

— 19/20 find that it is not significant.
— But the 1 group finding it’s significant publishes a paper about the effect.

* This is again optimization bias, contributing to publication bias.
— A contributing factor to many reported effects being wrong.

Cross-Validation (CV)

* |sn’t it wasteful to only use part of your data?

e 5-fold cross-validation:

— Train on 80% of the data, validate on the other 20%.
— Repeat this 5 more times with different splits, and average the score.

7" feld"
13 "Foll" 2
D [AT
N E
Fol“llg’

,Trmfn on folds il Z) Lf{ COW‘rufe €yror 60 FolJ g

2 lrm(w on F ‘JS E' 2 3) (()mrv."ﬂ Lvrorm oA ro,c‘ L,
‘3, ‘rallr\ or Fv‘c‘S 5\ 2\‘-')‘35 (()W\"u‘f erroy Qn ‘F\)M 3

. Tal\(averagt of The S errors as approximation of fest error

Cross-Validation (CV)
fold 2 Fold 3: Fold 4 ol &

Fold [

TRAIN VALIDATION

VALIDATION

TRAIN

TRAIN TRAIN

VALIDATION

TRAIN

VALIDATION

VALIDATION TRAIN

Er'r()r"a, EWOK: 0& Grrbr-’ 09\ EN‘OI" 0‘
C V' error 67711'qu¢ 1/:(//' ZLA) é/ fer\‘fOVofMt]Lgy‘;()’\ea'](errof5> = 0.6

Cross-Validation Pseudo-Code

—To ¢ hoose c\(rﬂ_l«
For depth in 1120

COm‘oV\Te Cros;’vn’i«lmmns(vz’
Jf . .
relhn (Jer'“\ wilh }\iyl\fﬁ Sc0/e

TO (O/?M{e 5-{old CfofS’Va’lJ(nIl}.m Scoe:

'(or Fou n Ilf

Train §0% Tlat Jo?)nuf M()\AJP {ou
"'PsT on ~/:\(5 L

reern average ﬁeﬂ‘ orror

/Vo'log:

— TThis fi1s oo models]
(20 Jefu.r limes g‘G/JS")

-)Ve 331' ove (ﬁve/a>e>
Score for each st ‘Hr(
20 (Iffil‘l'\)‘

— \/se This Score 'fa Pic/(Jgﬂ\

Cross-Validation (CV)

* You can take this idea further (“k-fold cross-validation”):

— 10-fold cross-validation: train on 90% of data and validate on 10%.
* Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),

— Leave-one-out cross-validation: train on all but one training example.
* Repeat n times and average.

* Gets more accurate but more expensive with more folds.
— To choose depth we compute the cross-validation score for each depth.

* As before, if data is ordered then folds should be random splits.
— Randomize first, then split into fixed folds.

Next Topic: Probabilistic Classifiers

Generalization Error

* An alternative to test error is the generalization error:

— Average error over all x; vectos that are not seen in the training set.
— “How well we expect to do for a completely unseen feature vector”.

[0

g{am of P&S‘f’LL X; V"/MPj

The “Best” Machine Learning Model

Decision trees are not always most accurate on test error.
What is the “best” machine learning model?

No free lunch theorem (proof in bonus slides):

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.

The “Best” Machine Learning Model

Implications of the lack of a “best” model:
— We need to learn about and try out multiple models.

So which ones to study in CPSC 3407?

— We’'ll usually motivate each method by a specific application.
— But we’re focusing on models that have been effective in many applications.

Caveat of no free lunch (NFL) theorem:

— The world is very structured.
e But proof of the no-free-lunch theorem assumes any map from x; to y; is equally likely.

— Some datasets are more likely than others.
— Model A really could be better than model B on every real dataset in practice.

Machine learning research:
— Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

* Want to build a system that detects spam e-mails.

— Context: spam used to be a big problem.

Gary <jaiwasie@mail.com>
to schmidt |~

» Jannie Keenan valberta You are owed $24,718.11 1 Be careful with this message. Similar messages were used to steal people’s §

personal information.

» Abby ualberta USB Drives with your Logo Hey,
. . Do you have a minute today?
Rosemarie Page Re: New request created with 1D: ##62 Are you interested to use our email marketing and lead generation
solutions?
We have worked on a number of projects and campaigns in many industries
Shawna Bulger RE: New request created with ID: ##63 since 2007
Please reply today so we can go over options for you.
» Gary ualberta Cooperation | am sure we can help to grow your business soon by using our mailing

services.
Best regards,

Gary
Contact: abelfong@sina.com

* Can we formulate as supervised learning?

Spam Filtering as Supervised Learning

* Collect alarge number of e-mails, gets users to label them.

| $ | Hi | CPSC | 340 | Vicodin | Offer | .. |
1 1 0 0 1 0 — 1
0 0 0 0 1 1) !
0 1 1 1 0 0 — 0
—)

* We can use (y; = 1) if e-mail ‘i’ is spam, (y, = 0) if e-mail is not spam.
e Extract features of each e-mail (like bag of words).

— (x; = 1) if word/phrase ‘" is in e-mail V', (x; = 0) if it is not.

Feature Representation for Spam

* Are there better features than bag of words?

— We add bigrams (sets of two words):
e “CPSC 340”, “wait list”, “special deal”.

— Or trigrams (sets of three words):

VA n

* “Limited time offer”, “course registration deadline”, “you’re a winner”.
— We might include the sender domain:
* <sender domain == “mail.com”>.

— We might include regular expressions:

 <your first and last name>.

Review of Supervised Learning Notation

* We have been using the notation ‘X’ and ‘y’ for supervised learning:

| $ | Hi| CPSC | 340 | Vicodin | Offer | ..
1 1 0 0 1 0 B

X
0 0 0 0 1 ®/,9 26\ -
1 1 0 0 .2 /-

S

e Xis matrix of all features, y is vector of all labels.
— We use y; for the label of example ‘i’ (element ‘i’ of ‘y’).
— We use x; for feature ‘j" of example ‘i".

— We use x; as the list of features of example ‘i’ (row ‘i’ of ‘X’).
* Sointheabovex;=[011100..].

g

~ ™~

1
1

o1

-

 In practice, only store list of non-zero features for each x; (small memory requirement).

Probabilistic Classifiers

* For years, best spam filtering methods used naive Bayes.
— A probabilistic classifier based on Bayes rule.
— It tends to work well with bag of words.
— Recently shown to improve on state of the art for CRISPR “gene editing” (link).

* Probabilistic classifiers build a model of the conditional probability, p(y; | x:).
— “If a message has words x;, what is probability that message is spam?”

e C(Classify it as spam if probability of spam is higher than not spam:
— If p(y; = “spam” | x)) > p(y; = “not spam” | x;)
* return “spam”.

— Else
* return “not spam”.

http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf

Spam Filtering with Bayes Rule

 To model conditional probability, naive Bayes uses Bayes rule:

n

F(y) — ‘IS(’OW\ X,/ = r(xl , \/’. po I’Sfm'?/)(yl' — "S/oam")
plxi)

* Nice video giving visual intuition for Bayes rule here:

Heart of Bayes’ theorem

All possibilities
All possibilities fitting the evidence

https://www.youtube.com/watch?v=HZGCoVF3YvM

Spam Filtering with Bayes Rule

 To model conditional probability, naive Bayes uses Bayes rule:

n

F(yl — ‘ISPOW\ X,/ = F(x/ , \/'. po I’Sfm'?[)(yl' — "S/Jam“)
plxi)

* On the right we have three terms:
— Marginal probability p(y;) that an e-mail is spam.
— Marginal probability p(x;) that an e-mail has the set of words x..
— Conditional probability p(x; | y;) that a spam e-mail has the words x..

* And the same for non-spam e-mails.

Spam Filtering with Bayes Rule

F(\.":_ ‘lSFam“ | xi> = ‘3()(1 ,\/' = I’Sfam">/)(y'. _

e What do these terms mean?

ALL E-MAILS

(including duplicates)

Spam Filtering with Bayes Rule

P(y' — ,IgPam“ | X,> — f’()(/ '\/' = ”Sram">/)(y'. = "5‘/)0!’1’\")
{)(X,')
* ply; = “spam”) is probability that a random e-mail is spam.

— This is easy to approximate from data: use the proportion in your data.

ooy 1:‘_ Spam me S5 e
NOT ply, =)=

H fotal me ssAges

soayy °2PAM

This is an “estimate” of the true probability. In
particular, this formula is a “maximum likelihood
estimate” (MLE). We will cover likelihoods and
MLEs later in the course.

Spam Filtering with Bayes Rule

| I _ 1 n - I ("
F(Y’: 'Spam |X,‘> — r(xl ,\/, - Spam >l)(y, S/oam)
Plx)
* p(x;) is probability that a random e-mail has features x;:
— Hard to approximate: with ‘d” words we need to collect 2¢ “coupons”,

and that’s just to see each WWTDWE\

(X'):#e'mmlﬁ \/V}TA]Deq‘furfS)‘(L
| #e-maily fotal

>
77

Spam Filtering with Bayes Rule

‘)(y.l - ‘lgPo‘m'\ ' X/‘> - F(X/ , \/’. = "5[’“""" >/’(y, — "S/oam")
pixi)
* p(x;) is probability that a random e-mail has features x;:

— Hard to approximate: with ‘d’ words we need to collect 2¢ “coupons”,
but it turns out we can ignore it:

U ply = s L) > p (= e)

/Vouve Ba\/{’j re)‘wm; ’/Srom

By Bayes rule Ths means f,(élw:"f/’“"“)l’ byi= "sp) 7 pOs ="ty oy =t
P) F(X’) -

/\/\(,\Hibol\/ hoth sides [9\/ lo(x;):
f)()(a]\/'.:fo“""“)f (yz = ”S/ﬁm") 7 P(X | y;:hll07l)fmm‘\,;(fy;c %u/,,.';)

Spam Filtering with Bayes Rule

P(y, - 'lfPam“ | X}> = r()(l ' \/'_ - I’Sfam'\ >/)(y' _ "S/)Wh")
pixi)

* p(x | y; = “spam”) is probability that spam has features x;.

‘D(X |7|—: s qm)~
7 2H Sparn MPSSrzﬂPS wilh F"Mf*f&‘ Xi

S—

—

H S pam mcsS‘oujeJ

* Also hard to approximate.
 And we need it.

Nalve Bayes
* Naive Bayes makes a big assumption to make things easier:

(}\e//,)”"v}(oc‘in‘:ﬂg"m:'lsrqm ~ Uc//oi//sm) (w'UJ:,,-’O/;,,,) (770:// G
pUnlbe 71 ye) 5 (et kOl 0)

HARD sy casy ey

* We assume all features x. are conditionally independent give label y..
— Once you know it’s spam, probability of “vicodin” doesn’t depend on “340”.
— Definitely not true, but sometimes a good approximation.

* And now we only need easy quantities like p(“vicodin” = 0| y, = “spam”).

Nalve Bayes

* p(“vicodin” =1 | “spam” = 1) is probability of seeing “vicodin” in spam.

* Easy to estimate:

F(V'I(Oalfln:’)5paw\:,>: # 5,£0lm Mtfraf,-es (4,/ V'({oc/.':
Spqm meSsage g

Vicodin

SPAM

NOFE

SPAM

Again, this is a “maximum likelihood estimate”
(MLE). We will cover how to derive this later.

Nalve Bayes

 Comparing p(x | y =c) for “spam” and “not spam”:

] _ pix=1]y=1)] _ pix=1]y=0)
0.9 1 09
0.8 [t 1 08k
0.7 1 07k
0.6 1 0.6 [
05 1 05|
0.4 1 04
0.3 . 03
0.2 1 0.2
0.1 . 0.1
OML U I O T OMML Lol O
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
x10° x10°

* Even though independence is not true,
these values may be enough to distinguish the classes.

Summary

Optimization bias: using a validation set too much overfits.
Cross-validation: allows better use of data to estimate test error.
No free lunch theorem: there is no “best” ML model.
Probabilistic classifiers: try to estimate p(y; | x).

Naive Bayes: simple probabilistic classifier based on counting.
— Uses conditional independence assumptions to make training practical.

Next time:

— A “best” machine learning model as ‘n’ goes to e-.

Back to Decision Trees

Instead of validation set, you can use CV to select tree depth.

But you can also use these to decide whether to split:

— Don’t split if validation/CV error doesn’t improve.
— Different parts of the tree will have different depths.

Or fit deep decision tree and use [cross-]validation to prune:
— Remove leaf nodes that don’t improve CV error.

Popular implementations that have these tricks and others.

Random Subsamples

* Instead of splitting into k-folds, consider “random subsample”

method:

— At each “round”, choose a random set of size ‘m’.
* Train on all examples except these ‘m” examples.
* Compute validation error on these ‘m’ examples.

* Advantages:
— Still an unbiased estimator of error.
— Number of “rounds” does not need to be related to “n”.

* Disadvantage:
— Examples that are sampled more often get more “weight”.

Cross-Validation Theory

* Does CV give unbiased estimate of test error?

— Yes!

* Since each data point is only used once in validation, expected validation error on each data
point is test error.

— But again, if you use CV to select among models then it is no longer unbiased.

e What about variance of CV?

— Hard to characterize.

— CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.
* But we believe it is close.

* Does cross-validation remove optimization bias?
— No, but the bias might be smaller since you have more “test” points.

Handling Data Sparsity

* Do we need to store the full bag of words 0/1 variables?

— No: only need list of non-zero features for each e-mail.

| Hi | CPSC | 340 Vicodin | Offer | .
1 1 0 1

0 0 {1,2,5,..}
0 0 0 0 1 1 V2 {5,6,..
0o 1 1 1 0 0 {2,3,4,..)
1 1 0 0 0 1 {1,2,6,..

— Math/model doesn’t change, but more efficient storage.

Generalization Error

* An alternative measure of performance is the generalization error:
— Average error over the set of x' values that are not seen in the training set.

— “How well we expect to do for a completely unseen feature vector”.

* Test error vs. generalization error when labels are deterministic:

E, =L L1 -] LY"“"""’Z l\/A"\ﬂ

T § oS
LLaép’) are JeiffV"I/W)'/([(/n“Méef a_'c
lgu‘} we ofill JM'\C |

- 4 W’“gﬁ Ove
@Xf“Tqﬂ”‘ over chb\ Jls"l‘flt\inon N ’/V“flnf*'l} 5CT, ./ vhSee N

X' \/alluf)‘,

aver "'(/ ¢ Cvrgr

“Best” and the “Good” Machine Learning Models

* Question 1: what is the “best” machine learning model?
— The model that gets lower generalization error than all other models.

* Question 2: which models always do better than random guessing?
— Models with lower generalization error than “predict 0” for all problems.

e No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

No Free Lunch Theorem

* Let’s show the “no free lunch” theorem in a simple setting:
— The x" and y' are binary, and y' being a deterministic function of x.

* With ‘d’ features, each “learning problem” is a map from {0,1}9 -> {0,1}.
— Assigning a binary label to each of the 29 feature combinations.

Feawrel lreawres restres Jymap) ymap2 yomapd .
0 0 0 0 1 0

0 0 1 0 0 1

0 1 0 0 0 0

e Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
— Generate a set training set of ‘n’ IID samples.
— Fit model A (convolutional neural network) and model B (naive Bayes).

No Free Lunch Theorem

Define the “unseen” examples as the (29— n) not seen in training.

— Assuming no repetitions of x' values, and n < 2¢.
— Generalization error is the average error on these “unseen” examples.

Suppose that model A got 1% error and model B got 60% error.

— We want to show model B beats model A on another “learning problem”.

Among our set of “learning problems” find the one where:
— The labels y' agree on all training examples.

— The labels y' disagree on all “unseen” examples.

On this other “learning problem”:

— Model A gets 99% error and model B gets 40% error.

)

Proof of No Free Lunch Theorem

e Let’s show the “no free lunch” theorem in a simple setting:
— The x' and y' are binary, and y' being a deterministic function of x'.

* With ‘d’ features, each “learning problem” is a map from each of
the 29 feature combinations to 0 or 1: {0,1}¢ -> {0,1}

Feawrel lreawres resures Wwapi wap2 wap3 |
0 0 0 0 1 0

0 0 1 0

0 1 0 0 0 0

* Let’s pick one of these maps (“learning problems”) and:
— Generate a set training set of ‘n’ IID samples.
— Fit model A (convolutional neural network) and model B (naive Bayes).

Proof of No Free Lunch Theorem

Define the “unseen” examples as the (29— n) not seen in training.

— Assuming no repetitions of x' values, and n < 2¢.
— Generalization error is the average error on these “unseen” examples.

Suppose that model A got 1% error and model B got 60% error.

— We want to show model B beats model A on another “learning problem”.

Among our set of “learning problems” find the one where:
— The labels y' agree on all training examples.

— The labels y; disagree on all “unseen” examples.

On this other “learning problem”:

— Model A gets 99% error and model B gets 40% error.

)

Proof of No Free Lunch Theorem

* Further, across all “learning problems” with these ‘n” examples:

— Average generalization error of every model is 50% on unseen examples.
* It’s right on each unseen example in exactly half the learning problems.

— With ‘k’ classes, the average error is (k-1)/k (random guessing).

* This is kind of depressing:
— For general problems, no “machine learning” is better than “predict 0”.

e But the proof also reveals the problem with the NFL theorem:

— Assumes every “learning problem” is equally likely.
— World encourages patterns like “similar features implies similar labels”.

