
CPSC 340:
Machine Learning and Data Mining

Probabilistic Classification
Andreas Lehrmann and Mark Schmidt

University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Admin
• Course webpage:

– https://www.students.cs.ubc.ca/~cs-340/
– Check for tutorial times/locations, instructor office hours, lecture materials, etc.

• Assignment 1:
– Due tonight, you should be almost done.
– Gradescope code available on Piazza (“Assignment Submission Instructions”).

• Add/drop deadline:
– Next Tuesday, September 20th.
– Everyone on the waiting list should get in.

• Auditors and exchange students:
– Bring your forms at the end of class.

https://www.students.cs.ubc.ca/~cs-340/

Last Time: Training, Testing, and Validation
• Training step:

• Prediction step:

• What we are interested in is the test error:
– Error made by prediction step on new data.

Last Time: Fundamental Trade-Off
• We decomposed test error to get a fundamental trade-off:

– Where Eapprox = (Etest – Etrain).

• Etrain goes down as model gets complicated:
– Training error goes down as a decision tree gets deeper.

• But Eapprox goes up as model gets complicated:
– Training error becomes a worse approximation of test error.

Last Time: Validation Error
• Golden rule: we can’t look at test data during training.
• But we can approximate Etest with a validation error:
– Error on a set of training examples we “hid” during training.

– Find the decision tree based on the “train” rows.
– Validation error is the error of the decision tree on the “validation” rows.

• We typically choose “hyper-parameters” like depth to minimize the validation error.

Digression: Optimization Bias
• Another name for overfitting is “optimization bias”:
– How biased is an “error” that we optimized over many possibilities?

• Optimization bias of parameter learning:
– During learning, we could search over tons of different decision trees.
– So we can get “lucky” and find one with low training error by chance.

• “Overfitting of the training error”.

• Optimization bias of hyper-parameter tuning:
– Here, we might optimize the validation error over 20 values of “depth”.
– One of the 20 trees might have low validation error by chance.

• “Overfitting of the validation error”.

Digression: Example of Optimization Bias
• Consider a multiple-choice (a,b,c,d) “test” with 10 questions:
– If you choose answers randomly, expected grade is 25% (no bias).
– If you fill out two tests randomly and pick the best, expected grade is 33%.

• Optimization bias of ~8%.

– If you take the best among 10 random tests, expected grade is ~47%.
– If you take the best among 100, expected grade is ~62%.
– If you take the best among 1000, expected grade is ~73%.
– If you take the best among 10000, expected grade is ~82%.

• You have so many “chances” that you expect to do well.

• But on new questions the “random choice” accuracy is still 25%.

Factors Affecting Optimization Bias
• If we instead used a 100-question test then:
– Expected grade from best over 1 randomly-filled test is 25%.
– Expected grade from best over 2 randomly-filled test is ~27%.
– Expected grade from best over 10 randomly-filled test is ~32%.
– Expected grade from best over 100 randomly-filled test is ~36%.
– Expected grade from best over 1000 randomly-filled test is ~40%.
– Expected grade from best over 10000 randomly-filled test is ~47%.

• The optimization bias grows with the number of things we try.
– “Complexity” of the set of models we search over.

• But, optimization bias shrinks fast with number of validation examples.
– But it’s still non-zero and growing if you over-use your validation set!

Overfitting to the Validation Set?
• Validation error usually has lower optimization bias than training error.
– Might optimize over 20 values of “depth”, instead of millions+ of possible trees.

• But we can still overfit to the validation error (common in practice):
– Validation error is only an unbiased approximation if you use it once.
– Once you start optimizing it, you start to overfit to the validation set.

• This is most important when the validation set is “small”:
– The optimization bias decreases as the number of validation examples increases.

• Remember, our goal is still to do well on the test set (new data),
not the validation set (where we already know the labels).

Should you trust them?
• Scenario 1:
– “I built a model based on the data you gave me.”
– “It classified your data with 98% accuracy.”
– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They are reporting training error.
– This might have nothing to do with test error.
– E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
– If they only tried a few very simple models, the 98% might be reliable.
– E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them?
• Scenario 2:
– “I built a model based on half of the data you gave me.”
– “It classified the other half of the data with 98% accuracy.”
– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the validation error once.
– This is an unbiased approximation of the test error.
– Trust them if you believe they didn’t violate the golden rule.

Should you trust them?
• Scenario 3:
– “I built 10 models based on half of the data you gave me.”
– “One of them classified the other half of the data with 98% accuracy.”
– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the validation error a small number of times.
– Maximizing over these errors is a biased approximation of test error.
– But they only maximized it over 10 models, so bias is probably small.
– They probably know about the golden rule.

Should you trust them?
• Scenario 4:
– “I built 1 billion models based on half of the data you gave me.”
– “One of them classified the other half of the data with 98% accuracy.”
– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They computed the validation error a huge number of times.
– They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
– If the 1 billion models were all extremely-simple, 98% might be reliable.

Should you trust them?
• Scenario 5:
– “I built 1 billion models based on the first third of the data you gave me.”
– “One of them classified the second third of the data with 98% accuracy.”
– “It also classified the last third of the data with 98% accuracy.”
– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the first validation error a huge number of times.
– But they had a second validation set that they only looked at once.
– The second validation set gives unbiased test error approximation.
– This is ideal, as long as they didn’t violate golden rule on the last third.
– And assuming you are using IID data in the first place.

Train/Validation/Test Terminology
• Training set: used (a lot) to set parameters.
• Validation set: used (a few times) to set hyper-parameters.
• Testing set: used (once) to evaluate final performance.
• Deployment (real-world): what you really care about.

Validation Error and Optimization Bias
• Optimization bias is small if you only compare a few models:
– Best decision tree on the training set among depths 1, 2, 3,…, 10.
– Risk of overfitting to validation set is low if we try 10 things.

• Optimization bias is large if you compare a lot of models:
– All possible decision trees of depth 10 or less.
– Here we’re using the validation set to pick between a billion+ models:

• Risk of overfitting to validation set is high: could have low validation error by chance.

– If you did this, you might want a second validation set to detect overfitting.

• And optimization bias shrinks as you grow size of validation set.

Aside: Optimization Bias leads to Publication Bias
• Suppose that 20 researchers perform the exact same experiment:

• They each test whether their effect is “significant” (p < 0.05).
– 19/20 find that it is not significant.
– But the 1 group finding it’s significant publishes a paper about the effect.

• This is again optimization bias, contributing to publication bias.
– A contributing factor to many reported effects being wrong.

Cross-Validation (CV)
• Isn’t it wasteful to only use part of your data?
• 5-fold cross-validation:
– Train on 80% of the data, validate on the other 20%.
– Repeat this 5 more times with different splits, and average the score.

Cross-Validation (CV)

TRAIN

TRAIN

TRAIN

TRAIN

VALIDATION

TRAIN

TRAIN

TRAIN

VALIDATION

TRAIN

TRAIN

TRAIN

VALIDATION

TRAIN

TRAIN

TRAIN

VALIDATION

TRAIN

TRAIN

TRAIN

VALIDATION

TRAIN

TRAIN

TRAIN

TRAIN

Cross-Validation Pseudo-Code

Cross-Validation (CV)
• You can take this idea further (“k-fold cross-validation”):
– 10-fold cross-validation: train on 90% of data and validate on 10%.

• Repeat 10 times and average (test on fold 1, then fold 2,…, then fold 10),

– Leave-one-out cross-validation: train on all but one training example.
• Repeat n times and average.

• Gets more accurate but more expensive with more folds.
– To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.
– Randomize first, then split into fixed folds.

Next Topic: Probabilistic Classifiers

Generalization Error
• An alternative to test error is the generalization error:
– Average error over all xi vectos that are not seen in the training set.
– “How well we expect to do for a completely unseen feature vector”.

The “Best” Machine Learning Model
• Decision trees are not always most accurate on test error.
• What is the “best” machine learning model?

• No free lunch theorem (proof in bonus slides):
– There is no “best” model achieving the best generalization error for every

problem.
– If model A generalizes better to new data than model B on one dataset,

there is another dataset where model B works better.

• This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.

The “Best” Machine Learning Model
• Implications of the lack of a “best” model:
– We need to learn about and try out multiple models.

• So which ones to study in CPSC 340?
– We’ll usually motivate each method by a specific application.
– But we’re focusing on models that have been effective in many applications.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured.

• But proof of the no-free-lunch theorem assumes any map from xi to yi is equally likely.
– Some datasets are more likely than others.
– Model A really could be better than model B on every real dataset in practice.

• Machine learning research:
– Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering
• Want to build a system that detects spam e-mails.
– Context: spam used to be a big problem.

• Can we formulate as supervised learning?

Spam Filtering as Supervised Learning
• Collect a large number of e-mails, gets users to label them.

• We can use (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.
• Extract features of each e-mail (like bag of words).
– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Feature Representation for Spam
• Are there better features than bag of words?
– We add bigrams (sets of two words):

• “CPSC 340”, “wait list”, “special deal”.

– Or trigrams (sets of three words):
• “Limited time offer”, “course registration deadline”, “you’re a winner”.

– We might include the sender domain:
• <sender domain == “mail.com”>.

– We might include regular expressions:
• <your first and last name>.

Review of Supervised Learning Notation
• We have been using the notation ‘X’ and ‘y’ for supervised learning:

• X is matrix of all features, y is vector of all labels.
– We use yi for the label of example ‘i’ (element ‘i’ of ‘y’).
– We use xij for feature ‘j’ of example ‘i‘.
– We use xi as the list of features of example ‘i’ (row ‘i’ of ‘X’).

• So in the above x3 = [0 1 1 1 0 0 …].
• In practice, only store list of non-zero features for each xi (small memory requirement).

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Probabilistic Classifiers
• For years, best spam filtering methods used naïve Bayes.

– A probabilistic classifier based on Bayes rule.
– It tends to work well with bag of words.
– Recently shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers build a model of the conditional probability, p(yi | xi).
– “If a message has words xi, what is probability that message is spam?”

• Classify it as spam if probability of spam is higher than not spam:
– If p(yi = “spam” | xi) > p(yi = “not spam” | xi)

• return “spam”.
– Else

• return “not spam”.

http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf

Spam Filtering with Bayes Rule
• To model conditional probability, naïve Bayes uses Bayes rule:

• Nice video giving visual intuition for Bayes rule here:

https://www.youtube.com/watch?v=HZGCoVF3YvM

Spam Filtering with Bayes Rule
• To model conditional probability, naïve Bayes uses Bayes rule:

• On the right we have three terms:
– Marginal probability p(yi) that an e-mail is spam.
– Marginal probability p(xi) that an e-mail has the set of words xi.
– Conditional probability p(xi | yi) that a spam e-mail has the words xi.

• And the same for non-spam e-mails.

Spam Filtering with Bayes Rule

• What do these terms mean?

ALL E-MAILS
(including duplicates)

Spam Filtering with Bayes Rule

• p(yi = “spam”) is probability that a random e-mail is spam.
– This is easy to approximate from data: use the proportion in your data.

ALL E-MAILS
(including duplicates)SPAM NOT

SPAM This is an “estimate” of the true probability. In
particular, this formula is a “maximum likelihood
estimate” (MLE). We will cover likelihoods and
MLEs later in the course.

Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:
– Hard to approximate: with ‘d’ words we need to collect 2d “coupons”,

and that’s just to see each word combination once.

ALL E-MAILS
(including duplicates)

Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:
– Hard to approximate: with ‘d’ words we need to collect 2d “coupons”,

but it turns out we can ignore it:

Spam Filtering with Bayes Rule

• p(xi | yi = “spam”) is probability that spam has features xi.

ALL E-MAILS
(including duplicates)

NOT
SPAM SPAM

• Also hard to approximate.
• And we need it.

Naïve Bayes
• Naïve Bayes makes a big assumption to make things easier:

• We assume all features xi are conditionally independent give label yi.
– Once you know it’s spam, probability of “vicodin” doesn’t depend on “340”.
– Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like p(“vicodin” = 0| yi = “spam”).

Naïve Bayes
• p(“vicodin” = 1 | “spam” = 1) is probability of seeing “vicodin” in spam.

ALL POSSIBLE E-MAILS
(including duplicates)SPAM NOT

SPAM

• Easy to estimate:Vicodin

Again, this is a “maximum likelihood estimate”
(MLE). We will cover how to derive this later.

Naïve Bayes
• Comparing p(x | y = c) for “spam” and “not spam”:

• Even though independence is not true,
these values may be enough to distinguish the classes.

Summary
• Optimization bias: using a validation set too much overfits.
• Cross-validation: allows better use of data to estimate test error.
• No free lunch theorem: there is no “best” ML model.
• Probabilistic classifiers: try to estimate p(yi | xi).
• Naïve Bayes: simple probabilistic classifier based on counting.
– Uses conditional independence assumptions to make training practical.

• Next time:
– A “best” machine learning model as ‘n’ goes to ∞.

Back to Decision Trees
• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide whether to split:
– Don’t split if validation/CV error doesn’t improve.
– Different parts of the tree will have different depths.

• Or fit deep decision tree and use [cross-]validation to prune:
– Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.

Random Subsamples
• Instead of splitting into k-folds, consider “random subsample”

method:
– At each “round”, choose a random set of size ‘m’.

• Train on all examples except these ‘m’ examples.
• Compute validation error on these ‘m’ examples.

• Advantages:
– Still an unbiased estimator of error.
– Number of “rounds” does not need to be related to “n”.

• Disadvantage:
– Examples that are sampled more often get more “weight”.

Cross-Validation Theory
• Does CV give unbiased estimate of test error?
– Yes!

• Since each data point is only used once in validation, expected validation error on each data
point is test error.

– But again, if you use CV to select among models then it is no longer unbiased.

• What about variance of CV?
– Hard to characterize.
– CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

• But we believe it is close.

• Does cross-validation remove optimization bias?
– No, but the bias might be smaller since you have more “test” points.

Handling Data Sparsity
• Do we need to store the full bag of words 0/1 variables?
– No: only need list of non-zero features for each e-mail.

– Math/model doesn’t change, but more efficient storage.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

1 1 0 0 0 1 …

Non-Zeroes

{1,2,5,…}

{5,6,…}

{2,3,4,…}

{1,2,6,…}

Generalization Error
• An alternative measure of performance is the generalization error:
– Average error over the set of xi values that are not seen in the training set.
– “How well we expect to do for a completely unseen feature vector”.

• Test error vs. generalization error when labels are deterministic:

“Best” and the “Good” Machine Learning Models

• Question 1: what is the “best” machine learning model?
– The model that gets lower generalization error than all other models.

• Question 2: which models always do better than random guessing?
– Models with lower generalization error than “predict 0” for all problems.

• No free lunch theorem:
– There is no “best” model achieving the best generalization error for every

problem.
– If model A generalizes better to new data than model B on one dataset,

there is another dataset where model B works better.

No Free Lunch Theorem
• Let’s show the “no free lunch” theorem in a simple setting:
– The xi and yi are binary, and yi being a deterministic function of xi.

• With ‘d’ features, each “learning problem” is a map from {0,1}d -> {0,1}.
– Assigning a binary label to each of the 2d feature combinations.

• Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
– Generate a set training set of ‘n’ IID samples.
– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3

0 0 0

0 0 1

0 1 0

… … …

y (map 1) y (map 2) y (map 3) …

0 1 0 …

0 0 1 …

0 0 0 …

… … … …

No Free Lunch Theorem
• Define the “unseen” examples as the (2d – n) not seen in training.
– Assuming no repetitions of xi values, and n < 2d.
– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.
– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem
• Let’s show the “no free lunch” theorem in a simple setting:
– The xi and yi are binary, and yi being a deterministic function of xi.

• With ‘d’ features, each “learning problem” is a map from each of
the 2d feature combinations to 0 or 1: {0,1}d -> {0,1}

• Let’s pick one of these maps (“learning problems”) and:
– Generate a set training set of ‘n’ IID samples.
– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3

0 0 0

0 0 1

0 1 0

… … …

Map 1 Map 2 Map 3 …

0 1 0 …

0 0 1 …

0 0 0 …

… … … …

Proof of No Free Lunch Theorem
• Define the “unseen” examples as the (2d – n) not seen in training.
– Assuming no repetitions of xi values, and n < 2d.
– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.
– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem
• Further, across all “learning problems” with these ‘n’ examples:
– Average generalization error of every model is 50% on unseen examples.

• It’s right on each unseen example in exactly half the learning problems.
– With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing:
– For general problems, no “machine learning” is better than “predict 0”.

• But the proof also reveals the problem with the NFL theorem:
– Assumes every “learning problem” is equally likely.
– World encourages patterns like “similar features implies similar labels”.

