
CPSC 340:
Machine Learning and Data Mining

LSTMs and Transformers

Fall 2022

Last Time: Recurrent Neural Networks (RNNs)

• We discussed recurrent neural neworks (RNNs):
– We considered sequence labeling and sequence-to-sequence variants.

• Many other variations exist (bi-directional, deep, many-to-one, one-to-many).

– Use parameter tieing across time (same parameter repeated).
• Allows having input/output examples of different lengths.

• Sequence-to-sequence uses special BOS/EOS symbols.
– Switches from encoding to decoding, and output can be a different length than input.

• Can make vanishing/exploding gradient problems worse.
– Often trained with gradient clipping or Adam.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Exponential “Forgetting” in RNNs

• Sequence-to-sequence RNNs:
– Elegant way to handle inputs/outputs

of different/unknown sizes.

– Final “encoding” is the hidden states
once the last input has been entered.
• We hope this captures the semantics of the sentence.

– The “decoding” steps try use the hidden states to output translation,
and also update the hidden states.

• Using tied parameters allows using the model for any sequence lengths.

• But with tied parameters, we “forget” information exponentially fast.
– If you want to “remember” something about x1, it has to go through U*U*U*⋯.

• “Initial conditions” for before the multiplication are forgotten at an exponential speed.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Adding a “Memory”

• One possible way to help RNNs remember is with skip connections:

– We will come back to several variations on this idea later.

• Another idea is to add a memory where you can “save” and “load”:

• Relevant information can be saved to the memory,
then accessed at a much later time (without getting multiplied by ‘U’).

Long Short Term Memory (LSTM)

• Long short term memory (LSTM) models are variant of RNNs:
– Modification to try to remember short-term ‘z’ and long-term dependencies ‘c’.

• In addition to usual hidden values ‘z’, LSTMs have memory cells ‘c’:
– Purpose of memory cells is to remember things for a long time.

• LSTMs were the practical analogy of convolutions for RNNs:
– “The first trick that made them work in many applications.”

• LSTMs have been used in a huge variety of settings:
– Cursive handwriting recognition:

• https://www.youtube-nocookie.com/embed/mLxsbWAYIpw

– Generating “Game of Thrones” text:
• https://pjreddie.com/darknet/rnns-in-darknet

– Fake positive/negative Amazon reviews:
• https://blog.openai.com/unsupervised-sentiment-neuron

https://www.youtube.com/watch?v=mLxsbWAYIpw
https://pjreddie.com/darknet/rnns-in-darknet
https://blog.openai.com/unsupervised-sentiment-neuron

Long Short Term Memory – Ugly Equations

• Computing activations at time ‘t’ in an RNN:

• Computing activations at time ‘t’ in an LSTM:

Long Short Term Memory – Equation Intuition
• Conceptually, we think of LSTMs as having a “memory” ct:

• We update and access this memory with a set of “gates”:
– Gates take weighted combination of input and previous activation,

and output a value between 0 and 1 (differentiable approximation to binary values).
• In a computer these gates would be exactly 0 or 1, but we use sigmoids so “gate” can have values like 0.7.

• “Forget gate” ft:
– If element ‘j’ of ft is 0, then we clear element ctj from the memory (set it to 0).

• If it is 1, then we keep the old value.

– “Given the input and previous activation, are the elements in memory still relevant?”

• “Input gate” it:
– If element ‘j’ of it is 0, then we do not add any new information to ctj (no input).

• If it is 1, then we “value” to the memory (where “value” is also a function of input and previous at).

– “Given the input and previous activation, should I write something new to memory?”

• “Output gate” ot:
– If element ‘j’ of ot is 0, then we do not read value ctj from the memory (no output).

• If it is 1, then we load from the memory.

– “Given the input and previous activation, should I read what is in memory?”

ct

0.3

-3.5

-0.2

0

0.4

0.3

-0.2

LSTM Equations (same slide as 2 slides ago)

• Computing activations at time ‘t’ in an RNN:

• Computing activations at time ‘t’ in an LSTM:

LSTM Activation Calculation as a Picture

• We often see pictures like this to represent the different operations:

• I find these pictures confusing unless you have gone through equations.

– For example, where are the weights?
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units (GRUs)

• Many variations on LSTMs exist.

– A popular one is gated recurrent units (GRUs).

• A bit simpler (merges “forget”+”input”, and “activation”+”memory”).

• Similar performance.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep LSTM Models

• LSTM model with one hidden layer (pixel labeling version):

• LSTM model with two hidden layers:
– As with regular RNNs,

activations feed into
next layer and next time.

– Each layer has own memory.
• Parameter tieing only within layers.

– Might have residual connections.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next Topic: Multi-Modal Models

Encoding-Decoding For Different Data Types

• Consider the encoding and decoding phase as separate “models”:

– Encoder takes a sequence and returns a set of numbers.

– Decoding takes a set of numbers and outputs a sequence.

• We have also seen encoding and decoding of images:

– Encoder takes an image and returns a set of numbers.

– Decoder takes a set of numbers and outputs an image (or a class or set of labels).

z4 z5
z6 z7 z8

z3z2z1z0

x1
x2 x3

y1 y2 y3 y4 y5

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf

LSTMs for Image Captioning

• Use a CNN to do the encoding and an RNN to do the decoding.

• To train this model, we need images and corresponding captions.
– So the image encoder and sequence decoder are trained together.

https://arxiv.org/pdf/1411.4555.pdf

“What do we learn?”

• Sometimes it looks like models are smarter than they actually are.

– We have specifically picked on CNNs/RNNs, but applies to all ML methods.

– You should “try to break it”, not just “try to get it to work”.

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

Image Captioning Application: PDF to LaTeX

• Use CNN to encode an image, use RNN to decode LaTeX.

• Unlike generic image captioning, there is a “correct” label.

https://arxiv.org/pdf/1609.04938v1.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

Video Captioning Application: Lip Reading

• Unlike generic video captioning, there is a “correct” label.

https://www.youtube.com/watch?v=5aogzAUPilE

RNNs/CNNs for Poetry

• Generating poetry:

• Image-to-poetry:

• Movie script:

– https://www.youtube.com/watch?v=LY7x2Ihqjmc

https://medium.com/artists-and-machine-intelligence/adventures-in-narrated-reality-6516ff395ba3

https://www.youtube.com/watch?v=LY7x2Ihqjmc

Next Topic: Attention

Previously: Sequence-to-Sequence RNNs

• Sequence-to-sequence:
– Recurrent neural network for sequences of different lengths.

• Problem:
– All “encoding” information must be summarized by last state (z3 above).

– Might “forget” earlier parts of sentence.
• Or middle of sentence if using bi-directional RNN.

– Might want to “re-focus” on parts of input, depending on decoder state.

x1

z1

x2

z2

x3

z3 z4 z5
z0

y1 y2

Attention

• Many recent systems use “attention” to focus on parts of input.

– Including “neural machine translation” system of Google Translate.

• Many variations on attention, but usually include the following:

– Each decoding can use hidden state from each encoding step.

• Used to re-weight during decoding to emphasize important parts.
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

RNN vs. RNN with Attention Videos

Not-Very-Practical Attention
• A naïve “attention” method (no one uses this, but idea is similar):

– At each decoding step, weight decoder state (as usual) and weight all encoder states.

– Another variation on “skip connections”.
– But this variant is not practical since number of decoding weights depends on input size.

• Practical variations try to summarize encoder information through a “context vector”.

x1

z1

x2

z2

x3

z3 z4 z5
z0

y1 y2

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Context Vectors

• A common way to generate the context vector:
– Take current decoder state.

– Compute inner product with each encoder state.
• Gives a scalar for each encoding “time”.

– Pass these scalars through the softmax function.
• Gives a normalized weight for each time (what was previously shown in pairwise tables).

– Multiply each encoder state by probability, add them up.
• Gives fixed-length “context vector”.

• Alternate notation (like a hash function):
– Input is “queries” and “keys”.

– Output is “values”.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Context Vectors

• A common way to generate the context vector:
– Take current decoder state.

– Compute inner product with each encoder state.
• Gives a scalar for each encoding “time”.

– Pass these scalars through the softmax function.
• Gives a normalized weight for each time (can be shown in pairwise tables).

– Multiply each encoder state by probability, add them up.
• Gives fixed-length “context vector”.

• Alternate notation (like a hash function):
– Input is “queries” and “keys”.

– Output is “values”.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Using Context Vectors for Attention
• Context vector is usually appended to decoder’s state when going to next layer.

– Output could be generated directly from this, or passed through a neural net.
– Common variation is “multi-headed attention”: can get scores from different aspects.

• Uses multiple context vetors (idea is might have one for grammar, one for tense, and so on).
• Each is appended to decoder state when going to next layer.
• Context vectors are usually not included when updating the decoder state temporally.

• Remember that we train the encoder and decoder at the same time.
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Multi-Modal Attention

• Attention for image captioning:

https://arxiv.org/pdf/1502.03044.pdf

Biological Motivation for Attention

• Gaze tracking:
– https://www.youtube-nocookie.com/embed/QUbiHKucljw

• Selective attention test:
– https://www.youtube-nocookie.com/embed/vJG698U2Mvo

• Change blindness:
– https://www.youtube-nocookie.com/embed/EARtANyz98Q

• Door study:
– https://www.youtube-nocookie.com/embed/FWSxSQsspiQ

https://www.youtube-nocookie.com/embed/QUbiHKucljw
https://www.youtube-nocookie.com/embed/vJG698U2Mvo
https://www.youtube-nocookie.com/embed/EARtANyz98Q
https://www.youtube-nocookie.com/embed/FWSxSQsspiQ

Neural Turing/Programmers

• Many interesting variations on memory/attention.

– A getting-out-of-date survey: https://distill.pub/2016/augmented-rnns

– We will focus next on a wildly-popular variant called “transformers”.
https://www.facebook.com/FBAIResearch/posts/362517620591864

https://distill.pub/2016/augmented-rnns

Next Topic: Transformers

Convolutions for Sequences?

• Should we really be going through a sequence sequentially?

– What if stuff in the middle is really important, and changes meaning?

• Recent works have explored using convolutions for sequences.

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f

Digression: Dilated Convolutions (“a trous”)

• Best CNN systems have gradually reduced convolutions sizes.
– Many modern architectures use 3x3 convolutions, far fewer parameters.

• Sequences of convolutions take into account larger neighbourhood.
– 3x3 convolution followed by another gives a 5x5 neighbourhood.
– But need many layers to cover a large area.

• Alternative recent strategy is dilated convolutions (“a trous”).

• Not the same as “stride” in a CNN:
– Doing a 3x3 convolution at all locations, but using pixels that are not adjacent.

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
https://github.com/vdumoulin/conv_arithmetic

Dilated Convolutions (“a trous”)

• Modeling music and language and with dilated convolutions:

https://arxiv.org/pdf/1610.10099.pdf
https://arxiv.org/pdf/1609.03499.pdf

RNNs/CNNs/Attention for Music and Dance

• Music generation:

– https://www.youtube.com/watch?v=RaO4HpM07hE

• Text to speech and music waveform generation:

– https://deepmind.com/blog/wavenet-generative-model-raw-audio

• Dance choreography:

– http://theluluartgroup.com/work/generative-choreography-using-deep-learning

• Music composition:

– https://www.facebook.com/yann.lecun/videos/10154941390687143

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning
https://www.facebook.com/yann.lecun/videos/10154941390687143

Transformer Networks
• CNNs are less sequential, but take multiple steps to combine distant information.
• “Attention is all you need”: keep the attention, ditch the RNN/CNN.

– Constant time to transfer across positions.
– Uses “self-attention” layers to model relationship between all words in input.

• Queries/keys/values all come from input in these steps.

• Sequence of representations of words, each depending on all other words.

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf

Transformer Networks
• CNNs are less sequential, but take multiple steps to combine distant information.
• “Attention is all you need”: keep the attention, ditch the RNN/CNN.

– Constant time to transfer across positions.
– Uses “self-attention” layers to model relationship between all words in input.

• Take weighted combinations of each input to generate a “key”, a “value”, and a “query”.
• Compute inner product between “query” from word with “key” for each word to give scalar “score”.
• Compute softmax of “scores”, multiplied by word’s “value”, add these across words to get context vector.

• Many variations exist.

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Transformer Networks

• Multiple “self-attention” layers in transformers replacing RNN/CNN.

– Has improved on state of the art results in many tasks.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer Networks: Practical Issues

• “Self-attention” layers are basis for transformer networks.

– Simple idea, but practical systems have a lot of moving pieces.

• Problem: position information is lost (self-attention is unordered).

– “Position representations” are additional variables added to each layer.

• Problem: information about the future can be visible in the past.

– During training, prevent decoder from looking ahead.

• Further “standard” tricks to make it work better:

– Multi-headed attention, skip/residual connections, and layer normalization.

– Between layers, pass each embedding through a feedforward neural network.

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf

Transformer Architecture (from paper)

https://arxiv.org/pdf/1706.03762.pdf

Subsequent Work

• BERT: incredibly-popular model in natural language processing.
– Transformer model trained on masked sentences to predict masked words.
– Then fine-tune the architecture on specific applications.

• Transformers also form basis for other advanced language models (GPT).
• Transformers have been adapted to images, music, and so on.

– Also see the reformer for decreasing the quadratic cost of transformers.
https://arxiv.org/pdf/1810.04805.pdf

https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html?m=1

What are we learning?

• Single-character attacks on Bert can lower accuracy from 90 to 45%.

• Large datasets used to train often contain some toxic content.
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2110.01963.pdf

Large Language Models (LLMs) and OpenAI’s GPT-3

• One of the most widely-used methods is GPT-3:

– Recent “large language model” model.

• Full version has 175 billion parameters.

• Costs several million dollars to train.

• Basically “has seen everything on the internet”.

– Basis for many modern language applications.

– See the paper for a starting point on where we
are (and are not) in terms of language understanding.

https://arxiv.org/pdf/2005.14165.pdf

More Applications
• Generating memes:

– https://github.com/alpv95/Dank-Learning

• Generating Wikipedia articles:
– https://arxiv.org/pdf/1801.10198.pdf

• Talking with historical figures:
– https://www.besttechie.com/aiwriter-uses-openai-to-simulate-conversations-with-historical-figures/

• Generating music:
– https://magenta.tensorflow.org/music-transformer

• Writing code:
– https://copilot.github.com

• Generating video game content:
– https://play.aidungeon.io/main/home

https://github.com/alpv95/Dank-Learning
https://arxiv.org/pdf/1801.10198.pdf
https://www.besttechie.com/aiwriter-uses-openai-to-simulate-conversations-with-historical-figures/
https://magenta.tensorflow.org/music-transformer
https://copilot.github.com/
https://play.aidungeon.io/main/home

LLMs and Few-Shot Learning

• Large language models like GPT-3 often work well in new
applications with little or no
“fine-tuning” on the application
(pre-training does almost
everything).

https://arxiv.org/pdf/2005.14165.pdf

Prompt Engineering in LLMs

• A lot current work focuses on prompt engineering:
– Trying to design input text for LLMs that give us the output we want.

• There are also papers on trying to learn the prompts.
– This is a very different way to learn how to solve a problem!

https://arxiv.org/pdf/2201.11903.pdf

Prompt Engineering in LLMs

• LLMs themselves have “hidden” prompt engineering:

https://twitter.com/goodside/status/1598253339732344832?s=20&t=HyyU0GifsH12gTHvHZthVw

New this Week: ChatGPT (chat.openai.com)

https://twitter.com/amasad/status/1598042665375105024/photo/1
https://twitter.com/jdjkelly/status/1598021488795586561/photo/2
https://twitter.com/goodside/status/1598129631609380864/photo/1
https://twitter.com/charlesdev7/status/1600114147928121344/photo/1

New this Week: ChatGPT (chat.openai.com)

https://twitter.com/michael_nielsen/status/1598470071634251776/photo/1
https://twitter.com/keithwynroe/status/1598375944380887045/photo/1
https://twitter.com/raphaelmilliere/status/1598469100535259136/photo/1
https://twitter.com/armandjoulin/status/1598258681086644226/photo/1

New this Week: ChatGPT (chat.openai.com)

• Does not “know what it does not know”.

– Will confidently give wrong answers, or even make up facts.

https://twitter.com/itstimconnors/status/1599544717943123969?s=20&t=aWZUdPD-bUzLgZ9ojs-_uQ

Not good at math/logic yet

https://twitter.com/WesPegden/status/1598818993711652864/photo/1
https://twitter.com/SimpleTeo/status/1598471152657223682/photo/1
https://twitter.com/yoavgo/status/1598336390185500673/photo/1
https://twitter.com/mahdi_tcs/status/1599504289998655488/photo/1

https://twitter.com/goodside/status/1598253337400717313/photo/1
https://twitter.com/goodside/status/1598760079565590528?s=20&t=DBHrSi2FofplgMEfNzGQAQ

Malicious and Jailbreaking Prompt Engineering

https://twitter.com/spiantado/status/1599462375887114240/photo/1
https://twitter.com/NickEMoran/status/1598101579626057728/photo/1
https://twitter.com/m1guelpf/status/1598203861294252033/photo/1
https://twitter.com/parafactual/status/1598212029479026689/photo/1
https://twitter.com/Lithros/status/1598560176776351745/photo/3

Does the Model Understand Language?

https://twitter.com/chrmanning/status/1598752936762691584?s=20&t=DBHrSi2FofplgMEfNzGQAQ

Next Topic: Brief Course Wrap-Up

Further CPSC Courses

• CPSC 330: “Applied Machine Learning”.

– Some overlap in content, but focus is different:

• Emphasis on “how to use packages”, and other steps of the data processing pipeline

• CPSC 422: “Intelligent Systems”.

– Often covers a variety of related topics including reinforcement learning.

• CPSC 440: “Advanced Machine Learning”.

– Intended as a sequel to this class, but not taught by me this year.

• CPSC 5XX courses:

– If you are near the end of your degree with good grades, lots of cool stuff.

Concluding Remarks

• I took my first AI/ML course in 2002.
– I have never been as excited about what ML can do than in 2022.

• But, there is a lot of bull-shit out there too!
– Do not believe everything you hear, and try to avoid producing non-sense.

– “Calling Bullshit in the Age of Big Data”:
• https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

• Thank you for your patience.
– Andreas’ first time teaching and my first time parenting.

• Good luck with finals/projects and the next steps!

https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

