CPSC 340:
Machine Learning and Data Mining

Autoencoders and Multi-Label
Fall 2022

Last Time: Convolutional Neural Networks

* We discussed convolutional neural network:
— Neural networks where layers perform several convolutions.
— Drastically reduces number of parameters and computation time.
— Gains a degree of translation invariance (“object can appear anywhere”).

e I o
IS S
=
1

FEATURE LEARNING CLASSIFICATION

* ImageNet: Millions of labeled images, 1000 object classes.
— Led to popularization of CNNs and deep learning across computer vision.

— Led to many insights about how to train CNNs and construct architectures.
* ImageNet + CNNs is arguably most influential computer vision work of all time.

@ Autoencoders

"t lonock " Ny or
Qi

(D ®
O
O e

N

Siclene

] “decode

* Autoencoders are neural networks with same input and output.
— Includes a bottleneck layer: with dimension ‘k” smaller than input ‘d’.
— First layers “encode” the input into bottleneck.
— Last layers “decode” the bottleneck into a (hopefully valid) input.

Autoencoders

—> Encoder —>E—> Decoder —>

Original
input

Reconstructed
input

Compressed
representation

* This is an unsupervised learning method.
— There are no labels ‘y.".
e Relationship to principal component analysis (PCA):

— With squared error and linear network (no non-linear ‘h’), equivalent to PCA.
» Size of bottleneck layer gives number of latent factors ‘k” in PCA.

— With non-linear transforms: a non-linear/deep generalization of PCA.

Encoder as Learning a Representation

* Consider the encoder part of the network:
— Takes features ‘x,” and makes low-dimensional ‘z”.

G O%é
D Wals

* Can use encoded z, for the usual latent-factor tasks:
— Compression, visualization, interpretation.

— Can add a supervised ‘y” to final layer of trained autoencoder, fit with SGD.
e Called “unsupervised pre-training” (often easy to get a lot of unlabeled data).

PCA vs. Deep Autoencoder (Document Data)

European Community
Interbank markets monetary/economic

Disasters and
accidents

3

-’

Leading economic® - kel S ’}\ i ﬁ&_’ “ Legal/judicial

: T " .
indicators . g L 2 - .
. i . W -
; “ = .-,-"‘ e Government
R Accounts/ . "5: ‘;’ borrowings
/i . eamings ; xé’

(this was before t-SNE came out)

Decoder as Generative Model

* Consider the decoder part of the network:
— Takes low-dimensional ‘z/ and makes features ‘X"

"Dt lonock " lay or

S0
O ()
&

L‘Crlﬂw "

* Can be used for outlier detectlon.
— Check distance to original features to detect outliers.

 Can be used to generate new data:
— The ‘z/ close to training data might generate new reasonable x; values.

Font Manifold

* Going from z to X; for different fonts:

Please drag the black and white circle around the heat map to explore the 2D fant manifold.

Select Character: |t

* Demo here. "
— The above was not actually generated by an autoencoder.
— But the decoder part of autoencoders is trying to do something like this.

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Neural Networks with Multiple Outputs

Previous neural networks we have seen only have 1 output ‘y;.
In autoencoders, we have ‘d” outputs (one for each feature)

>”< < bW H K)) 07"
=y, h(w* bk (w'e)) x, = Vh(Wh(’ h(w's))) @ O (%)

%, =y h(w W’ b’ b)) D ®
For training, we add up the loss across all ‘j D)
5= uwuwm)) wr" L)L desde”

Fwwiv)= fi(xd—x)z flw,wyv)- if’vs“w(m»
W

' | J-l | \) =/
%]u} istic loss for b o ¢ry
Squaoh Orrof TOf xii € 7-14)
(01\\%\}0\/\} Xy d) ?) j
Fit with SGD (sampling random ‘i’), and usual deep learning tricks can be used.
— Even though network has multiple outputs, ‘" is a scalar so AD works as before.

— For images, may want to use convolution layers.

Denoising Autoencoders

* A common variation on autoencoders is denoising autoencoders:
— Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

—| Encoder

-

Moisily input

— “Learn a model that removes the noise”.

Compressed

Decoder

o

representation

Denoised image

» Often easy to get lots of training data, just add noise to “clean” data.
* You can apply the model to denoise new images.
* Does not necessarily need a “bottleneck” layer.

Image Colourization

! r

s 3

Colorado National Park, 19;1"1

. e ™ e 3 e 5" "
L ‘f' s . ;:_L') - s
Berry Field, June 1909 Hamilton, 1936

Textile Mill, June 1937

* Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html

* Video: https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY

Image Colourization

* |nstead of noisy inputs, you use de-coloured inputs:

HXW

HXW Lumipance
(Input 1mage)

Colorization
Mid-Level Features Network

HXW

Network _ H W
’ Fusion layer 777
LOW'LeVCI %\’ aa, ::\{.;!;
s w7
Features H W
Network . 878 | Upsampling
i, g
Chrominance
“
= - 20.60% Formal Garden

s === Classification i?igz//" i{)‘;h

_- 2.9V0% (%
ol Network 7.07% Botanical Garden
Global Features Network 6.53% Golf Course

* Another application is super-resolution:
— Learn to output a high-resolution image based on low-resolution images.

112x112
56X56 28%28

Predicted labels

Next Topic: Multi-Label Classification

Motivation: Multi-Label Classification

e Consider multi-label classification:

rf"“r A09 person chur Mouse

g) 20N N N
<l « | | -~
X: \,/: Uy B R
N L= N
N
| R B

L T

person

 Which of the ‘k’” objects are in this image? F. - L lchair

— There may be more than one “correct” class label.

Independent Classifier Approach

* One way to build a multi-label classifier:

— Train a classifier for each label.

* Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
* Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.

— To make predictions for the ‘k’ classes.

* Apply all each label’s binary classifier.
* Predict all the resulting +1 values as the set of labels.

 Drawbacks:
— Lots of parameters: k*(number of parameters for base classifier).

— Each classifier needs to “relearn from scratch”.

* Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
e Alot of visual features for “dog” might also help us predict “cat”.

Encoding-Decoding for Multi-Label Classification

* Multi-label classification with an encoding-decoding approach:
— Input is connected to a hidden layer.
— Hidden layer is connected to multiple output units. -
0 = v h(W)
| |

@—® "
(A D o=y AW
7)) ————s (Wa) YA

\ N "L g
@ y-z \/3 (W‘)

L L ‘["M‘

* Prediction: compute hidden layer and activations, compute vector of outputs, take sign element-wise:
S!gn(V I"\(WX;)}

 Number of parameters and cost is O(dk + km) for ‘m’ classes and ‘k’ hidden units.
— If we trained a separate network for each class, number of parameters and cost would be O(dkm) (“W’ for each class).

* Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.

Encoding-Decoding for Multi-Label Classification

e Using sigmoid likelihood, negative log-likelihood we optimize for MLE:

w X
4(\(W \/) = Z -\ ! L |
) Ki’c:‘ 'Oc)(lfé’xp(e Ve In(Wx)))
* Use backpropagation or AD to compute gradient, train by SGD.
— You randomly sample a training example ‘i’ and compute gradient for all labels.
— The updates of ‘W’ lead to features that are useful across classes.

— The updates of ‘V’ focus on getting the class labels right given the features.

* Important:
— Above we are assuming independence of labels given the last layer.

— But the last layer can reflect dependencies.

* If “dog” and “human” are frequently together, this should be reflected in the hidden layer.
— For example, ;. for “human” might be higher when we have a high J,. value for “dog”.

Pre-Training for Multi-Label Classification

* Consider a scenario where we get a new class label.
— For example, we get new images that contain horses (not seen in training).

* |Instead of training from scratch, we could:
— Add an extra set of weights v, ., to the final layer for the new class.

— Train these weights with the encoding weights ‘W’ fixed.
* This is a simple/convex/easy logistic regression problem.

* If we already have “features” that are good for many classes,
we may be able to learn a new class with very-few training examples!

Pre-Training for Multi-Label Classification

* Using an existing network for new problems is called “pre-training”
— Typically, we start with a network trained on a large dataset.
— We use this network to give us features to fit a smaller dataset.

* “Few-shot learning”.

* Depending the setup, you may also update ‘W’ and the other ‘v..
— Useful if you have a lot of data on the new class.
— In this case, would typically mix in new examples with old ones.

* Increasing trend in vision and language to using pre-training a lot.
— No need to learn everything about vision/language for every task!

