CPSC 340:
Machine Learning and Data Mining

Autoencoders and Multi-Label
Fall 2022



Last Time: Convolutional Neural Networks

* We discussed convolutional neural network:
— Neural networks where layers perform several convolutions.
— Drastically reduces number of parameters and computation time.
— Gains a degree of translation invariance (“object can appear anywhere”).

e I o
IS S
=
1

FEATURE LEARNING CLASSIFICATION

* ImageNet: Millions of labeled images, 1000 object classes.
— Led to popularization of CNNs and deep learning across computer vision.

— Led to many insights about how to train CNNs and construct architectures.
* ImageNet + CNNs is arguably most influential computer vision work of all time.



@ Autoencoders
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* Autoencoders are neural networks with same input and output.
— Includes a bottleneck layer: with dimension ‘k” smaller than input ‘d’.
— First layers “encode” the input into bottleneck.
— Last layers “decode” the bottleneck into a (hopefully valid) input.



Autoencoders
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* This is an unsupervised learning method.
— There are no labels ‘y.".
e Relationship to principal component analysis (PCA):

— With squared error and linear network (no non-linear ‘h’), equivalent to PCA.
» Size of bottleneck layer gives number of latent factors ‘k” in PCA.

— With non-linear transforms: a non-linear/deep generalization of PCA.



Encoder as Learning a Representation

* Consider the encoder part of the network:
— Takes features ‘x,” and makes low-dimensional ‘z”.
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* Can use encoded z, for the usual latent-factor tasks:
— Compression, visualization, interpretation.

— Can add a supervised ‘y” to final layer of trained autoencoder, fit with SGD.
e Called “unsupervised pre-training” (often easy to get a lot of unlabeled data).




PCA vs. Deep Autoencoder (Document Data)
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(this was before t-SNE came out)



Decoder as Generative Model

* Consider the decoder part of the network:
— Takes low-dimensional ‘z/ and makes features ‘X"
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* Can be used for outlier detectlon.
— Check distance to original features to detect outliers.

 Can be used to generate new data:
— The ‘z/ close to training data might generate new reasonable x; values.




Font Manifold

* Going from z to X; for different fonts:

Please drag the black and white circle around the heat map to explore the 2D fant manifold.

Select Character: |t

* Demo here. "
— The above was not actually generated by an autoencoder.
— But the decoder part of autoencoders is trying to do something like this.



http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Neural Networks with Multiple Outputs

Previous neural networks we have seen only have 1 output ‘y;.
In autoencoders, we have ‘d” outputs (one for each feature)
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Fit with SGD (sampling random ‘i’), and usual deep learning tricks can be used.
— Even though network has multiple outputs, ‘" is a scalar so AD works as before.

— For images, may want to use convolution layers.



Denoising Autoencoders

* A common variation on autoencoders is denoising autoencoders:
— Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.
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— “Learn a model that removes the noise”.
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» Often easy to get lots of training data, just add noise to “clean” data.
* You can apply the model to denoise new images.
* Does not necessarily need a “bottleneck” layer.



Image Colourization
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* Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html

* Video: https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY



http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY

Image Colourization

* |nstead of noisy inputs, you use de-coloured inputs:
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* Another application is super-resolution:
— Learn to output a high-resolution image based on low-resolution images.
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Next Topic: Multi-Label Classification



Motivation: Multi-Label Classification

e Consider multi-label classification:
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 Which of the ‘k’” objects are in this image? F. - L lchair

— There may be more than one “correct” class label.




Independent Classifier Approach

* One way to build a multi-label classifier:

— Train a classifier for each label.

* Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
* Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.

— To make predictions for the ‘k’ classes.

* Apply all each label’s binary classifier.
* Predict all the resulting +1 values as the set of labels.

 Drawbacks:
— Lots of parameters: k*(number of parameters for base classifier).

— Each classifier needs to “relearn from scratch”.

* Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
e Alot of visual features for “dog” might also help us predict “cat”.



Encoding-Decoding for Multi-Label Classification

* Multi-label classification with an encoding-decoding approach:
— Input is connected to a hidden layer.
— Hidden layer is connected to multiple output units. -
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* Prediction: compute hidden layer and activations, compute vector of outputs, take sign element-wise:
S!gn( V I"\( WX;)}

 Number of parameters and cost is O(dk + km) for ‘m’ classes and ‘k’ hidden units.
— If we trained a separate network for each class, number of parameters and cost would be O(dkm) (“W’ for each class).

* Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.



Encoding-Decoding for Multi-Label Classification

e Using sigmoid likelihood, negative log-likelihood we optimize for MLE:
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* Use backpropagation or AD to compute gradient, train by SGD.
— You randomly sample a training example ‘i’ and compute gradient for all labels.
— The updates of ‘W’ lead to features that are useful across classes.

— The updates of ‘V’ focus on getting the class labels right given the features.

* Important:
— Above we are assuming independence of labels given the last layer.

— But the last layer can reflect dependencies.

* If “dog” and “human” are frequently together, this should be reflected in the hidden layer.
— For example, ;. for “human” might be higher when we have a high J,. value for “dog”.



Pre-Training for Multi-Label Classification

* Consider a scenario where we get a new class label.
— For example, we get new images that contain horses (not seen in training).

* |Instead of training from scratch, we could:
— Add an extra set of weights v, ., to the final layer for the new class.

— Train these weights with the encoding weights ‘W’ fixed.
* This is a simple/convex/easy logistic regression problem.

* If we already have “features” that are good for many classes,
we may be able to learn a new class with very-few training examples!



Pre-Training for Multi-Label Classification

* Using an existing network for new problems is called “pre-training”
— Typically, we start with a network trained on a large dataset.
— We use this network to give us features to fit a smaller dataset.

* “Few-shot learning”.

* Depending the setup, you may also update ‘W’ and the other ‘v..
— Useful if you have a lot of data on the new class.
— In this case, would typically mix in new examples with old ones.

* Increasing trend in vision and language to using pre-training a lot.
— No need to learn everything about vision/language for every task!



