
CPSC 340:
Machine Learning and Data Mining

Autoencoders and Multi-Label

Fall 2022



Last Time: Convolutional Neural Networks

• We discussed convolutional neural network:
– Neural networks where layers perform several convolutions.

– Drastically reduces number of parameters and computation time.

– Gains a degree of translation invariance (“object can appear anywhere”).

• ImageNet: Millions of labeled images, 1000 object classes.
– Led to popularization of CNNs and deep learning across computer vision.

– Led to many insights about how to train CNNs and construct architectures.
• ImageNet + CNNs is arguably most influential computer vision work of all time.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Autoencoders

• Autoencoders are neural networks with same input and output.

– Includes a bottleneck layer: with dimension ‘k’ smaller than input ‘d’.

– First layers “encode” the input into bottleneck.

– Last layers “decode” the bottleneck into a (hopefully valid) input.



Autoencoders

• This is an unsupervised learning method.
– There are no labels ‘yi’.

• Relationship to principal component analysis (PCA):
– With squared error and linear network (no non-linear ‘h’), equivalent to PCA.

• Size of bottleneck layer gives number of latent factors ‘k’ in PCA.

– With non-linear transforms: a non-linear/deep generalization of PCA.
https://blog.keras.io/building-autoencoders-in-keras.html



Encoder as Learning a Representation

• Consider the encoder part of the network:
– Takes features ‘xi’ and makes low-dimensional ‘zi’.

• Can use encoded zi for the usual latent-factor tasks:
– Compression, visualization, interpretation.

– Can add a supervised ‘yi’ to final layer of trained autoencoder, fit with SGD.
• Called “unsupervised pre-training” (often easy to get a lot of unlabeled data).



PCA vs. Deep Autoencoder (Document Data)

https://www.cs.toronto.edu/~hinton/science.pdf (this was before t-SNE came out)



Decoder as Generative Model

• Consider the decoder part of the network:
– Takes low-dimensional ‘zi’ and makes features ‘ ො𝑥i’.

• Can be used for outlier detection:
– Check distance to original features to detect outliers.

• Can be used to generate new data:
– The ‘zi’ close to training data might generate new reasonable xi values.



Font Manifold

• Going from zi to ො𝑥𝑖 for different fonts:

• Demo here.
– The above was not actually generated by an autoencoder.

– But the decoder part of autoencoders is trying to do something like this.

http://entangled.systems/fragments/20160729-learning-a-manifold-of-fonts-machine-learning-research-from-2014-by-dr-neill-campbell-provides-an-interactive-exploration-of.html

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html


Neural Networks with Multiple Outputs
• Previous neural networks we have seen only have 1 output ‘yi’.
• In autoencoders, we have ‘d’ outputs (one for each feature).

• For training, we add up the loss across all ‘j’:

• Fit with SGD (sampling random ‘i’), and usual deep learning tricks can be used.
– Even though network has multiple outputs, ‘f’ is a scalar so AD works as before.
– For images, may want to use convolution layers.



Denoising Autoencoders

• A common variation on autoencoders is denoising autoencoders:
– Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

– “Learn a model that removes the noise”. 
• Often easy to get lots of training data, just add noise to “clean” data.

• You can apply the model to denoise new images.

• Does not necessarily need a “bottleneck” layer.

https://pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/



• Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html

• Video: https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube-nocookie.com/embed/ys5nMO4Q0iY


• Instead of noisy inputs, you use de-coloured inputs:

• Another application is super-resolution:
– Learn to output a high-resolution image based on low-resolution images.

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/



Next Topic: Multi-Label Classification



Motivation: Multi-Label Classification

• Consider multi-label classification:

• Which of the ‘k’ objects are in this image?

– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/



Independent Classifier Approach

• One way to build a multi-label classifier:
– Train a classifier for each label.

• Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
• Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.
• …

– To make predictions for the ‘k’ classes.
• Apply all each label’s binary classifier.
• Predict all the resulting +1 values as the set of labels.

• Drawbacks:
– Lots of parameters: k*(number of parameters for base classifier).
– Each classifier needs to “relearn from scratch”.

• Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
• A lot of visual features for “dog” might also help us predict “cat”.



Encoding-Decoding for Multi-Label Classification

• Multi-label classification with an encoding-decoding approach:
– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

• Prediction: compute hidden layer and activations, compute vector of outputs, take sign element-wise:

• Number of parameters and cost is O(dk + km) for ‘m’ classes and ‘k’ hidden units.
– If we trained a separate network for each class, number of parameters and cost would be O(dkm) (‘W’ for each class).

• Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.



Encoding-Decoding for Multi-Label Classification

• Using sigmoid likelihood, negative log-likelihood we optimize for MLE:

• Use backpropagation or AD to compute gradient, train by SGD.
– You randomly sample a training example ‘i’ and compute gradient for all labels.

– The updates of ‘W’ lead to features that are useful across classes.

– The updates of ‘V’ focus on getting the class labels right given the features.

• Important:
– Above we are assuming independence of labels given the last layer.

– But the last layer can reflect dependencies.
• If “dog” and “human” are frequently together, this should be reflected in the hidden layer.

– For example, ො𝑦𝑖𝑐 for “human” might be higher when we have a high ො𝑦𝑖𝑐 value for “dog”.



Pre-Training for Multi-Label Classification

• Consider a scenario where we get a new class label.
– For example, we get new images that contain horses (not seen in training).

• Instead of training from scratch, we could:
– Add an extra set of weights vk+1 to the final layer for the new class.

– Train these weights with the encoding weights ‘W’ fixed.
• This is a simple/convex/easy logistic regression problem.

• If we already have “features” that are good for many classes,
we may be able to learn a new class with very-few training examples!



Pre-Training for Multi-Label Classification

• Using an existing network for new problems is called “pre-training”

– Typically, we start with a network trained on a large dataset.

– We use this network to give us features to fit a smaller dataset.

• “Few-shot learning”.

• Depending the setup, you may also update ‘W’ and the other ‘vc’.

– Useful if you have a lot of data on the new class.

– In this case, would typically mix in new examples with old ones.

• Increasing trend in vision and language to using pre-training a lot.

– No need to learn everything about vision/language for every task!


