Next Topic: Recurrent Neural Networks

Motivation: Part of Speech (POS) Tagging

Consider predicting part of speech for each word in a sentence:

e ceo0

seashells on seashore

se]ls

Input is a sequence of words.
— Could be represented as “1 of k” or using continuous vectors like word2vec.

Output is a categorical label for each word.

— In English there are more than 40 categories.
* And there are some dependencies in labels (like “only 1 verb in the sentence”).

General problem: sequence labeling.
— Biological sequences, various language tasks, sound processing.

Individual Word Neural Network Classifier
Tﬂf'e[The,? Tred: yL/

A '“m

@@ <f ?@5 \@@ a0

72
e We could train a neural network to predict IabeI of a given word.

— Picture has 1 input feature for each time.
* But each time might have multiple features (if we use something like word2vec).

— We are also not showing the non-linear transform or bias variables.
e But this type of model would not capture dependencies.

— Information from earlier in sentence does influence prediction.
 The word “desert” could be a noun or a verb depending on context.

Recurrent Neural Network for Sequence Labeling

* Recurrent neural networks (RNNs):
— Add connections between adjacent different times to model dependencies.
— Add an
— Use the same parameters across time.

* Repeating parameters in different places is called parameter tieing.
— We previously saw convolutions, which use parameter tieing across space.
— By tieing parameters across time, RNNs can label sequences of different lengths.

Recurrent Neural Network for Sequence Labeling

\ >

NNNT———=C

\

\ |

\/1 = \/L'(Zt> Z{' —_ Wxt —+ ut)(7t-'> ﬂ/ame"755 M§ \4 [/(.
W\,YJ /\”"/ (CMJ /KS/[// ZD)
,V,cl:we a malviv We /1/'; on hlvuap wni R
Cavie Wg .’ iy L “? 7 om0 ing at r 7 Qi Hrme

ore c’o)07 mef‘C"‘?S
V 1
c f‘g{ '/t Voc o im
°"" May 4* cark Vine

Recurrent Neural Network Inference

A ¢ xm

B MHZﬁ) “ Wi,
mv | o

— Assume we have:
* ‘k’ different classes that each y, can take.
* ‘m’ hidden units at each time.
* ‘T’ times (length of sequene).
— Cost to compute all y; if each time has ‘m’ units and we have ‘T’ times:
* We need to do an O(md) operations ‘T’ times to compute Wx, for all ‘t’.
* We need to do an O(km) operation ‘T’ times to compute y; for all ‘t’.
* We also need to do a O(m?) operation ‘T’ times to compute each z, (‘U” multiplications).
» Total cost: O(tmd + tkm + tm?).

— For the likelihood, we could use an independent softmax for each time.
* p(yl;T I X1;T) W; VI U) = p(yl I X1) W; VI U)p(y2 | X1;2; W; VI U)”'p(YT | X1;TI W; Vr U)
— Where each p(yt | x1:T, W, V, U) is given by softmax over y; values.

RNN Learning

* The objective function we use to train RNNs is the NLL:

nooT
"\(M/) \/)"()‘: -iztf ,09 ,o(yt' lX;’:r, |/14 '{U)
= =y
— In the above | assume all sequences have the same length ‘T".
e But in practice you will often have sequences of different lengths.

 Computing gradient called “backpropagation through time” (BTT).

— Equations are the same as usual backpropagation/chain-rule.
* If you do it by hand, make sure to add all terms for tied parameters.

— Automatic differentiation is commonly used.

e Usually trained with SGD.

— Sample an example ‘i’ on each iteration, do BTT, update all parameters.
— which has usual challenges.

RNN Learning — Extra Challenges

* Unfortunately, training RNNs presents some extra challenges:

— Computing gradient requires a lot of memory for long sequences.
* There are a lot intermediate calculations.
* Make sure AD package handles matrix multiplication.

— Parameter tieing often leads to vanishing/exploding gradient problems.
e Consider a linear RNN and just consider the temporal ‘U’ updates:
— zb=U*U*U*..-*U*z, = U'z,.
— For typical z,,, the quantity z, either diverges exponentially or converges to zero exponentially.

» If largest singular value of ‘U’ is > 1, | |z, | | increases exponentially with ‘L.
» If largest singular value of ‘U’ is< 1, ||z, | | converges to zero exponentially with ‘L.

— Usual SGD methods tend not to work well.
* Often need to use optimizers like Adam or use gradient clipping: if [|gll > u
— If norm of gradient is larger than some threshold, “shrink” norm to threshold:
* People are trying to explore initialization/keeping ‘U’ orthogonal. IR
— So that all singular values are 1 (some positive and negative results on this).

* |nstead of drawing this:

* We often use diagrams like this: *~ *~ E’T

— Up to some notation changes. 7~ "7 —

t - 1)) t \y<1>/ \y< >., Lﬁd))

— We connect everything in blocks o o e = | T ¥ T | L
connected by arrows. A

4 ST
:a[2]<0> — — - ...

* Deep RNNs add multiple hidden layers at each time: . = = ©

o 1

Bi-Directional RNNs

 Sometimes later information later changes meaning:

— "I've had a perfectly wonderful evening, but this wasn't it."

e “Paraprosdokian”.

* Bi-directional RNNs have hidden layers running in both directions:

— Use different parameters for the
forward and backward directions.

A <1>
Y

- vy
(A

~<2>
Y

<0>

‘

0\

s

AT >
)

f

— aS0>

Next Topic: Sequence to Sequence RNNSs

Motivating Problem: Machine Translation

e Consider the problem of machine translation:
— Input is text from one language.

— Qutput is text from another language with the same meaning.

This course is intended as a second or third university-level course on X Ce cours est concu comme un cours de deuxiéme ou troisieme

machine learning, a field that focuses on using automated data niveau universitaire sur I'apprentissage automatique, un domaine qui

analysis for tasks like pattern recognition and prediction. se concentre sur |'utilisation de I'analyse de données automatisée
pour des taches telles que la reconnaissance de formes et la
prédiction.

* A key difference with pixel labeling:

— Input and output sequences may have different lengths.

* We do not just “find the French word corresponding to the English word”.

— We may not know the output length.

Sequence-to-Sequence RNNs

* Sequence-to-sequence RNNs encode and decode sequences:
— Each encoding step has one word as input and no output.
— Each decoding step outputs one word and has no input.

— —

* Encoding and decoding steps use different tied parameters.

— Special “BOS” at end of input (says when encoding is done). » @ @
— Speical “EOS” at end of output (says when decodlng IS done) /-
(O hj

)

!
,EV\LOAIV\? X1

—_ —_— — —

—

Discussion: Sequence-to-Sequence Models

~A<1>

5 <Ty>‘
\,

* Representing input and outputs: ¢
— Could use lexicographic or word2vec representations.jf”j f'"{ j---*.‘---*.
— Could just have a single character at each time. I

* Could make more sense for some languages.
* May be able to better handle slang or typos.

* Loss function assuming mdependent labels given hidden states:

F, \"/ e)w V)= /ZJ? ,0() P 4 ”(;‘*72”7%(4‘7“" V)
567[7‘mx \,mlue faf word of /’US”
— Not that this is just trying to get the label right at each “time”.

(o O .
. o . . f/uh/n7~ "I'I/ﬂ
* It is not explicitly “trying to get the full sequence right”.

Dependent Predictions and Beam Search

e Standard RNNs assume conditional independence of J; values.
— We assume they are independent given the z, values (make inference easy).
— This makes inference easy, but y,; “forgets” what was used for y;_1.

* In many applications, you want to model dependencies in the y;.
— A common way to do this is to add edges like this:

f
oao0s

— This does not complicate training (where we know the y, values).

— But it makes decoding challenging since the y, are dependent.

* In this setting we typically use beam search to find a good assignment to the y, values.
— Stores ‘k’ current best decodings up to time ‘t’ (“consider ‘k’ best values of y, when computing y,”).
— Can be arbitrarily bad, but works if decoding is obvious as we go forwards in time.

Summary

Autoencoders:

— Neural network where the output is the input.

* Non-linear generalization of PCA.

— Encode data into a bottleneck layer, then decode predict original input.

— Can be used for visualization, compression, outlier detection, pre-training.
Denoising autoencoders train to uncorrupt/enhance images.

— Useful for removing noise, adding colour, super-resolution, and so on.
Encoding-Decoding approach to multi-label classification:

— Have all classes shared the same hidden layer(s).

— Reduces number of parameters.

— Models dependencies between classes, while keeping inference easy.
Pre-training:

— Use parameters from model trained a on large diverse dataset, to initialize SGD for new dataset.
Recurrent neural networks (RNNs):

— Neural networks for sequence prediction.

— Have connections between hidden units at adjacent times.

— Use parameter tieing across time.
* Allows sequences of different lengths.
* Leads to vanishing and exploding gradients.

Sequence-to-Sequence RNNs:
— Encoding phase takes in one input at a time until we reach “BOS”.
— Decoding phase outputs one output at a time until we output “EOS”.
— Allows input and output sequences whose lengths differ.

Next time: can machines understand language?

