Next Topic: Recurrent Neural Networks
Motivation: Part of Speech (POS) Tagging

• Consider predicting part of speech for each word in a sentence:

 - Input is a sequence of words.
 - Could be represented as “1 of k” or using continuous vectors like word2vec.
 - Output is a categorical label for each word.
 - In English there are more than 40 categories.
 • And there are some dependencies in labels (like “only 1 verb in the sentence”).
 - General problem: sequence labeling.
 - Biological sequences, various language tasks, sound processing.

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31
• We could train a neural network to predict label of a given word.
 – Picture has 1 input feature for each time.
 • But each time might have multiple features (if we use something like word2vec).
 – We are also not showing the non-linear transform or bias variables.
• But this type of model would not capture dependencies.
 – Information from earlier in sentence does influence prediction.
 • The word “desert” could be a noun or a verb depending on context.
Recurrent Neural Network for Sequence Labeling

- **Recurrent neural networks (RNNs):**
 - Add connections between adjacent different times to model dependencies.
 - Add an initial hidden state.
 - Use the same parameters across time.

- **Repeating parameters in different places is called parameter tying.**
 - We previously saw convolutions, which use parameter tying across space.
 - By tying parameters across time, RNNs can label sequences of different lengths.
Recurrent Neural Network for Sequence Labeling

\[\hat{y}_t = V h(z_t) \]

- We have a matrix 'V' because we are doing multi-class

\[z_t = W x_t + U h(z_{t-1}) \]

- Weights on temporal connections
- Hidden units at previous time

Parameters: \(W, V, U \)

(And possibly \(z_0 \))

Notice that we use the same matrices \(W, V, U \) for all times 't'.

Use \(y_t \) vector in softmax at each time.
Recurrent Neural Network Inference

\[\hat{y}_t = \underset{k \times m}{\text{max}} h(z_t) \quad z_t = Wx_t + Uh(z_{t-1}) \]

– Assume we have:
 • ‘k’ different classes that each \(\hat{y}_t \) can take.
 • ‘m’ hidden units at each time.
 • ‘T’ times (length of sequence).

– Cost to compute all \(\hat{y}_t \) if each time has ‘m’ units and we have ‘T’ times:
 • We need to do an \(O(md) \) operations ‘T’ times to compute \(Wx_t \) for all ‘t’.
 • We need to do an \(O(km) \) operation ‘T’ times to compute \(\hat{y}_t \) for all ‘t’.
 • We also need to do a \(O(m^2) \) operation ‘T’ times to compute each \(z_t \) (‘U’ multiplications).
 • Total cost: \(O(tmd + tkm + tm^2) \).

– For the likelihood, we could use an independent softmax for each time.
 • \(p(y_{1:T} \mid x_{1:T}, W, V, U) = p(y_1 \mid x_1, W, V, U)p(y_2 \mid x_{1:2}, W, V, U) \cdots p(y_T \mid x_{1:T}, W, V, U) \).
 – Where each \(p(y_t \mid x_{1:T}, W, V, U) \) is given by softmax over \(\hat{y}_t \) values.
RNN Learning

• The objective function we use to train RNNs is the NLL:

$$f(w, v, u) = -\sum_{i=1}^{n} \sum_{t=1}^{T} \log p(y_t | x_i, r, w, v, u)$$

 – In the above I assume all sequences have the same length ‘T’.
 • But in practice you will often have sequences of different lengths.

• Computing gradient called “backpropagation through time” (BTT).

 – Equations are the same as usual backpropagation/chain-rule.
 • If you do it by hand, make sure to add all terms for tied parameters.
 – Automatic differentiation is commonly used.

• Usually trained with SGD.

 – Sample an example ‘i’ on each iteration, do BTT, update all parameters.
 – which has usual challenges.
RNN Learning – Extra Challenges

• Unfortunately, training RNNs presents some extra challenges:
 – Computing gradient requires a lot of memory for long sequences.
 • There are a lot intermediate calculations.
 • Make sure AD package handles matrix multiplication.
 – Parameter tying often leads to vanishing/exploding gradient problems.
 • Consider a linear RNN and just consider the temporal ‘U’ updates:
 – \(z^L = U^LU^LU^LU^L \cdots U^LU^Lz_0 = U^Lz_0 \).
 – For typical \(z_0 \), the quantity \(z_L \) either diverges exponentially or converges to zero exponentially.
 » If largest singular value of ‘U’ is > 1, \(||z_L|| \) increases exponentially with ‘L’.
 » If largest singular value of ‘U’ is < 1, \(||z_L|| \) converges to zero exponentially with ‘L’.
 – Usual SGD methods tend not to work well.
 • Often need to use optimizers like Adam or use gradient clipping:
 – If norm of gradient is larger than some threshold, “shrink” norm to threshold:
 • People are trying to explore initialization/keeping ‘U’ orthogonal.
 – So that all singular values are 1 (some positive and negative results on this).
Deep RNNs

• Instead of drawing this:

• We often use diagrams like this:
 – Up to some notation changes.
 – We connect everything in blocks connected by arrows.

• Deep RNNs add multiple hidden layers at each time:

Bi-Directional RNNs

• Sometimes later information later changes meaning:
 – "I've had a perfectly wonderful evening, but this wasn't it."
 • “Paraprosdokian”.

• **Bi-directional RNNs** have hidden layers running in both directions:
 – Use different parameters for the forward and backward directions.

Next Topic: Sequence to Sequence RNNs
Motivating Problem: Machine Translation

• Consider the problem of machine translation:
 – Input is text from one language.
 – Output is text from another language with the same meaning.

• A key difference with pixel labeling:
 – Input and output sequences may have different lengths.
 • We do not just “find the French word corresponding to the English word”.
 – We may not know the output length.
Sequence-to-Sequence RNNs

- **Sequence-to-sequence RNNs** encode and decode sequences:
 - Each *encoding step* has one word as input and no output.
 - Each *decoding step* outputs one word and has no input.
 - Encoding and decoding steps use different tied parameters.
 - Special “**BOS**” at end of input (says when encoding is done).
 - Special “**EOS**” at end of output (says when decoding is done).
Discussion: Sequence-to-Sequence Models

• Representing input and outputs:
 – Could use lexicographic or word2vec representations.
 – Could just have a **single character at each time**.
 • Could make more sense for some languages.
 • May be able to better handle slang or typos.

• Loss function assuming independent labels given hidden states:
 \[
 f(z_t, \omega, \upsilon, \epsilon, \gamma, \nu) = - \sum_{i=1}^{l_x} \sum_{j=1}^{l_y} \log p(y_{ij} | x_i, z_t, \omega, \upsilon, \epsilon, \gamma, \nu)
 \]
 – Not that this is *just trying to get the label right at each “time”*
 • It is not explicitly “trying to get the full sequence right”.

\[\text{Softmax value for word at position } j \text{ in training data.}\]
Dependent Predictions and Beam Search

• Standard RNNs assume conditional independence of \hat{y}_t values.
 – We assume they are independent given the z_t values (make inference easy).
 – This makes inference easy, but \hat{y}_t “forgets” what was used for \hat{y}_{t-1}.
• In many applications, you want to model dependencies in the \hat{y}_t.
 – A common way to do this is to add edges like this:

 ![Diagram showing dependencies between x_i, z_i, and y_i]

 – This does not complicate training (where we know the y_t values).
 – But it makes decoding challenging since the y_t are dependent.
 • In this setting we typically use beam search to find a good assignment to the y_t values.
 – Stores ‘k’ current best decodings up to time ‘t’ (“consider ‘k’ best values of y_1 when computing y_2”).
 – Can be arbitrarily bad, but works if decoding is obvious as we go forwards in time.
Summary

- **Autoencoders:**
 - Neural network where the output is the input.
 - Non-linear generalization of PCA.
 - Encode data into a bottleneck layer, then decode predict original input.
 - Can be used for visualization, compression, outlier detection, pre-training.
- **Denoising autoencoders** train to uncorrupt/enhance images.
 - Useful for removing noise, adding colour, super-resolution, and so on.
- **Encoding-Decoding** approach to multi-label classification:
 - Have all classes shared the same hidden layer(s).
 - Reduces number of parameters.
 - Models dependencies between classes, while keeping inference easy.
- **Pre-training:**
 - Use parameters from model trained a on large diverse dataset, to initialize SGD for new dataset.
- **Recurrent neural networks (RNNs):**
 - Neural networks for sequence prediction.
 - Have connections between hidden units at adjacent times.
 - Use parameter tying across time.
 - Allows sequences of different lengths.
 - Leads to vanishing and exploding gradients.
- **Sequence-to-Sequence RNNs:**
 - Encoding phase takes in one input at a time until we reach “BOS”.
 - Decoding phase outputs one output at a time until we output “EOS”.
 - Allows input and output sequences whose lengths differ.
- Next time: can machines understand language?