
Next Topic: Recurrent Neural Networks

Motivation: Part of Speech (POS) Tagging

• Consider predicting part of speech for each word in a sentence:

• Input is a sequence of words.
– Could be represented as “1 of k” or using continuous vectors like word2vec.

• Output is a categorical label for each word.
– In English there are more than 40 categories.

• And there are some dependencies in labels (like “only 1 verb in the sentence”).

• General problem: sequence labeling.
– Biological sequences, various language tasks, sound processing.

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Individual-Word Neural Network Classifier

• We could train a neural network to predict label of a given word.
– Picture has 1 input feature for each time.

• But each time might have multiple features (if we use something like word2vec).

– We are also not showing the non-linear transform or bias variables.

• But this type of model would not capture dependencies.
– Information from earlier in sentence does influence prediction.

• The word “desert” could be a noun or a verb depending on context.

Recurrent Neural Network for Sequence Labeling

• Recurrent neural networks (RNNs):
– Add connections between adjacent different times to model dependencies.

– Add an initial hidden state.

– Use the same parameters across time.

• Repeating parameters in different places is called parameter tieing.
– We previously saw convolutions, which use parameter tieing across space.

– By tieing parameters across time, RNNs can label sequences of different lengths.

Recurrent Neural Network for Sequence Labeling

Recurrent Neural Network Inference

– Assume we have:
• ‘k’ different classes that each ො𝑦t can take.
• ‘m’ hidden units at each time.
• ‘T’ times (length of sequene).

– Cost to compute all ො𝑦𝑡 if each time has ‘m’ units and we have ‘T’ times:
• We need to do an O(md) operations ‘T’ times to compute Wxt for all ‘t’.
• We need to do an O(km) operation ‘T’ times to compute ො𝑦𝑡 for all ‘t’.
• We also need to do a O(m2) operation ‘T’ times to compute each zt (‘U’ multiplications).
• Total cost: O(tmd + tkm + tm2).

– For the likelihood, we could use an independent softmax for each time.
• p(y1:T | x1:T, W, V, U) = p(y1 | x1, W, V, U)p(y2 | x1:2, W, V, U)⋯p(yT | x1:T, W, V, U).

– Where each p(yt | x1:T, W, V, U) is given by softmax over ො𝑦𝑡 values.

RNN Learning

• The objective function we use to train RNNs is the NLL:

– In the above I assume all sequences have the same length ‘T’.
• But in practice you will often have sequences of different lengths.

• Computing gradient called “backpropagation through time” (BTT).
– Equations are the same as usual backpropagation/chain-rule.

• If you do it by hand, make sure to add all terms for tied parameters.

– Automatic differentiation is commonly used.

• Usually trained with SGD.
– Sample an example ‘i’ on each iteration, do BTT, update all parameters.

– which has usual challenges.

RNN Learning – Extra Challenges

• Unfortunately, training RNNs presents some extra challenges:
– Computing gradient requires a lot of memory for long sequences.

• There are a lot intermediate calculations.

• Make sure AD package handles matrix multiplication.

– Parameter tieing often leads to vanishing/exploding gradient problems.
• Consider a linear RNN and just consider the temporal ‘U’ updates:

– zL = U*U*U*⋯*U*z0 = ULz0.

– For typical z0, the quantity zL either diverges exponentially or converges to zero exponentially.

» If largest singular value of ‘U’ is > 1, ||zL|| increases exponentially with ‘L’.

» If largest singular value of ‘U’ is < 1, ||zL|| converges to zero exponentially with ‘L’.

– Usual SGD methods tend not to work well.
• Often need to use optimizers like Adam or use gradient clipping:

– If norm of gradient is larger than some threshold, “shrink” norm to threshold:

• People are trying to explore initialization/keeping ‘U’ orthogonal.
– So that all singular values are 1 (some positive and negative results on this).

https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0

Deep RNNs

• Instead of drawing this:

• We often use diagrams like this:

– Up to some notation changes.

– We connect everything in blocks
connected by arrows.

• Deep RNNs add multiple hidden layers at each time:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bi-Directional RNNs

• Sometimes later information later changes meaning:

– "I've had a perfectly wonderful evening, but this wasn't it."

• “Paraprosdokian”.

• Bi-directional RNNs have hidden layers running in both directions:

– Use different parameters for the
forward and backward directions.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Next Topic: Sequence to Sequence RNNs

Motivating Problem: Machine Translation

• Consider the problem of machine translation:

– Input is text from one language.

– Output is text from another language with the same meaning.

• A key difference with pixel labeling:

– Input and output sequences may have different lengths.

• We do not just “find the French word corresponding to the English word”.

– We may not know the output length.

Sequence-to-Sequence RNNs

• Sequence-to-sequence RNNs encode and decode sequences:

– Each encoding step has one word as input and no output.

– Each decoding step outputs one word and has no input.

• Encoding and decoding steps use different tied parameters.

– Special “BOS” at end of input (says when encoding is done).

– Speical “EOS” at end of output (says when decoding is done).

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Discussion: Sequence-to-Sequence Models

• Representing input and outputs:

– Could use lexicographic or word2vec representations.

– Could just have a single character at each time.

• Could make more sense for some languages.

• May be able to better handle slang or typos.

• Loss function assuming independent labels given hidden states:

– Not that this is just trying to get the label right at each “time”.

• It is not explicitly “trying to get the full sequence right”.

Dependent Predictions and Beam Search

• Standard RNNs assume conditional independence of ො𝑦𝑡 values.
– We assume they are independent given the zt values (make inference easy).
– This makes inference easy, but ො𝑦𝑡 “forgets” what was used for ො𝑦𝑡−1.

• In many applications, you want to model dependencies in the ො𝑦𝑡.
– A common way to do this is to add edges like this:

– This does not complicate training (where we know the yt values).
– But it makes decoding challenging since the yt are dependent.

• In this setting we typically use beam search to find a good assignment to the yt values.
– Stores ‘k’ current best decodings up to time ‘t’ (“consider ‘k’ best values of y1 when computing y2”).
– Can be arbitrarily bad, but works if decoding is obvious as we go forwards in time.

z4 z5
z6 z7 z8z3z2z1z0

x1
x2 x3

y1 y2 y3 y4 y5

Summary
• Autoencoders:

– Neural network where the output is the input.
• Non-linear generalization of PCA.

– Encode data into a bottleneck layer, then decode predict original input.
– Can be used for visualization, compression, outlier detection, pre-training.

• Denoising autoencoders train to uncorrupt/enhance images.
– Useful for removing noise, adding colour, super-resolution, and so on.

• Encoding-Decoding approach to multi-label classification:
– Have all classes shared the same hidden layer(s).
– Reduces number of parameters.
– Models dependencies between classes, while keeping inference easy.

• Pre-training:
– Use parameters from model trained a on large diverse dataset, to initialize SGD for new dataset.

• Recurrent neural networks (RNNs):
– Neural networks for sequence prediction.
– Have connections between hidden units at adjacent times.
– Use parameter tieing across time.

• Allows sequences of different lengths.
• Leads to vanishing and exploding gradients.

• Sequence-to-Sequence RNNs:
– Encoding phase takes in one input at a time until we reach “BOS”.
– Decoding phase outputs one output at a time until we output “EOS”.
– Allows input and output sequences whose lengths differ.

• Next time: can machines understand language?

