
CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks

Fall 2022



Admin
• Recording of Wednesday’s/today’s lecture is online.
• I expect to reach end of “testable content” today.
• Next week, I plan to cover different topics in different sections.

– AM sections: autoencoders, fully-convolutional networks, “what do we learn?” (and maybe Dalle 2).
– PM sections: autoencoders, recurrent neural networks, transformers (and maybe ChatGPT).

• Assignment 6 due Wednesday.
– 1 late day for Friday, 2 for Monday. 

• On Friday, I will have office hours during lecture times.
– To help people prepare for the final if you are panicking.
– 12-1 in ICICS 104.
– 4-x in ICICS 246.

• Final exam is Sunday December 11th at 8:30am (SRC A).
– Two doubled-sided pages for cheat sheet. 
– Exams of previous years will posted soon.
– Similar format to midterm, but probably more calculation and long answer.

• Questions related to non-bonus lecture slides, and topics from assignments.

• Project will be due at least one week after the final.
– Deadline and submission details coming soon.



Last Time: Automatic Differentiation (AD)

• Automatic differentiation (AD):
– Takes code that computes a function.

– Produces code that computes derivatives.
• No approximation error but no formula (computed algorithmically).

• AD writes functions as a sequence of simple compositions:
– f5(f4(f3(f2(f1(x)))))

• AD writes derivatives using chain rule:
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

• We showed “forward pass” and “backward pass” for single-variable AD:
• 𝛼1= f1(x), 𝛼2 = f2(𝛼1), 𝛼3 = f3(𝛼2), 𝛼4 = f4(𝛼3), 𝛼5 = f5(𝛼4) = f(x). 

• 𝛽5 = 1*f5’(𝛼4), 𝛽4= 𝛽5*f4’(𝛼3), 𝛽3 = 𝛽4*f3’(𝛼2), 𝛽2 = 𝛽3*f2’(𝛼1), 𝛽1 = 𝛽2*f1’(x) = f’(x).

• Cost of computing f’(x) is same cost as of computing f(x).



Automatic Differentiation – Multiple Parameters

• In ML problems, we often have more than 1 parameter.
– And we want to compute the gradient for the same cost as the function. 

• To generalize AD to this case, we define a computation graph:
– A directed acyclic graph (DAG).

– Root nodes are the parameters (and inputs).

– Intermediate nodes are computed values (𝛼 values).

– Leaf node is the function value.

• Computing the gradient with AD:
– The forward pass evaluates the function and stores intermediate values.

• Going from the roots through the intermediate nodes to the leaf.

– The backward pass applies the fi’ functions to the 𝛼 values.
• Accumulating the needed pieces of the chain rule until each root has its partial derivative.



Automatic Differentiation – Multiple Parameters

• Wikipedia’s example of a computation graph:

– For computing the gradient of f(x1,x2) = sin(x1) + x1x2.

– Using ‘w’ for 𝛼.

– Using ‘ഥ𝑤’ for 𝛽.

https://en.wikipedia.org/wiki/Automatic_differentiation



Automatic Differentiation – Neural Networks
• Computing gradient for neural networks is a special case of automatic differentiation:

– Forward AD pass is called forward propagation:
• Starts from xi and processes layers to reach ො𝑦𝑖.

– Storing intermediate calculations.

– Backward AD pass is called backpropagation:
• Computes gradient of last layers and works backwards.

– Using intermediate calculations stored during forward pass.

• Do you need to know how to do this?
– Exact details are probably not vital (exist many implementations).
– But understanding basic idea helps you know what can go wrong.

• Or give hints about what to do when you run out of memory.

– See discussion here by a neural network expert.

• Backward pass has same cost as forward pass.
– So cost of computing gradient is same as cost of making predictions.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


Automatic Differentiation - Discussion
• AD is amazing – get gradient for the same cost as the function.

– You can try out lots of stuff, and enjoy thoroughly overfitting validation set!
– Modern AD codes have lots of features, like built-in derivatives of matrix operations.

• But reverse-mode AD has some drawbacks:
– Need to store all intermediate calculations, so requires a lot of storage.

• For basic deep neural networks, hand-written code would only need to store the activations.
– Modern codes have some of these space savings built in.

• For other functions, the storage cost of AD is much higher than handwritten derivative code.
– “Checkpointing” exists to reduce storage, but increases computational cost.

– Has the same cost as computing the function, which is a pro and a con.
• For basic deep neural networks, these have the same cost so this is what we want.
• For other functions, the gradient can be computed at a lower cost than the function value.

– May miss opportunities for parallelism, or miss tricks to avoid numerically problems.

• AD only makes sense at points where the function is differentiable.
– TensorFlow and PyTorch can give incorrect “subderivatives” at non-differentiable ReLU points.
– AD cannot do things like “take the derivative of a function of a sample from the distribution”.



Next Topic: Convolutional Neural Networks



Motivation: X-Ray Abnormality Detection

• Want to build a system that recognizes abnormalities in x-rays:

• Applications:
– Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

• Deep learning has led to incredible progress on computer vision tasks.
– Much of this progress has been driven by convolutional neural networks (CNNs).

“Abnormality detected”
(binary classification)



Convolutional Neural Network (CNN) Motivation

• Consider training neural networks on 500 pixel by 500 pixel images.
– So the number of inputs ‘d’ to first layer is 250,000 inputs.

• If first layer has k=10,000, then ‘W’ has 2.5 billion parameters.
– We want to avoid this huge number (due to storage and overfitting).

• CNNs drastically reduce the number of parameters.
– Main way they do this is using layers that look like convolutions:

– Hidden units only depend on a small number of inputs.

– Using the same parameters on the connections of many activations.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Motivation for Convolutional Neural Networks

• Classic vision methods uses fixed convolutions as features:

– Usually have different types/variances/orientations.

– Can do subsampling or take maxes across locations/orientations/scales.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Don’t pick from fixed convolutions, but learn the elements of the filters.



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Convolutional Neural Networks

• Classic architecture of a convolutional neural network:

• Convolution layers:
– Apply convolution with several different filters.
– Sometimes these have a “stride”: skip several pixels between applying filter.

• Pooling layers:
– Aggregate regions to create smaller images (usually “max pooling”).

• Fully-connected layers: usual “multiplication by Wl” in layer.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic



Max Pooling Example

• Max pooling:

• Decreases size of hidden layer, which speeds up calculations.

• This is continuous and piecewise-linear but non-differentiable.
– Like ReLU, we can still optimize this type of objective with SGD.



LeNet Convolutional Neural Networks

• Classic convolutional neural network (LeNet):

• Visualizing the “activations”:
– An Interactive Node-Link Visualization of Convolutional Neural Networks (adamharley.com)

– http://cs231n.stanford.edu
http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

https://adamharley.com/nn_vis/
http://cs231n.stanford.edu/


ImageNet Competition 

• ImageNet: Millions of labeled images, 1000 object classes.

– Task is to classify images into one of the 1000 class labels.

– Everyone submits their “best” model, winners announced.

• Humans error level estimated at ~5%.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
https://www.youtube.com/watch?v=40riCqvRoMs

Syberian Husky Canadian Husky



AlexNet Convolutional Neural Network

• Modern CNN era started with AlexNet (won 2012 competition):

– 15.4% error vs. 26.2% for closest competitor.

– 5 convolutional layers.

– 3 fully-connected layers.

– SG with momentum.

– ReLU non-linear functions.

– Data translation/reflection/
cropping.

– L2-regularization + Dropout.

– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



ImageNet Insights

• Filters and stride got smaller over the years.

– Popular VGG approach uses 3x3 convolution layers with stride of 1.

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on. 

• Speeds things up and reduces number of parameters.

• Also increases number of non-linear ReLU operations.

https://www.cs.toronto.edu/~frossard/post/vgg16/



ImageNet Insights

• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.

– GoogLeNet used multiple filter sizes (“inception layer”), but not as popular.

• Eventual switch to “fully-convolutional” networks.
– No fully connected layers.

• ResNets introduced in 2015.
– Won all 5 tasks with 152 layers.

– Trained for 2-3 weeks on 8 GPUs. 

• Ensembles help.
– 2016 winner: ensemble of previous networks.

• Competition stopped in 2017!
http://www.themtank.org/a-year-in-computer-vision



Discussion of CNNs
• Convolutional layers reduce the number of parameters in several ways:

– Each hidden unit only depends on small number of inputs from previous layer.
– We use the same filters across the image. 

• So we do not learn a different weight for each “connection” like in classic neural networks.

– Pooling layers decrease the image size.

• CNNs give some amount of translation invariance:
– Because same filters used across the image, they can detect a pattern anywhere in the image.

• Even in image locations where the pattern has never been seen.

• CNNs are not only for images!
– Can use CNNs for 1D sequences like sound or language or biological sequences.
– Can use CNNs for 3D objects like videos or medical image volumes.
– Can use CNNs for graphs.

• But you do need some notion of “neighbourhood” for convolutions to make sense.



(End of Testable Content)



Are CNNs learning something sensible?

• We can look at how prediction changes if we hide part of image:

http://cs231n.github.io/understanding-cnn/



Are CNNs learning something sensible?

• Recall that deep learning and CNNs are
motivated by ideas about human vision.
– First layers detect simple features like

Gaussians and Gabors filters.

– Later layers detect more complicated 
features like corners, repeating patterns.

– Deeper layers starts to recognize complex
parts of objects.

– Deepest layers recognize full object
concepts.

• Is this what trained CNNs actually do? 

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Are CNNs learning something sensible?

• Filters learned by first layer of original AlexNet (first CNN winner):

• Many single-layer models give similar results.
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Are CNNs learning something sensible?

• It is harder to visualize what is learned in other layers.

– Approach 1:

• Search for training data image patches
that maximally-activates a filter.

• Then try to reason about what the filter is doing.

– Approach 2:

• Apply deconvolution network
to these patches to try to 
“reverse” the operations.

• Uses “transposed 
convolutions” and 
“unpooling” to visualize 
“what activated the filter”.

https://arxiv.org/pdf/1311.2901v3.pdf



Are CNNs learning something sensible?

https://arxiv.org/pdf/1311.2901v3.pdf



Are CNNs learning something sensible?

https://arxiv.org/pdf/1311.2901v3.pdf



Are CNNs learning something sensible?

https://arxiv.org/pdf/1311.2901v3.pdf



Summary

• Automatic differentiation:
– Can compute gradient for same cost as objective function.
– But has some disadvantages compared to human-written code.
– Backpropagation for computing neural network gradient is a special case.

• Convolutional neural networks:
– Include layers that apply several (learned) convolutions.
– Significantly decreases number of parameters.
– Achieves a degree of translation invariance.
– Often combined with pooling operations like max pooling.

• CNNs seem to be learning sensible things.
– Earlier layers seem to represent low-level features.
– Later layers seem to represent complex object-level features.

• Next time: colourizing black and white images.



Forward-Mode Automatic Differentiation

• We discussed “reverse-mode” automatic differentiation.
– Given a function, writes code to compute its gradient.

– Has same cost as original function.

– But has high memory requirements.
• Since you need to store all the intermediate calculations.

• There is also “forward-mode” automatic differentiation.
– Given a function, writes code to compute a directional derivative.

• Scalar value measuring how much the function changes in one direction.

– Has same memory requirements as original function.

– But has high cost if you want the gradient.
• Need to use it once to get each partial derivative.



Failure of AD on ReLUs

https://arxiv.org/pdf/1809.08530.pdf


