CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2022

Admin

Recording of Wednesday’s/today’s lecture is online.
| expect to reach end of “testable content” today.

Next week, | plan to cover different topics in different sections.
— AM sections: autoencoders, fully-convolutional networks, “what do we learn?” (and maybe Dalle 2).
— PM sections: autoencoders, recurrent neural networks, transformers (and maybe ChatGPT).
Assignment 6 due Wednesday.
— 1 late day for Friday, 2 for Monday.

On Friday, | will have office hours during lecture times.
— To help people prepare for the final if you are panicking.
— 12-1inICICS 104.
— 4-xin ICICS 246.

Final exam is Sunday December 11t at 8:30am (SRC A).
— Two doubled-sided pages for cheat sheet.
— Exams of previous years will posted soon.

— Similar format to midterm, but probably more calculation and long answer.
* Questions related to non-bonus lecture slides, and topics from assignments.

Project will be due at least one week after the final.
— Deadline and submission details coming soon.

Last Time: Automatic Differentiation (AD)

Automatic differentiation (AD):

— Takes code that computes a function.

— Produces code that computes derivatives.
* No approximation error but no formula (computed algorithmically).

AD writes functions as a sequence of simple compositions:
— f5(f,(f5(f,(f1(x)))))
AD writes derivatives using chain rule:

— f'(x) = f5’()*f4’()*fgi()*le()f1’().
We showed “forward pass” and “backward pass” for single-variable AD:
* = , 0y = , 03 = , 0y = , A = = f(x).

* Bs = 1% (), Ba= Bs™f, (a3), B3 = Pa*T5 (a2), B2 = B3*F, (1), B1 = B2*f,"(x) = £(x).
Cost of computing f'(x) is same cost as of computing f(x).

Automatic Differentiation — Multiple Parameters

* In ML problems, we often have more than 1 parameter.
— And we want to compute the gradient for the same cost as the function.

* To generalize AD to this case, we define a computation graph:
— A directed acyclic graph (DAG).
— Root nodes are the parameters (and inputs).
— Intermediate nodes are computed values (a values).
— Leaf node is the function value.

e Computing the gradient with AD:
— The forward pass evaluates the function and stores intermediate values.
* Going from the roots through the intermediate nodes to the leaf.

— The backward pass applies the f." functions to the a values.
* Accumulating the needed pieces of the chain rule until each root has its partial derivative.

Automatic Differentiation — Multiple Parameters

* Wikipedia’s example of a computation graph:

— For computing the gradient of f(x,,x,) = sin(x;) + X;X,.

— Using ‘w’ for a.

— Using ‘w’ for G.

Backward propagation
of derivative values

Automatic Differentiation — Neural Networks

 Computing gradient for neural networks is a special case of automatic differentiation:

— Forward AD pass is called forward propagation:

* Starts from x, and processes layers to reach ;.
— Storing intermediate calculations.

— Backward AD pass is called backpropagation:

* Computes gradient of last layers and works backwards.
— Using intermediate calculations stored during forward pass.

* Do you need to know how to do this?
— Exact details are probably not vital (exist many implementations).

— But understanding basic idea helps you know what can go wrong.
e Or give hints about what to do when you run out of memory.

— See discussion here by a neural network expert.

* Backward pass has same cost as forward pass.
— So cost of computing gradient is same as cost of making predictions.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Automatic Differentiation - Discussion

 ADis amazing — get gradient for the same cost as the function.
— You can try out lots of stuff, and enjoy thoroughly overfitting validation set!
— Modern AD codes have lots of features, like built-in derivatives of matrix operations.

e But reverse-mode AD has some drawbacks:

— Need to store all intermediate calculations, so requires a lot of storage.

* For basic deep neural networks, hand-written code would only need to store the activations.
— Modern codes have some of these space savings built in.

* For other functions, the storage cost of AD is much higher than handwritten derivative code.
— “Checkpointing” exists to reduce storage, but increases computational cost.

— Has the same cost as computing the function, which is a pro and a con.

* For basic deep neural networks, these have the same cost so this is what we want.
* For other functions, the gradient can be computed at a lower cost than the function value.

— May miss opportunities for parallelism, or miss tricks to avoid numerically problems.

 AD only makes sense at points where the function is differentiable.
— TensorFlow and PyTorch can give incorrect “subderivatives” at non-differentiable ReLU points.
— AD cannot do things like “take the derivative of a function of a sample from the distribution”.

Next Topic: Convolutional Neural Networks

Motivation: X-Ray Abnormality Detection

 Want to build a system that recognizes abnormalities in x-rays:

= PN

“Abnormality detected”
(binary classification)

* Applications:
— Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

* Deep learning has led to incredible progress on computer vision tasks.
— Much of this progress has been driven by convolutional neural networks (CNNs).

Convolutional Neural Network (CNN) Motivation

e Consider training neural networks on 500 pixel by 500 pixel images.
— So the number of inputs ‘d’ to first layer is 250,000 inputs.

 |f first layer has k=10,000, then ‘W’ has 2.5 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

* CNNs drastically reduce the number of parameters.
— Main way they do this is using layers that look like convolutions:

Fﬁ.

— Hidden units only depend on a small number of inputs.
— Using the same parameters on the connections of many activations.

Motivation for Convolutional Neural Networks

* Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.

Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.

Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

HOW NEURAL NETWORKS RECOGNIZEA DOG IN A PHOTD
nnnnnnnn
During the

nnnnnnnnnnnnnn

IIIII
nnnnnn

to the pretrained

EEEEEEEEEEE

entanimals,

training.

Convolutional Neural Networks

e (Classic architecture of a convolutional neural network:

ZZ
Z T
> > S
| "4 /\\
~

D — BICYCLE

3 FULLY
|~ weut CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING 2 FLATTEN e rep SOFTMAX y
FEATURE LEARNING CLASSIFICATION

e Convolution layers:

— Apply convolution with several different filters.

— Sometimes these have a “stride”: skip several pixels between applying filter.
* Pooling layers:

— Aggregate regions to create smaller images (usually “max pooling”).
* Fully-connected layers: usual “multiplication by W" in layer.

//S_’,uc!' 07C 2

Max Pooling Example

 Max pooling: /BA‘

AR

\

* Decreases size of hidden layer, which speeds up calculations.

* This is continuous and piecewise-linear but non-differentiable.
— Like ReLU, we can still optimize this type of objective with SGD.

LeNet Convolutional Neural Networks

Classic convolutional neural network (LeNet):

A
il [S . _psoftmni
j g 2 'l\’// (OMMP(]{OJ
3 =2 /
— o £ b Max pos'A(
S =z i) 2> convaldons -
‘NNt : mac oty
.L. : _—__8-' E e !
: E |
i 20 (m\A dins 7
. . e . . /
. Vlsuallzmg the ”actlvatlons” L

— http://cs231n.stanford.edu (Préku; |

https://adamharley.com/nn_vis/
http://cs231n.stanford.edu/

ImageNet Competition

* ImageNet: Millions of labeled images, 1000 object classes.
— Task is to classify images into one of the 1000 class labels.
— Everyone submits their “best” model, winners announced.

e Humans error level estimated at ~5%.

i *
W2 . - e

L "*%UPMUA%pQEw=
TV A S e T
B 1F Sl Bl JLwK >, ity
£ w’wm»1nﬂmlnau%

s

&

s kg

=7

G

Syberian Husky Canadlan Husky

AlexNet Convolutional Neural Network

 Modern CNN era started with AlexNet (won 2012 competition):
— 15.4% error vs. 26.2% for closest competitor.

— 5 convolutional layers.

— 3 fully-connected layers.
— SG with momentum.

— RelLU non-linear functions.

— Data translation/reflection/
cropping.

— L2-regularization + Dropout.

— 5-6 days on two GPUs.

138 2048 Joag \dense
1T 15

dense | |dense

1000

192 192 128 Max

Max pooling *
pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096—4096-1000.

ImageNet Insights

* Filters and stride got smaller over the years.
— Popular VGG approach uses 3x3 convolution layers with stride of 1.

* 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
e Speeds things up and reduces number of parameters.
e Also increases number of non-linear ReLU operations.

I 2243 224 2 2244 = Gd
o

#hx 5§ ®awald
3" ’|l 14 =5 |-"

ﬁ e dmme i

I"_I] comvolution+ RellT

max pooaling
fully connected-+HelL

softmax

ImageNet Insights

* Filters and stride got smaller over time.

— Popular VGG approach uses 3x3 convolution layers with stride of 1.

— GoogleNet used multiple filter sizes (“inception layer”), but not as popular.
e Eventual switch to “fully-convolutional” networks.

— No fully connected layers. Tipeol i

e ResNets introduced in 2015. J Classification

0.3 gzm swiich o derp Joutony

— Won all 5 tasks with 152 layers. 5 (S Layer More)

— Trained for 2-3 weeks on 8 GPUs. é o2 i/ /,’w*';ww 2)
* Ensembles help. % o o 0, gt

— 2016 winner: ensemble of previous networks. ~ © D oo o

2010 2011 2012 2013 2014 2015 2016

 Competition stopped in 2017! ILSVRC year

Discussion of CNNs

Convolutional layers reduce the number of parameters in several ways:
— Each hidden unit only depends on small number of inputs from previous layer.

— We use the same filters across the image.
* So we do not learn a different weight for each “connection” like in classic neural networks.

— Pooling layers decrease the image size.

CNNs give some amount of translation invariance:

— Because same filters used across the image, they can detect a pattern anywhere in the image.
* Eveninimage locations where the pattern has never been seen.

CNNs are not only for images!
— Can use CNNs for 1D sequences like sound or language or biological sequences.
— Can use CNNs for 3D objects like videos or medical image volumes.
— Can use CNNs for graphs.

But you do need some notion of “neighbourhood” for convolutions to make sense.

(End of Testable Content)

Are CNNs learning something sensible?

* We can look at how prediction changes if we hide part of image:

Are CNNs learning something sensible?

e Recall that deep learning and CNNs are
motivated by ideas about human vision.

— First layers detect simple features like
Gaussians and Gabors filters.

— Later layers detect more complicated
features like corners, repeating patterns.

— Deeper layers starts to recognize complex
parts of objects.

— Deepest layers recognize full object
concepts.

* |s this what trained CNNs actually do?

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR doce
GANGLION CELL (o]0
THALAMUS LGN oce .
LATERAL GENICULATE Nuctess @ @
9
A SIMPLE CELL - I
COMPLEX CELL (DOﬂID ®O® =R
] @
V2 2 € !‘
TEXTURE-DEFINED ILLUSORY BORDER
CONTOURS CONTOURS OWNERSHIP ~ ~++ 45
(v3)
v4 @l e
CURVATURE LUMINANCE-INVARIANT S
SELECTIVITY HUE
VENTRAL DORSAL
PATHWAY PATHWAY
T VA & %A
SIMPLE SHAPE : ¥
Sl ANALYSIS OF SPACE
N4 pesy |
TE 'S @ & ACTION PLANING

COMPLEX FEATURE
CONFIGURATIONS

HOW NEURALNETWORKS RECOGNIZEA DOG IN A PHOTO

I8, - ase
10% WOLF 90% DOG training.

Are CNNs learning something sensible?

* Filters learned by first layer of original AlexNet (first CNN winner):

Figure 3: 96 convolutional kernels of size
11 x 11 x 3 learned by the first convolutional
layer on the 224 X 224 X 3 input images. The

* Many single-layer models give similar results.

Are CNNs learning something sensible?

* |tis harder to visualize what is learned in other layers.
— Approach 1:

e Search for training data image patches
that maximally-activates a filter.

* Then try to reason about what the filter is doing.

— Approach 2:

* Apply deconvolution network
to these patches to try to
“reverse” the operations.

ol
-
s

Rpal 1y a)q

where iffor
f"f‘)OM‘f

Mms | d\ronyly_

N 1

iy,
A .
4.4 4

e Uses “transposed
convolutions” and
“unpooling” to visualize

Figure 1. Top: A deconvnet layer (left) attached to a con-

“ h t t : t d t h f 1 | t ” vnet layer (right). The deconvnet will reconstruct an ap-
W a a C Iva e e I e r . yroximate version of th wnet features from the layer
enea : An

B,
Y
&
A

v~ B

o
g
=
=
g
=
=}
=

ration of the unpooling oper-

ation in the deconvnet, using switches which record the

location of the local max in each pooling region (colored
convnet.

Are CNNs learning something sensible?

**u; [lm

Wl ""\”lllll

Rocl of deconiolulion hetwark

?

ible

ing sens

i -
=
()
&
O
V)
o]0
=
-
. -
(qv)

L
V)
Z
Z
O
Q
. -
<

4 Y DRDISANCE

Are CNNs learning something sensible?

https://arxiv.org/pdf/1311.2901v3.pdf

Summary

Automatic differentiation:

— Can compute gradient for same cost as objective function.

— But has some disadvantages compared to human-written code.

— Backpropagation for computing neural network gradient is a special case.
Convolutional neural networks:

— Include layers that apply several (learned) convolutions.

— Significantly decreases number of parameters.

— Achieves a degree of translation invariance.

— Often combined with pooling operations like max pooling.
CNNs seem to be learning sensible things.

— Earlier layers seem to represent low-level features.

— Later layers seem to represent complex object-level features.

Next time: colourizing black and white images.

Forward-Mode Automatic Differentiation

 We discussed “reverse-mode” automatic differentiation.
— Given a function, writes code to compute its gradient.
— Has same cost as original function.

— But has high memory requirements.
* Since you need to store all the intermediate calculations.

* There is also “forward-mode” automatic differentiation.
— Given a function, writes code to compute a directional derivative.

* Scalar value measuring how much the function changes in one direction.
— Has same memory requirements as original function.

— But has high cost if you want the gradient.
* Need to use it once to get each partial derivative.

Failure of AD on RelLUs

In many settings, our underlying function f(x) is a nonsmooth function, and
we resort to subgradient methods. This work considers the question: is there
a Cheap Subgradient Principle? Specifically, given a program that computes a
(locally Lipschitz) function f and given a point =, can we automatically compute
an element of the (Clarke) subdifferential ¢ f () [Clarke, 1975], and can we do this
at a cost which is comparable to computing the function f(x) itself? Informally,
the set 0f(z) is the convex hull of limits of gradients at nearby differentiable
points. It can be thought of as generalizing the gradient (for smooth functions)
and the subgradient (for convex functions).

Let us briefly consider how current approaches handle nonsmooth functions,
which are available to the user as functions in some library. Consider the following
three equivalent ways to write the identity function, where x € R,

filz) =z, fo(x) =ReLU (z) —ReLU (—x), f3(x) =10f1(x) —9fs(x),

where ReL.U () = max{z, 0}, and so fi(z) = fa(x) = f3(x). As these functions
are differentiable at 0, the unique derivative is f{(0) = f5(0) = f4(0) = 1.
However, both TensorFlow [Abadi et al., 2015] and PyTorch [Paszke et al., 2017],
claim that f{(0) = 1, f3(0) = 0, f3(0) = 10. This particular answer is due to using
a subgradient of 0 at x = 0. One may ask if a more judicious choice fixes such
issues; unfortunately, it is not difficult to see that no such universal choice exists!.

!By defining ReLU’(0) = 1/2, the reader may note we obtain the correct derivative on fo, f3;
however, consider f4(x) = ReLU (ReLU (x)) — ReLU (—x), which also equals fi(x). Here, we
would need ReLU'(0) = 3@ to obtain the correct answer.

