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Last Time: Deep Learning

* Neural networks with multiple hidden layers:
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* Linear transformation followed by non-linear activation at each layer.

 Hidden layers learn latent features h(zi(l)); last activations serve as input
to linear output layer.

— Different objective functions lead to different tasks (e.g., binary classification,
multi-class classification, regression).



Why Multiple Layers?

* Historically, deep learning was motivated by “connectionist” ideas:

— Brain consists of network of highly-connected simple units.
* Same units repeated in various places.

Computations are done in parallel.

Information is stored in distributed way.

Learning comes from updating of connection strengths.

One learning algorithm used everywhere.




Why Multiple Layers?

* And theories on the hierarchical organization of the visual system:
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“Hierarchies of Parts” Intuition for Deep Learning

* Each “neuron” might recognize
a “part” of a digit.
— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
combinations of simpler parts.

 Watch the full video here:

— https://www.youtube.com/watch?v=aircAruvnKk



https://www.youtube.com/watch?v=aircAruvnKk
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Why Multiple Layers?

* The idea of multi-layer designs appears in engineering too:

— Deep hierarchies in camera design:
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Why Multiple Layers?

 There are also mathematical motivations for using multiple layers:

— 1 layer gives us a universal approximator.
* But this layer might need to be huge.

— With deep networks:

* Some functions can be approximated with exponentially-fewer parameters.
— Compared to a network with 1 hidden layer.

e So deep networks may need fewer parameters than “shallow but wide” networks.

— And hence may need less data to train.

* Empirical motivation for using multiple layers:

— In many domains deep networks have led to unprecedented performance.



New Issue: Vanishing Gradients

Consider the sigmoid function:

Away from the origimn, the grmadoioentc is nea rIy Zero.
The problem gets worse when you take the sigmoid of a sigmoid:

In deep networks, many gradients can be nearly zero everywhere.
— And numerically they will be set to 0, so SGD does not move.



Rectified Linear Units (RelLU)

 Modern networks often replace sigmoid with perceptron loss (ReLU):
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* Just sets negative values z;. to zero.
— Reduces vanishing gradient problem (positive region is never flat).
— @Gives sparser activations.
— Still gives a universal approximator if size of hidden layers grows with ‘n’.



Skip Connections Deep Learning

e Skip connections can also reduce vanishing gradient problem:
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* Makes “shortcuts” between layers (so fewer transformations).
— Many variations exist on skip connections exist.
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ResNet “Blocks” _L

Residual networks (ResNets) are a variant on skip connections.
— Consist of repeated “blocks”, first methods that successfully used 100+ layers.

Usual computation of activation based on previous 2 layers:
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— Adds activations from “2 layers ago”. Cweientiaver | | i enity
Differences from usual skip connections: A

— Activations vectors a' and a*?2 must have the same size.

— No weights on a', so W' and W"*! must focus on “updating” a' (fit “residual”).
* |If you use RelLU, then W'=0 implies a'*2=al.




Learning in Deep Neural Networks

e Usual training procedure is again stochastic gradient descent (SGD).

— Deep networks are highly non-convex and notoriously difficult to tune.

* Highly non-convex, so are the problem local mimina?

— Empirical/theoretical evidence that local minima are not the problem.
 We think all local optima are good in typical over-parameterized cases.

— But can be hard to get SG to close to a local minimum in reasonable time.

* We are discovering tricks that often make things easier to tune.

— And other tricks for reducing overfitting.



Common Deep Learning Tricks

Data standardization (“centering” and “whitening”).

Parameter initialization: “small but different”.

— If we initialize all parameters in the layer to same value, they stay the same.
— Also common to use initializations that are standardized within layers.
Step-size selection: “babysitting”.

— Use bigger step-size for the bias variables, or different for each layer.
— Methods that use a step size for each coordinate (AdaGrad, RMSprop, Adam).

Early stopping of the optimization based on validation accuracy.
Momentum: adds weighted sum of previous SGD directions.
Batch normalization: adaptive standardizing within layers.

— Often allows sigmoid activations in deep networks.



Common Deep Learning Tricks

L2-regularization or L1-regularization (“weight decay”).
— Sometimes with different A for each layer.
— Recent work shows this can introduce bad local optima.

Dropout: randomly zeroes activations ‘z’ values to discourage dependence.
Rectified linear units (ReLU) as non-linear transformation.

— Makes objective non-differentiable, but we now know SGD still converges in this setting.
Residual/skip connections: connect layers to multiple previous layers.

— We now know that such connections make it more likely to converge to good minima.
Neural architecture search: try to cleverly search space of hyper-parameters.
— This gets expensive!

Some of these tricks are explored in bonus slides.



Missing Theory Behind Training Deep Networks

* Unfortunately, we do not understand many of these tricks very well.

— Large portion of theory is on degenerate case of linear neural networks.
e Or other weird cases like “1 hidden unit per layer”.

— A lot of research is performed using “grad student descent”.
» Several variations are tried, ones that perform well empirically are kept (possibly overfitting).

* Popular Examples:

— Batch normalization originally proposed to fix “internal covariate shift”.
* Internal covariate shift not defined in original paper, and batch norm does seem to reduce it.
— Often singled out as an example of problems with machine learning scholarship.
* Like many heuristics, people use batch norm because they found that it often helps.
— Many people have worked on better explanations.

— Adam optimizer is a nice combinations of ideas from several existing algorithms.
* Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.
— But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problem:s.

* Butis Adam is often used because it is amazing at training some networks.
— It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.



Modern Babysitting

* From 114-page babysitting log of training 175B parameter model:

2021-12-05 05:35 PT: Checking on 12.44

[From Susan: looks like lowering LR helps keep us on track wrt ppl. Loss scale that stays below 1 for too long

could be a leading indicator of instability going forward. Set smoothing to ~0.95 to see these trends.]

O
(m]
O
O
O ru
0O
(m]
o
m]
O -«
O
(m]
(m]
0
o
0O

SCALARS ~ TEXT  TIME SERIES

@

(]

(CAN BN BN BN BN )

[ 3N

Q

X pimed s

ppl

actv_norm

cuda_gb_reserved

INACTIVE

ML AR - O]

Settings

GENERAL

Step

SCALARS

HISTOGRAMS

Offset

IMAGES

\ 2% setings |

X

2021-12-06 05:00 PT: Grad norm spiking, ppl trending up

[From Susan: reading more tea leaves here, but seems like we've had a couple of grad norm spikes and our
ppl is now slowly diverging. Recommending restarting with half the LR]
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Digression: Deep Learning Vocabulary

“Deep learning”: Models with many hidden layers.
— Usually neural networks.

“Neuron”: node in the neural network graph.
— “Visible unit”: feature.
— “Hidden unit”: latent factor z,. or h(z,.).

“Activation function”: non-linear transform.

“Activation”: h(z).

“Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means “training with SGD”.

“Weight decay”: L2-regularization.

“Cross entropy”: softmax loss.

“Learning rate”: SGD step-size.

“Learning rate decay”: using decreasing step-sizes.

“Vanishing gradient”: underflow/overflow during gradient calculation.



ML and Deep Learning History

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” vv'X,'
New York Times (1958).

e https://www.youtube.com/watch?v=IEFRtz68m-8

— Object recognition
assigned to students as a
summer project

 Then drop in popularity:



https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

e 1970 and 1980s: Connectionism (brain-inspired ML)

— Want “connected networks of simple units”.
e Use parallel computation and distributed representations.

— Adding hidden layers z; increases expressive power.
* With 1 layer and enough sigmoid units, a universal approximator.

— Success in optical character recognition.
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— |t proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.
— Lots of internet successes (spam filtering, web search, recommendation).

— ML moved closer to other fields like numerical optimization and statistics.



ML and Deep Learning History

e Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.
e Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.
e https://www.youtube.com/watch?v=KuPaiOogiHk
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https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).

— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.
 Huge improvements in computer vision (2012).

— Changed computer vision field almost instantly. |
— This is now finding its way into products. i == . [person




2010s: DEEP LEARNING!!!

* Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



Cool Picture Motivation for Deep Learning

* Faces might be composed of different “parts”:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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e Attempt to visualize second layer:
— Corners, angles, surface boundaries?

 Models require many tricks to work.
— We’'ll discuss these next time.



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

= AGESEEINSVIINA - gueqwﬁmn

e Visualization of second and third layers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

= AGESEEINSVIINA - gueqwﬁmn

. Vlsuallzatlon of second and third layers trained on specific objects:

face elephants
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes
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“Swish” Activiation

e Recent work searched for “best” acth

ofxf(72
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* Found that z /(1+exp(-z,)) worked best (“swish” function).

— A bit weird because it allows negative values and is non-monotonic.
— But basically the same as ReLU when not close to O.



DenseNet

e Variation on ResNets is “DenseNets”:

— Each layer can see all the values from many previous layers.

— Significantly reduces
vanishing gradients.

— May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf
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Figure 1: A 5-layer dense block with a growth rate of £k = 4.
Each layer takes all preceding feature-maps as input.



Parameter Initialization

e Parameter initialization is crucial:

— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

e A traditional random initialization:

— |Initialize bias variables to 0.

— Sample from standard normal, divided by 10° (0.00001*randn).
 w=.00001*randn(k,1)

— Performing multiple initializations does not seem to be important.



Parameter Initialization

e Parameter initialization is crucial:

— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

* Also common to transform data in various ways:

— Subtract mean, divide by standard deviation, “whitten”, standardize y..

* More recent initializations try to standardize initial z:
— Use different initialization in each layer.

— Try to make variance of z, the same across layers.
* Popular approach is to sample from standard normal, divide by sgrt(2*ninputs).

— Use samples from uniform distribution on [-b,b], where = G

—mmm—



Setting the Step-Size: Bottou Trick

* Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).



Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
e Common approach: manual “babysitting” of the step-size.

— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:
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— If error is not decreasing, decrease step-size.



Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
* Momentum (stochastic version of “heavy-ball” algorithm):

— Add term that moves in previous direction:
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method

Gr‘acl}{’/\‘} /V\eﬂ\ol Heow\/'ba“ Method




Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method
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Standard Regularization
* Traditionally, we've added our usual L2-regularizers:
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e |L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.
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Standard Regularization

* Traditionally, we've added our usual L2-regularizers:
V@ Ny 2 oa 2 Y 2 0
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1= 2 2

e |L2-regularization often called “weight decay” in this context.
— Could also use L1-regularization: gives sparse network.
* Hyper-parameter optimization gets expensive:

— Try to optimize validation error in terms of Ay, A,, A3, A,.
— In addition to step-size, number of layers, size of layers, initialization.

e Recent result:

— Adding a regularizer in this way creates bad local optima.



Early Stopping

 Another common type of regularization is “early stopping”:

— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A

accuracy

training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
.
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Dropout

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x. and z, to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Adds invariance to missing inputs or latent factors
* Encourages distributed representation rather than relying on specific z.

— Can be interpreted as an ensemble over networks with different parts missing.

— After a lot of success, dropout may already be going out of fashion.



Next Topic: Automatic Differentiation



More-Complicated Layers

 Modern networks often have complicated structures:
— Each step might be doing a different operation.
— This makes coding up the gradient both time-consuming and prone to errors.
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* Developing networks like this is made easier using automatic differentiation.



Automatic Differentiation (AD)

* Automatic differentiation (AD):

— Input: code computing a function.

— Qutput: code to compute one or more derivatives of the function.
* No loss in accuracy, unlike finite-difference approximations.
* The output code has the same asymptotic runtime as the input code.
e Does not give you a “formula” for the derivative, just code that computes it.
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“Reverse Mode” Automatic Differentiation (AD)

* In machine learning, we typically use “reverse mode” AD.

— Gives code for computing the gradient of a differentiable function.
* The slides will exclusively talk about “reverse mode”. For “forward mode”, see bonus.
* You use this gradient to train the via SGD.

* Has a close connection to backpropagation.
— Classic algorithm to compute the gradient of neural network parameters.

* “Apply the chain rule, store redundant calculations”.
— Backpropagation can be viewed as special case of AD. LF F("‘) B ?(/‘("))
thn B2 ' (W(D ()

/\/v\
* AD basically writes every operation as instance of the chain rule.




Automatic Differentiation — Single Input+Output

e Consider the function f(x) = 10*log(1+exp(-2*x)).

* We write the function as a series of compositions: fc(f,(f5(f,(f;(x))))).

— Where ) ) , ,
* So we have f(x) =-2, f,’(z) = exp(z), f3'(z) = 1, f,/(z) = 1/z, f'(z) = 10.
— These all cost O(1).
* Recursively applying the chain rule we get:
/() = ( )*. )45 (F (6, 0)))*6 (F, )y ),
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Automatic Differentiation — Single Input+Output

Our function written as a set of compositions:

— fs(f4(f5(f,(f1(x)))).

The derivative written using the chain rule::

— f(x) = f5'( )*E4( )*f5°( )65 (1 0a) ().
Notice that this leads to repeated calculations.

— For example, we use four different times.

— We can use dynamic programming to avoid redundant calculations.
First, the “forward pass” will compute and store the expressions:

* 4= , 0y = , Q3 = , 0y = , O = = f(x).
Next, the “backward pass” uses stored «;, values and f;’ functions:
* Bs=1%(as), Ba= Bs™Fi (a3), B3 = B4*F5'(a2), B2 = B3, (1), B1 = B2*f1'(x) = F(x).
A generic method to make code computing f’(x) for same cost as f(x).



Summary

Vanishing gradients in deep networks (gradient may be close to 0).
— Can be reduced using rectified linear units (ReLU) as non-linear transforms.
— Can be reduced using various forms of skip connections.

ResNets include untransformed previous layers.
— Network focuses non-linearity on residual, allows huge number of layers.

Automatic differentiation (AD):
— Decomposing code using the chain rule, to make derivative code.
— Can compute gradient for same cost as objective function.

Backpropagation is a form of AD and computes neural network
gradients via chain rule.

Next time: The most important idea in computer vision?



Forward-Mode Automatic Differentiation

e We discussed “reverse-mode” automatic differentiation.

— Given a function, writes code to compute its gradient.
— Has same cost as original function.

— But has high memory requirements.
e Since you need to store all the intermediate calculations.

* There is also “forward-mode” automatic differentiation.
— Given a function, writes code to compute a directional derivative.
 Scalar value measuring how much the function changes in one direction.
— Has same memory requirements as original function.

— But has high cost if you want the gradient.
* Need to use it once to get each partial derivative.



Failure of AD on RelLUs

In many settings, our underlying function f(x) is a nonsmooth function, and
we resort to subgradient methods. This work considers the question: is there
a Cheap Subgradient Principle? Specifically, given a program that computes a
(locally Lipschitz) function f and given a point z, can we automatically compute
an element of the (Clarke) subdifferential 0 f (z) [Clarke, 1975], and can we do this
at a cost which is comparable to computing the function f(x) itself? Informally,
the set 0f(z) is the convex hull of limits of gradients at nearby differentiable
points. It can be thought of as generalizing the gradient (for smooth functions)
and the subgradient (for convex functions).

Let us briefly consider how current approaches handle nonsmooth functions,
which are available to the user as functions in some library. Consider the following
three equivalent ways to write the identity function, where x € R,

fi(z) =z, fo(x) =ReLU (z) —ReLU (—z), f3(x) =10f(x) —9fs(x),

where ReLU (z) = max{z, 0}, and so fi(z) = fa(x) = f3(x). As these functions
are differentiable at 0, the unique derivative is f{(0) = f;(0) = fi(0) = 1.
However, both TensorFlow [Abadi et al., 2015] and PyTorch [Paszke et al., 2017],
claim that f(0) = 1, f5(0) = 0, f5(0) = 10. This particular answer is due to using
a subgradient of 0 at x = 0. One may ask if a more judicious choice fixes such
issues; unfortunately, it is not difficult to see that no such universal choice exists'.

!By defining ReLU’(0) = 1/2, the reader may note we obtain the correct derivative on fo, fs;
however, consider f4(z) = ReLU (ReLU (z)) — ReLU (—xz), which also equals f;(x). Here, we
would need ReLU’(0) = 3% to obtain the correct answer.



