
CPSC 340:
Machine Learning and Data Mining

Deep Learning & Automatic Differentiation
Andreas Lehrmann and Mark Schmidt

University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Last Time: Deep Learning
• Neural networks with multiple hidden layers:

• Linear transformation followed by non-linear activation at each layer.
• Hidden layers learn latent features ℎ(𝑧!

"); last activations serve as input
to linear output layer.
– Different objective functions lead to different tasks (e.g., binary classification,

multi-class classification, regression).

Why Multiple Layers?
• Historically, deep learning was motivated by “connectionist” ideas:
– Brain consists of network of highly-connected simple units.

• Same units repeated in various places.
• Computations are done in parallel.
• Information is stored in distributed way.
• Learning comes from updating of connection strengths.
• One learning algorithm used everywhere.

https://www.nytimes.com/2015/01/11/magazine/sebastian-seungs-quest-to-map-the-human-brain.html

Why Multiple Layers?
• And theories on the hierarchical organization of the visual system:

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

“Hierarchies of Parts” Intuition for Deep Learning

• Each “neuron” might recognize
a “part” of a digit.
– “Deeper” neurons might recognize

combinations of parts.
– Represent complex objects as

combinations of simpler parts.

• Watch the full video here:
– https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

Why Multiple Layers?
• The idea of multi-layer designs appears in engineering too:
– Deep hierarchies in camera design:

http://www.argmin.net/2018/01/25/optics/

Why Multiple Layers?
• There are also mathematical motivations for using multiple layers:
– 1 layer gives us a universal approximator.

• But this layer might need to be huge.

– With deep networks:
• Some functions can be approximated with exponentially-fewer parameters.

– Compared to a network with 1 hidden layer.

• So deep networks may need fewer parameters than “shallow but wide” networks.
– And hence may need less data to train.

• Empirical motivation for using multiple layers:
– In many domains deep networks have led to unprecedented performance.

New Issue: Vanishing Gradients
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0, so SGD does not move.

Rectified Linear Units (ReLU)
• Modern networks often replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with ‘n’.

Skip Connections Deep Learning
• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” between layers (so fewer transformations).
– Many variations exist on skip connections exist.

ResNet “Blocks”
• Residual networks (ResNets) are a variant on skip connections.
– Consist of repeated “blocks”, first methods that successfully used 100+ layers.

• Usual computation of activation based on previous 2 layers:

• ResNet “block”:
– Adds activations from “2 layers ago”.

• Differences from usual skip connections:
– Activations vectors al and al+2 must have the same size.
– No weights on al, so Wl and Wl+1 must focus on “updating” al (fit “residual”).

• If you use ReLU, then Wl=0 implies al+2=al.
https://en.wikipedia.org/wiki/Residual_neural_network
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

Learning in Deep Neural Networks
• Usual training procedure is again stochastic gradient descent (SGD).
– Deep networks are highly non-convex and notoriously difficult to tune.

• Highly non-convex, so are the problem local mimina?
– Empirical/theoretical evidence that local minima are not the problem.

• We think all local optima are good in typical over-parameterized cases.

– But can be hard to get SG to close to a local minimum in reasonable time.

• We are discovering tricks that often make things easier to tune.
– And other tricks for reducing overfitting.

Common Deep Learning Tricks
• Data standardization (“centering” and “whitening”).
• Parameter initialization: “small but different“.
– If we initialize all parameters in the layer to same value, they stay the same.
– Also common to use initializations that are standardized within layers.

• Step-size selection: “babysitting“.
– Use bigger step-size for the bias variables, or different for each layer.
– Methods that use a step size for each coordinate (AdaGrad, RMSprop, Adam).

• Early stopping of the optimization based on validation accuracy.
• Momentum: adds weighted sum of previous SGD directions.
• Batch normalization: adaptive standardizing within layers.
– Often allows sigmoid activations in deep networks.

Common Deep Learning Tricks
• L2-regularization or L1-regularization (“weight decay”).

– Sometimes with different 𝜆 for each layer.
– Recent work shows this can introduce bad local optima.

• Dropout: randomly zeroes activations ‘z’ values to discourage dependence.
• Rectified linear units (ReLU) as non-linear transformation.

– Makes objective non-differentiable, but we now know SGD still converges in this setting.
• Residual/skip connections: connect layers to multiple previous layers.

– We now know that such connections make it more likely to converge to good minima.
• Neural architecture search: try to cleverly search space of hyper-parameters.

– This gets expensive!
• Some of these tricks are explored in bonus slides.

Missing Theory Behind Training Deep Networks
• Unfortunately, we do not understand many of these tricks very well.

– Large portion of theory is on degenerate case of linear neural networks.
• Or other weird cases like “1 hidden unit per layer”.

– A lot of research is performed using “grad student descent”.
• Several variations are tried, ones that perform well empirically are kept (possibly overfitting).

• Popular Examples:
– Batch normalization originally proposed to fix “internal covariate shift”.

• Internal covariate shift not defined in original paper, and batch norm does seem to reduce it.
– Often singled out as an example of problems with machine learning scholarship.

• Like many heuristics, people use batch norm because they found that it often helps.
– Many people have worked on better explanations.

– Adam optimizer is a nice combinations of ideas from several existing algorithms.
• Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.

– But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problems.

• But is Adam is often used because it is amazing at training some networks.
– It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

Modern Babysitting
• From 114-page babysitting log of training 175B parameter model:

https://github.com/facebookresearch/metaseq/blob/d46662cef7a21149b55b44f47442d4aefd6c3c23/projects/OPT/chronicles/OPT175B_Logbook.pdf

Digression: Deep Learning Vocabulary
• “Deep learning”: Models with many hidden layers.

– Usually neural networks.
• “Neuron”: node in the neural network graph.

– “Visible unit”: feature.
– “Hidden unit”: latent factor zic or h(zic).

• “Activation function”: non-linear transform.
• “Activation”: h(zi).
• “Backpropagation”: compute gradient of neural network.

– Sometimes “backpropagation” means “training with SGD”.
• “Weight decay”: L2-regularization.
• “Cross entropy”: softmax loss.
• “Learning rate”: SGD step-size.
• “Learning rate decay”: using decreasing step-sizes.
• “Vanishing gradient”: underflow/overflow during gradient calculation.

ML and Deep Learning History
• 1950 and 1960s: Initial excitement.
– Perceptron: linear classifier and stochastic gradient (roughly).
– “the embryo of an electronic computer that [the Navy] expects will be able

to walk, talk, see, write, reproduce itself and be conscious of its existence.”
New York Times (1958).
• https://www.youtube.com/watch?v=IEFRtz68m-8

– Object recognition
assigned to students as a
summer project

• Then drop in popularity:
– Quickly realized limitations of linear models.

https://mitpress.mit.edu/books/perceptrons/

https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History
• 1970 and 1980s: Connectionism (brain-inspired ML)
– Want “connected networks of simple units”.

• Use parallel computation and distributed representations.

– Adding hidden layers zi increases expressive power.
• With 1 layer and enough sigmoid units, a universal approximator.

– Success in optical character recognition.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
http://www.datarobot.com/blog/a-primer-on-deep-learning/
http://blog.csdn.net/strint/article/details/44163869

ML and Deep Learning History
• 1990s and early-2000s: drop in popularity.
– It proved really difficult to get multi-layer models working robustly.

– We obtained similar performance with simpler models:
• Rise in popularity of logistic regression and SVMs with regularization and kernels.

– Lots of internet successes (spam filtering, web search, recommendation).

– ML moved closer to other fields like numerical optimization and statistics.

ML and Deep Learning History
• Late 2000s: push to revive connectionism as “deep learning”.
– Canadian Institute For Advanced Research (CIFAR) NCAP program:

• “Neural Computation and Adaptive Perception”.
• Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

– Unsupervised successes: “deep belief networks” and “autoencoders”.
• Could be used to initialize deep neural networks.
• https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.cs.toronto.edu/~hinton/science.pdf

https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!
• Bigger datasets, bigger models, parallel computing (GPUs/clusters).
– And some tweaks to the models from the 1980s.

• Huge improvements in automatic speech recognition (2009).
– All phones now have deep learning.

• Huge improvements in computer vision (2012).
– Changed computer vision field almost instantly.
– This is now finding its way into products.

http://www.image-net.org/challenges/LSVRC/2014/

2010s: DEEP LEARNING!!!
• Media hype:
– “How many computers to identify a cat? 16,000”

New York Times (2012).
– “Why Facebook is teaching its machines to think like humans”

Wired (2013).
– “What is ‘deep learning’ and why should businesses care?”

Forbes (2013).
– “Computer eyesight gets a lot more accurate”

New York Times (2014).

• 2015: huge improvement in language understanding.

Cool Picture Motivation for Deep Learning
• Faces might be composed of different “parts”:

http://www.datarobot.com/blog/a-primer-on-deep-learning/

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Attempt to visualize second layer:
– Corners, angles, surface boundaries?

• Models require many tricks to work.
– We’ll discuss these next time.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Cool Picture Motivation for Deep Learning
• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

“Swish” Activiation
• Recent work searched for “best” activation:

• Found that zic/(1+exp(-zic)) worked best (“swish” function).
– A bit weird because it allows negative values and is non-monotonic.
– But basically the same as ReLU when not close to 0.

DenseNet
• Variation on ResNets is “DenseNets”:
– Each layer can see all the values from many previous layers.
– Significantly reduces

vanishing gradients.

– May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf

Parameter Initialization
• Parameter initialization is crucial:
– Can’t initialize weights in same layer to same value, or they will stay same.
– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:
– Initialize bias variables to 0.
– Sample from standard normal, divided by 105 (0.00001*randn).

• w = .00001*randn(k,1)

– Performing multiple initializations does not seem to be important.

Parameter Initialization
• Parameter initialization is crucial:
– Can’t initialize weights in same layer to same value, or they will stay same.
– Can’t initialize weights too large, it will take too long to learn.

• Also common to transform data in various ways:
– Subtract mean, divide by standard deviation, “whitten”, standardize yi.

• More recent initializations try to standardize initial zi:
– Use different initialization in each layer.
– Try to make variance of zi the same across layers.

• Popular approach is to sample from standard normal, divide by sqrt(2*nInputs).

– Use samples from uniform distribution on [-b,b], where

Setting the Step-Size: Bottou Trick
• Automatic method to set step size is Bottou trick:

1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Setting the Step-Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Common approach: manual “babysitting” of the step-size.
– Run SG for a while with a fixed step-size.
– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.

Setting the Step-Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Momentum (stochastic version of “heavy-ball” algorithm):
– Add term that moves in previous direction:

– Usually βt = 0.9.

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

Standard Regularization
• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.
– Could also use L1-regularization: gives sparse network.

Standard Regularization
• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.
– Could also use L1-regularization: gives sparse network.

• Hyper-parameter optimization gets expensive:
– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.
– In addition to step-size, number of layers, size of layers, initialization.

• Recent result:
– Adding a regularizer in this way creates bad local optima.

Early Stopping
• Another common type of regularization is “early stopping”:
– Monitor the validation error as we run stochastic gradient.
– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/

Dropout
• Dropout is a more recent form of explicit regularization:
– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Adds invariance to missing inputs or latent factors
• Encourages distributed representation rather than relying on specific zi.

– Can be interpreted as an ensemble over networks with different parts missing.
– After a lot of success, dropout may already be going out of fashion.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Next Topic: Automatic Differentiation

More-Complicated Layers
• Modern networks often have complicated structures:

– Each step might be doing a different operation.
– This makes coding up the gradient both time-consuming and prone to errors.

• Developing networks like this is made easier using automatic differentiation.
http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

Automatic Differentiation (AD)
• Automatic differentiation (AD):
– Input: code computing a function.
– Output: code to compute one or more derivatives of the function.

• No loss in accuracy, unlike finite-difference approximations.
• The output code has the same asymptotic runtime as the input code.
• Does not give you a “formula” for the derivative, just code that computes it.

https://en.wikipedia.org/wiki/Automatic_differentiation

“Reverse Mode” Automatic Differentiation (AD)
• In machine learning, we typically use “reverse mode” AD.
– Gives code for computing the gradient of a differentiable function.

• The slides will exclusively talk about “reverse mode”. For “forward mode”, see bonus.
• You use this gradient to train the via SGD.

• Has a close connection to backpropagation.
– Classic algorithm to compute the gradient of neural network parameters.

• “Apply the chain rule, store redundant calculations”.

– Backpropagation can be viewed as special case of AD.

• AD basically writes every operation as instance of the chain rule.

Automatic Differentiation – Single Input+Output

• Consider the function f(x) = 10*log(1+exp(-2*x)).
• We write the function as a series of compositions: f5(f4(f3(f2(f1(x))))).
– Where f1(x) = -2*x, f2(z) = exp(z), f3(z) = 1+z, f4(z) = log(z), f5(z) = 10*x.

• So we have f1’(x) = -2, f2’(z) = exp(z), f3’(z) = 1, f4’(z) = 1/z, f5’(z) = 10.
– These all cost O(1).

• Recursively applying the chain rule we get:
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

Automatic Differentiation – Single Input+Output
• Our function written as a set of compositions:
– f5(f4(f3(f2(f1(x))))).

• The derivative written using the chain rule::
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

• Notice that this leads to repeated calculations.
– For example, we use f1(x) four different times.
– We can use dynamic programming to avoid redundant calculations.

• First, the “forward pass” will compute and store the expressions:
• 𝛼!= f1(x), 𝛼" = f2(𝛼!), 𝛼# = f3(𝛼"), 𝛼$ = f4(𝛼#), 𝛼% = f5(𝛼$) = f(x).

• Next, the “backward pass” uses stored 𝛼" values and fi’ functions:
• 𝛽% = 1*f5’(𝛼$), 𝛽$= 𝛽%*f4’(𝛼#), 𝛽# = 𝛽$*f3’(𝛼"), 𝛽" = 𝛽#*f2’(𝛼!), 𝛽! = 𝛽"*f1’(x) = f’(x).

• A generic method to make code computing f’(x) for same cost as f(x).

Summary
• Vanishing gradients in deep networks (gradient may be close to 0).
– Can be reduced using rectified linear units (ReLU) as non-linear transforms.
– Can be reduced using various forms of skip connections.

• ResNets include untransformed previous layers.
– Network focuses non-linearity on residual, allows huge number of layers.

• Automatic differentiation (AD):
– Decomposing code using the chain rule, to make derivative code.
– Can compute gradient for same cost as objective function.

• Backpropagation is a form of AD and computes neural network
gradients via chain rule.

• Next time: The most important idea in computer vision?

Forward-Mode Automatic Differentiation
• We discussed “reverse-mode” automatic differentiation.
– Given a function, writes code to compute its gradient.
– Has same cost as original function.
– But has high memory requirements.

• Since you need to store all the intermediate calculations.

• There is also “forward-mode” automatic differentiation.
– Given a function, writes code to compute a directional derivative.

• Scalar value measuring how much the function changes in one direction.
– Has same memory requirements as original function.
– But has high cost if you want the gradient.

• Need to use it once to get each partial derivative.

Failure of AD on ReLUs

https://arxiv.org/pdf/1809.08530.pdf

