CPSC 340: Machine Learning and Data Mining

Over-Parameterized Models Andreas Lehrmann and Mark Schmidt University of British Columbia, Fall 2022 https://www.students.cs.ubc.ca/~cs-340

Last Time: Neural Networks

- Neural networks with one hidden layer:
 - Learn features and classifier at the same time.
 - Two linear transformations (W,v), separated by non-linearity (h):

- Linear classification/regression using non-linearly transformed latent features z_i.
- Optimize logistic/softmax loss (classification) or squared error loss (regression) using SGD:

$$\frac{1}{2}\sum_{i=1}^{n} \left(\sqrt{h(W_{x_i})} - y_i \right)^{\frac{n}{2}}$$

(regression)

 $\sum \log(1 + \exp(-y_i v^2 h(W_{x_i})))$

(binary classification)

Is Training Neural Networks Scary?

- Learning:
 - For binary classification, the NLL under the sigmoid likelihood is:

$$f(W,v) = \sum_{i=1}^{n} \left[og((1 + erp(-y_i v^Th(W_{x_i})))) \right] loss function on erample infile$$

- With 'W' fixed this is convex, but with both 'W' and 'v' as variables it is non-convex.
- And finding the global optimum is NP-hard in general.
- Nearly-always trained with variations on stochastic gradient descent (SGD).

$$W^{K+1} = W^{K} - \alpha^{K} \nabla_{W} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

- Many variations exist (adding "momentum", AdaGrad, Adam, and so on).
- But SGD is not guaranteed to reach a global minimum for non-convex problems.
- Is non-convexity a big drawback compared to logistic regression?
 - And if 'k' is large, is this likely to overfit?

Neural Networks \geq Logistic Regression

- Consider a neural network with one hidden layer and connections from input to output layer.
 - The extra connections are called "skip" connections.

- You could first set v=0, then optimize 'w' using logistic regression.
 - This is a convex optimization problem that gives you the logistic regression model.
- You could then set 'W' and 'v' to small random values, and start SGD from the logistic regression model.
 - And if you are worried about overfitting, you could use early stopping based on validation set.
 - Even though this is non-convex, the neural network can only improve on logistic regression.
- In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Over-Parameterized Models

"Hidden" Regularization in Neural Networks

• Fitting neural network with one hidden layer (SGD, no regularization):

- On each step of the x-axis, the network is re-trained from scratch.
- Training error goes to 0 with enough units: we're finding a global min.
- What should happen to test error as we increase size of hidden layer?

"Hidden" Regularization in Neural Networks

• Fitting neural network with one hidden layer (SGD, no regularization):

- Test error continues to go down!?! Where is fundamental trade-off??
 - Is it is still fundamental, but trade-off focuses on the "worst" global minimum.
- There do exist global mins with large #hidden units have test error = 1.
 - But among the global minima, SGD is somehow converging to "good" ones.

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.

Multiple Global Minima?

- These training error "global minima" may have very-different test errors.
- Some of these global minima may be more "regularized" than others.

Implicit Regularization of SGD

- There is empirical evidence SGD finds regularized parameters.
 We call this the "implicit regularization" of the optimization algorithm.
- Beyond empirical evidence, we know this happens in simpler cases.
- An example of provable implicit regularization:
 - Consider a least squares problem where there exists a 'w' where Xw=y.
 - Residuals are all zero and we fit the data exactly for some 'w'.
 - You run gradient descent or SGD starting from w=0.
 - Converges to solution Xw=y that has the minimum L2-norm.
 - So using SGD is like using L2-regularization, but regularization is "implicit".
 - In this case, using w=X\y in Julia also gives you this regularized solution.

Implicit Regularization of SGD

- Another example of provable implicit regularization:
 - Consider a logistic regression problem where data is linearly separable.
 - A linear model can perfectly separate the data.
 - You run gradient descent from any starting point.
 - Converges to max-margin solution of the problem (minimum L2-norm solution).
 - So using gradient descent is equivalent to encouraging large margin.

• Related implicit regularization results are known for boosting, matrix factorization, and linear neural networks.

Double Descent Curves

Model Size (ResNet18 Width)

• What is going on???

- Learning theory (trade-off) results analyze global min with worst test error.
 - Actual test error for different global minima will be better than worst case bound.
 - Theory is correct, but maybe "worst overfitting possible" is too pessimistic?

- Consider instead the global min with best test error.
 - With small models, "minimize training error" leads to unique (or similar) global mins.
 - With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
- Gap between "worst" and "best" global min can grow with model complexity.

- Can get "double descent" curve in practice if parameters roughly track "best" global min shape.
 One way to do this: increase regularization as you increase model size.
- Maybe "neural network trained with SGD" has "more implicit regularization for bigger models"?
 - But "double descent" is not specific to implicit regularization of SGD and not specific to neural networks.

Double Descent on a Linear Least Squares Problem

Double Descent on a Linear Least Squares Problem

- ||w|| increases until you fit data exactly (only one 'w' fits exactly).
- Then norm of parameters starts decreasing (many 'w' can fit exactly).
 - So implicit regularization of gradient descent gives lower norm 'w' values.

Double Descent on a Linear Least Squares Problem

- We see fundamental trade-off if we plot error vs. norm.
 - After we have fit data exactly, models are less "complicated" as we add more parameters.
- Can also make double descent curves by increasing explicit regularization.
- Under right conditions, can see double descent in other models like random forests.

Implicit Regularization of SGD for Neural Networks

- For neural networks, why would SGD implicit regularization increase with number of hidden units?
 - Similar to least squares, maybe SGD finds low-norm solutions?
 - In higher-dimensions, there is flexibility in global mins to have a low norm?
 - Maybe SGD stays closer to starting point as we increase dimension?
 - This would be more like a regularizer of the form $||w w^0||$.

Over-Parameterization and SGD

- Over-parameterized model:
 - A model that has more parameters than needed to fit data exactly.
- Amazing properties of SGD for many over-parameterized models:
 - SGD tends to find a global minimum of training error.
 - SGD tends to have implicit regularization.
 - SGD converges with a constant step size.
 - At nearly the speed of gradient descent.
- Why can SGD converge with a constant step size?
 - Variation in gradients is 0 at solutions that fit all training examples.
 - No "region of confusion".

Over-Parameterization and SGD

• Gradient descent vs. SGD for under/over-parameterized least squares:

- No need to decrease step sizes or increase batch sizes for over-parameterized.
 - And nice ways to set the step size as you go ("painless SGD", "Polyak step size").
- Still expect good performance if you are close to being over-parameterized.

Next Topic: Deep Learning

Deep Learning (As a Picture)

• Deep learning models have more than one hidden layer:

• We apply linear transformation and activation function at each "layer".

Deep Learning (As a Function)

Linear modeli $\dot{y}_i = w^7 x_i$ Neural network with I hidden layer: $\gamma_i = v^T h(W_{x_i})$ Neural network with 2 hidden layers: $y_i = v^T h(W^{(2)}h(W^{(1)}x_i))$ Neural network with 3 hidden layers $\hat{\gamma}_i = v^T h(W^{(3)}h(W^{(2)}h(W^{(1)}x_i)))$

https://mathwithbaddrawings.com/2016/04/27/symbols-that-math-urgently-needs-to-adop

Neural notwork with 4 hidden layers: $V_{i} = v^{T} h(W^{(4)}h(W^{(3)}h(W^{(2)}h(W^{(2)}x_{i}))))$ With 'm' layers we could use: $\hat{y}_{i} = \sqrt{T} \left(\prod_{i=1}^{m} h(W^{(\ell)}x_{i}) \right)$ Symbol: $\prod f_{\kappa}(+)$ Meaning: fnofno fno fno frof, of, (+)

Prediction with Deep Neural Networks

- The "textbook" choice for deep neural networks:
 - Alternate between doing linear transformations and non-linear transforms.

$$\hat{\gamma}_i = \sqrt{h} \left(W^4 h \left(W^3 h \left(W^2 h \left(W' x_i \right) \right) \right) \right)$$

- Each "layer" might have a different size.
 - W¹ is k¹ x d.
 - W^2 is $k^2 \times k^1$.
 - W^3 is $k^3 x k^2$.
 - W^4 is $k^4 \times k^3$
 - v is k⁴ x 1.

- z[1] = W1*x
 for layer in 2:nLayers
 z[layer] = Wm[layer-1]*h(z[layer-1])
 end
 yhat = v'*h(z[end])
- We often use the same non-linear transform, such as sigmoid, at each layer.
- Cost for prediction, which is called "forward propagation":
 - Cost of the matrix multiplies: $O(k^1d + k^2k^1 + k^3k^2 + k^4k^3)$
 - Cost of the non-linear transforms is $O(k^1 + k^2 + k^3 + k^4)$, so does not change cost.
- Only need to change last layer based on task (like regression or classification).
 - Squared error, logistic, softmax, and so on.

Adding Bias Variables

• We typically add a bias to each layer:

Linear model with bigs: Xin

Summary

- Empirical "good news" for training neural networks with SGD:
 - With enough hidden units, SGD often finds a global minimum.
- Implicit regularization and double descent curves.
 - Possible explanations for why neural networks often generalize well.
- Over-parameterized models, that can fit data exactly.
 - SGD converges fast with a constant step size for these models.
- Deep learning:
 - Neural networks with multiple hidden layers.

• Next time: "Where is my gradient?"