CPSC 340:
Machine Learning and Data Mining

Over-Parameterized Models

Andreas Lehrmann and Mark Schmidt
University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Last Time: Neural Networks

* Neural networks with one hidden layer:

— Learn features and classifier at the same time.
— Two linear transformatlons (W,v), separated by non-linearity (h):

l)(\/\/ x) Cg PO

/ @ —— @ O
sma:d .::l«‘:\l;m 1.0 {{Wmﬂﬁ::f WM/M (é% ® @ /
Cach 2

— Linear classification/regression using non-linearly transformed latent features z..
— Optimize logistic/softmax loss (classification) or squared error loss (regression)

using SGD: . . 7
12 (VhWk) - yi)* S lyg(l 4 oxpl= v (W)

(regression) (binary classification)

Is Training Neural Networks Scary?

* Learning:
— For binary classification, the NLL under the sigmoid likelihood is:

‘F(W V> Z lo ({'f'er(v TA(WX))> Joss
= - W "l

* With ‘W’ fixed this is convex, but with both ‘W’ and ‘v’ as variables it is non-convex.
* And finding the global optimum is NP-hard in general.

— Nearly-always trained with variations on stochastic gradient descent (SGD).

K+l -_ k Ix v
W/(*‘ W’ ’({ QLA/K I i§ q /VOM') m9 e*‘iwpé (G%(
S s LU W A

* Many variations exist (adding momentum”, AdaGrad, Adam, and so on).
e But SGD is not guaranteed to reach a global minimum for non-convex problems.

* |s non-convexity a big drawback compared to logistic regression?
— And if 'k’ is large, is this likely to overfit?

Neural Networks = Logistic Regression

* Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

T T
/\-: W X + v L\(W’()
| ines \"VN/

W\uk/ Newral VI#%VLMI’

{

* You could first set v=0, then optimize ‘W’ using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.
* You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.

— And if you are worried about overfitting, you could use early stopping based on validation set.
— Even though this is non-convex, the neural network can only improve on logistic regression.

* In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Over-Parameterized Models

“Hidden” Regularization in Neural Networks

* Fitting neural network with one hidden layer (SGD, no regularization):

MNIST CIFAR-10
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢]
0.5f i
0.04¢ 1
§ § 0.41
[0.03f T o 4l
0.02 0.2}
0.01} 01l
94 8 16 32 64 128 256 512 1K 2K 4K 92 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* On each step of the x-axis, the network is re-trained from scratch.
* Training error goes to O with enough units: we’re finding a global min.
 What should happen to test error as we increase size of hidden layer?

“Hidden” Regularization in Neural Networks

* Fitting neural network with one hidden layer (SGD, no regularization):

MNIST CIFAR-10
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence))|
0.05¢ |
0.5¢]
0.04 1
§ § 0.41 1
(g 0.03} L 0.3l
0.02 0.2
0.01f 0.1}
1 ! | h o 1 1 ! ! 1 !
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

e Test error continues to go down!?! Where is fundamental trade-off??
— Is it is still fundamental, but trade-off focuses on the “worst” global minimum.

* There do exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
eregr

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
eregr

/___’ 3‘0’0«' ffﬂmf__\

Pafqm‘h(

e But this may be achieved by many different parameter values.

Multiple Global Minima?

eregr

Parth(

* These training error “global minima” may have very-different test errors.
* Some of these global minima may be more “regularized” than others.

Implicit Regularization of SGD

* There is empirical evidence SGD finds regularized parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

 An example of provable implicit regularization:
— Consider a least squares problem where there exists a ‘W’ where Xw=y.
* Residuals are all zero and we fit the data exactly for some ‘w’.

— You run gradient descent or SGD starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
e So using SGD is like using L2-regularization, but regularization is “implicit”.
* In this case, using w=X\y in Julia also gives you this regularized solution.

Implicit Regularization of SGD

* Another example of provable implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* Alinear model can perfectly separate the data.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem (minimum L2-norm solution).
* So using gradient descent is equivalent to encouraging large margin.

— Perfect classifier wilh m” ;n"
\ (lagat duferce to clos? example;)

X;l
Ooo
o
o 6
1‘: 9 o
X%y % 0 0o,
K’gk ooooo
XX 0006
)‘:xxx o
\ Xt

e Related implicit regularization results are known for
boosting, matrix factorization, and linear neural networks.

Double Descent Curves

Expected

0.7 (Classical Statistics)
_ ™
S 06 '
LU
- '
‘o 0.5
= 3
~ ,"
2 04 ~
2 Reality \\M\\,_\

0.3

0.2

1 10 20 30 40 50 60

Model Size (ResNet18 Width)
* What is going on???

Worst vs. Best “Global Minimum”

"ps‘f Cvror (WW‘S’, 9'0‘\,,’ Min)

Crror

','raiw errol

Mode size

Worst vs. Best “Global Minimum”

105‘/ Cvror (WW‘S’, 9'0‘\,,’ Min)
Al
¢

>x

oy

Crror

) S

s

IR I\
LS

Cam errof

—

Model size

* Learning theory (trade-off) results analyze global min with worst test error.
— Actual test error for different global minima will be better than worst case bound.
— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

Worst vs. Best “Global Minimum”

105‘/ evror (WW‘S’, 9'0“,,’ Min)

oy

Sl

Crror

>
>

g

q' w N
of (l?"’"" cj\OL

v

>R~
w30 8% <

Mode size

* Consider instead the global min with best test error.
— With small models, “minimize training error” leads to unique (or similar) global mins.
— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

 Gap between “worst” and “best” global min can grow with model complexity.

Worst vs. Best “Global Minimum”

105‘/ evror (WW‘S’, 9'0“,,’ Min)

oy

Sl

Crror

>
>

g

q' w N
of (L,,.f" cj\OL

v

>R~
w30 8% <

Mode size

* Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
— One way to do this: increase regularization as you increase model size.

* Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
— But “double descent” is not specific to implicit regularization of SGD and not specific to neural networks.

=
o

o
0

test error

o
N

o
o

Double Descent on a Linear Least Squares Problem

* Fitting least squares with gradient descent (n=500):

test error vs. # params

o
o

o
N

0

250 500 750 1000
parameters

=
o

o
0

test error

o
N

o
o

Double Descent on a Linear Least Squares Problem

* Fitting least squares with gradient descent (n=500):

test error vs. # params 40 norm vs. # params

o
o

o
I

301

201

norm

10

0

250 500 750 1000 00 260 460 600 800 1000

parameters # parameters

* | |w]]| increases until you fit data exactly (only one ‘W’ fits exactly).

 Then norm of parameters starts decreasing (many ‘w’ can fit exactly).
— So implicit regularization of gradient descent gives lower norm ‘w’ values.

test error

=
o

o
0

o
o

o
I

o
N

o
o

test error vs. # params

Double Descent on a Linear Least Squares Problem

* Fitting least squares with gradient descent (n=500):

norm vs. # params

40
30-
S
= 20] o
C wn
9
101
0 250 500 750 1000 00 260 460 600 800 1000
parameters # parameters

We see fundamental trade-off if we plot error vs. norm.

1.0

o
o)

o
o

©
o

o
N

0.0

test error vs. norm

0 10 20 30 40
norm

— After we have fit data exactly, models are less “complicated” as we add more parameters.
Can also make double descent curves by increasing explicit regularization.

Under right conditions, can see double descent in other models like random forests.

parameters

1000

800

600

400

200

Implicit Regularization of SGD for Neural Networks

* For neural networks, why would
SGD implicit regularization increase with number of hidden units?

— Similar to least squares, maybe SGD finds low-norm solutions?
* In higher-dimensions, there is flexibility in global mins to have a low norm?

— Maybe SGD stays closer to starting point as we increase dimension?
* This would be more like a regularizer of the form | |w —w?°||.

2.0

15

1.0

0.5

0.0

Training loss

—— Width 10
Width 100
—— Width 1000

Relative change in norm of weights from initialization

—— Width 10
Width 100
—— Width 1000

Over-Parameterization and SGD

* Over-parameterized model:

— A model that has more parameters than needed to fit data exactly.

* Amazing properties of SGD for many over-parameterized models:
— SGD tends to find a global minimum of training error.
— SGD tends to have implicit regularization.
— SGD converges with a constant step size.

* At nearly the speed of gradient descent.

* Why can SGD converge with a constant step size?
— Variation in gradients is O at solutions that fit all training examples.

* No “region of confusion”.

Over-Parameterization and SGD

Gradient descent vs. SGD for under/over-parameterized least squares:

Underparametrized Overparametrized

102 - 102

— GD
SGD (decreasing)
—— sGD (constant)

101 3

10° E 10° E

Function value

101 E 107 E

10_2 1 1 | 10_2 1 | 1
0 100 200 300 400 0 100 200 300 400
Gradient evaluations Gradient evaluations

— No need to decrease step sizes or increase batch sizes for over-parameterized.

* And nice ways to set the step size as you go (“painless SGD”, “Polyak step size”).

— Still expect good performance if you are close to being over-parameterized.

Next Topic: Deep Learning

Deep Learning (As a Picture)

* Deep learning models have more than one hidden layer:

2 ” (, ,,

Zy) — 5 (A |
X PN ()
13 — Ylzy,
\/\/\/
M P OMf .,,'/ ’u\ er
Topd L il ayer | o lape 2 -

 We apply linear transformation and activation function at each “layer”.

Deep Learning (As a Function)

Linear wodel

/)\’iz W-lyi A/Chra' I\p'ltwf/\" wilh L/ A'J'/"‘ "‘)""r"
. N)
/\/CUKJ network wiln | hidden la)let" \/| - V'T L\(W("?L\ W(ﬂkﬁw(ﬂk(w(X))))
yi: v ng\(ﬂ Wit ‘m '4705 we conld use:
Zi _
/Vevxm\ Y)dwo(k with 2 hidden layC’S' A T (T l—\ (’W“)X. >>

\/}i: v—‘ k(Wm k(W“’x;))
_/0;"\;?\—5 Y'\Lo IWC

2i

Newal netuack wilh 3 hidden ,qyers ﬂi‘"ﬂ%‘t Foh o fipe o B o 1)
Gi= v hOWh(w” KW x)))

\/V*Z'L)J

() o |

3 < £ 1L @ =T ke s,
Z‘(: 2) | was "isfiv_l _}

Prediction with Deep Neural Networks

The “textbook” choice for deep neural networks:
— Alternate between doing linear transformations and non-linear transforms.

\;,. = v h(Wh(Whw'h(W'))))

— Each “layer” might have a different size.

e Wlisklxd z[1] = Wl*x
2!5 2X . for layer in 2:nLayers
. w3 :: t&tz' z[layer] = Wm[layer-1]*h(z[layer-1])
- Wiskx k3)
e visk?x1 yhat = v'*h(z[end])

— We often use the same non-linear transform, such as sigmoid, at each layer.
— Cost for prediction, which is called “forward propagation”:
 Cost of the matrix multiplies: O(k*d + k?k* + k3k? + k*k3)
* Cost of the non-linear transforms is O(k* + k? + k3 + k?#), so does not change cost.
— Only need to change last layer based on task (like regression or classification).
» Squared error, logistic, softmax, and so on.

SR ”,.“@

Y

Adding Bias Variables

* We typically add a bias to each layer:
L/'V\eaf Mocl(" wl“« Liqs(

Summary

Empirical “good news” for training neural networks with SGD:
— With enough hidden units, SGD often finds a global minimum.

Implicit regularization and double descent curves.
— Possible explanations for why neural networks often generalize well.

Over-parameterized models, that can fit data exactly.
— SGD converges fast with a constant step size for these models.

Deep learning:
— Neural networks with multiple hidden layers.

Next time: “Where is my gradient?”

