CPSC 340: Machine Learning and Data Mining

Neural Networks Fall 2022

Last Time: Multi-Dimensional Scaling

- Multi-dimensional scaling (MDS):
 - Non-parametric latent-factor model: directly optimizes the z_i.
 - T-SNE tends to visualize clusters and manifold structures.
 - Word2vec gives continuous alternative to bag of words.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf http://sebastianruder.com/secret-word2vec http://sebastianruder.com/secret-word2vec

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W_{j}z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}z_{i}\rangle - x_{ij}\rangle)^{2}$$
$$= \sum_{i=1}^{n} ||W^{T}z_{i} - x_{i}||^{2}$$
$$= ||ZW - X||_{F}^{2}$$

- Represent 'X' as linear combination of latent factors 'w_c'.
 - Latent features ' z_i ' give a lower-dimensional version of each ' x_i '.
 - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
 - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts

- Principal component analysis (PCA):
 - Often uses orthogonal factors and fits them sequentially (via SVD).
 - Or uses non-orthogonal factors and fits with SGD.
- Genearlizations of PCA using ideas from linear models:
 - Binary PCA, robust PCA, regularized PCA, sparse PCA, non-linear PCA.]
- Recommender systems:
 - "Content-based filtering" is usually supervised learning approach.
 - Collaborative-filtering only uses ratings.
- Matrix factorization approach to collaborative filtering.

- Fits regularized PCA to available entries in matrix, to "fill in" other entries.

End of Part 4: Key Concepts

- We discussed multi-dimensional scaling (MDS):
 - Non-parametric method for high-dimensional data visualization.
 - Tries to match distance/similarity in high-/low-dimensions.
 - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
 - Methods focus on large distances and lose local structure.
- We discussed t-SNE:
 - MDS focusing on neighbour distances and not large distances.
- Word2vec is a recent MDS method giving better "word features".

Next Topic: Neural Networks

Neural Network History

- Popularity of neural networks has come in waves over the years.
 - Currently, it is one of the hottest topics in science.
- Recent popularity due to unprecedented performance on some difficult tasks.
 - Speech recognition.
 - Computer vision.
 - Natural language processing.
- These are mainly due to big datasets, deep models, and tons of computation.
 Plus tweaks to classic models and focus on structures of networks (CNNs, LSTMs).
- For a NY Times article discussing some of the history/successes/issues, see:
 - <u>https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html</u>

Neural Networks: Motivation

- Many domains require non-linear transforms of the features.
 - But, it may be obvious which transform to use.
- Neural network models try to learn good transformations.
 - Optimize the "parameters of the features".
 - And choose a class of features that have the ability to represent many functions.
- We will first discuss the special case of "one hidden layer".
 - Then we will move onto "deep learning" with uses multiple layers.

A Graphical Summary of CPSC 340 Parts 1-5

Part 1: "I have features xi" Part 3: Change of basis Part 4: basis from latent-factor Part 5: Neural networks (X (Zik Riz (Ziz) -- (Zik) "PCA will give me good features" Part 2: "What is the group of x;?" TI think this basis will work 1 (Xi3) (\mathbf{x}_{i}) (\mathbf{x}_{i}) (x, n)- - (Xid) Learn features "What are the 'parts' of x;?" classifier at Traine same time.

• Classic neural network structure with one hidden layer:

• As a function:

• Parameters: the "k times d" matrix 'W', and length-k vector "v".

– Using 'k' as number of "hidden units", the dimension are:

$$W = \begin{bmatrix} -w_1^T \\ -w_2^T \\ -w_3^T \end{bmatrix} \qquad V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_K \end{bmatrix}$$

• As a function:

- Linear transformation $z_i = Wx_i$ is like doing PCA.
 - Mixes together the features in a way that we learn.
- Non-linear transform 'h' is often sigmoid applied element-wise.
 - Without a non-linear transformation it degenerates to a linear model:
 - $\hat{y}_i = v^T(Wx_i) = (v^TW)x_i = w^Tx_i$ (if we set 'w' using w=W^Tv).

• As a function:

- Second linear transformation v^Th(z_i) gives final value.
 - This is like using a linear model with non-linear feature transformations.
 - But in this case we learned the features.
- Cost of computing \hat{y}_i above is O(kd).
 - O(kd) to compute Wx_i , O(k) to apply 'h', then O(k) to multiply by 'v'.

Why Sigmoid as Non-Linear Transform?

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} = 70 \\ 20 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(z_i) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".

Why Sigmoid as Non-Linear Transform?

Zic

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} \neq 0 \\ 2 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(z_i) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- But this is hard to optimize (non-differentiable/discontinuous).
- Sigmoid is a smooth approximation to these binary features.
 - Allows you to train the model using gradient descent or SGD.

Universal Approximation with One Hidden Layer

- Classic choice of "activation" function 'h' is the sigmoid function.
- With enough hidden "units", this is a "universal approximator".
 - Any continuous function can be approximated arbitrarily well (on bounded domain).
- But this result is for a non-parametric setting of the parameters:
 - The number of hidden "units" must be a function of 'n'.
 - A fixed-size network is not a universal approximator.
- Other universal approximators (always non-parametric):
 - K-nearest neighbours.
 - Need to have 'k' depending on 'n'.
 - Linear models with polynomial non-linear features transformations.
 - Degree of polynomial depends on 'n'.
 - Linear models with Gaussian RBFs as non-linear features transformations or kernels.
 - With RBF centered on each xⁱ.

Adding Bias Variables

• Recall fitting linear models with a bias variable (so $\hat{y}_i \neq 0$ when $x_i=0$).

$$\hat{y}_{i} = \underbrace{\overset{d}{\underset{j=1}{\sum}} w_{j} x_{ij} + \beta}$$

We often implement this by adding a column of ones to X.

• In neural networks we often include biases on each z_{ic}:

$$\hat{y}_{i} = \sum_{c=1}^{k} v_{c} h\left(w_{c} x_{i}^{T} + \beta_{c} \right)$$

- As before, we could implement this by adding a column of ones to X.
- We often also want a bias on the output:

$$\hat{y}_{i} = \sum_{c=1}^{h} v_{c} h(w_{c} x_{i} + \beta_{c}) + \beta$$

- For sigmoid 'h', you could equivalently fix one row of W to be 0.

• Since h(0) is a constant.

Adding Bias Variables

$$\hat{y}_i = \sum_{c=1}^{lr} v_c h(w_c x_i + \beta_c) + \beta$$

Regression and Binary Classification

• For regression problems, our prediction (ignoring biases) is:

$$\hat{y}_i = \sqrt{h(W x_i)}$$

• And we might train to minimize the squared residual:

$$f(W_{v}) = \frac{1}{2} \sum_{i=1}^{2} (\hat{y}_{i} - y_{i})^{2} = \frac{1}{2} \sum_{i=1}^{2} (v^{T}h(W_{x_{i}}) - y_{i})^{2}$$

- For binary classification, our prediction (ignoring biases) is: Use a $sign(v^{T}h(W_{x_{i}}))$ or $p(y_{i}|W_{y_{i}}x_{i}) = \underbrace{1 + exp(-y_{i}v^{T}h(W_{x_{i}}))}_{q + exp(-y_{i}v^{T}h(W_{x_{i}}))}$
- And we might train to minimize the logistic loss:

$$f(W,v) = \sum_{i=1}^{n} \log\left(1 + \exp\left(-y_{i}\hat{y}_{i}\right)\right) = \sum_{i=1}^{n} \log\left(1 + \exp\left(-y_{i}v^{T}h(W_{x_{i}})\right)\right)$$

- This is like logistic regression with learned features.

Neural Network for Multi-Class Classification

- Multi-class classification with a neural network:
 - Input is connected to a hidden layer (same as regression and binary case).
 - Hidden layer is connected to multiple output units (one for each label.).

- We convert to probabilities for each class using softmax of the \hat{y}_c values.

$$P(y_i = c \mid x_i, W_i V) = \frac{e \times p(\hat{y}_c)}{\sum_{i=1}^{k} e \times p(\hat{y}_{c'})}$$

- We can predict by maximizing $p(y_i | x_i, W, V)$ over all each 'c' (one prediction across classes).
- We train by minimizing negative log of this probability (softmax loss, summed across examples).
- Notice that we changed tasks by only changing last layer (and loss function).

Summary

- Unprecedented performance on difficult pattern recognition tasks.
- Neural networks with one hidden layer:
 - Simultaneous learn a linear model and its features z_i.
- Non-linear transform avoids degeneracy.
 - Universal approximator if size of layer grows with number of examples 'n'.
- Bias variables added to each layer.
- Outputting probabilities and training with SGD.
- Next time: neural networks overfit less with more parameters?

Is Training Neural Networks Scary?

- Learning:
 - For binary classification, the NLL under the sigmoid likelihood is:

$$f(W,v) = \sum_{i=1}^{n} \left[og((1 + erp(-y_i v^Th(W_{x_i})))) \right] loss function on erample is$$

- With 'W' fixed this is convex, but with both 'W' and 'v' as variables it is non-convex.
- And finding the global optimum is NP-hard in general.
- Nearly-always trained with variations on stochastic gradient descent (SGD).

$$W^{K+1} = W^{K} - \alpha^{K} \nabla_{W} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

$$V^{K+1} = V^{K} - \alpha^{K} \nabla_{V} f_{i_{K}} (W^{K}, v^{K})$$

- Many variations exist (adding "momentum", AdaGrad, Adam, and so on).
- But SGD is not guaranteed to reach a global minimum for non-convex problems.
- Is non-convexity a big drawback compared to logistic regression?
 - And if 'k' is large, is this likely to overfit?

Neural Networks \geq Logistic Regression

- Consider a neural network with one hidden layer and connections from input to output layer.
 - The extra connections are called "skip" connections.

- You could first set v=0, then optimize 'w' using logistic regression.
 - This is a convex optimization problem that gives you the logistic regression model.
- You could then set 'W' and 'v' to small random values, and start SGD from the logistic regression model.
 - And if you are worried about overfitting, you could use early stopping based on validation set.
 - Even though this is non-convex, the neural network can only improve on logistic regression.
- In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Biological Motivation

Why "Neural Network"?

• Cartoon of "typical" neuron:

- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):

Why "Neural Network"?

Why "Neural Network"?

-> Predictions based on aggregation Vh(Wx;) at y: "neuron" -> Synapse between Zik and y: "neuron" Spinory signal h(wcx;) sent along "axor" h(zk , Neuron aggregates signals: w.x. "dendrites" for Zik "neuron" are reciving xij values W_{(l} WKd

"Artificial" Neural Nets vs. "Real" Networks Nets

- Artificial neural network:
 - x_i is measurement of the world.
 - z_i is internal representation of world.
 - y_i is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.

Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
 - We learned parameters 'w' based on the original features x_i and target y_i.
- Part 3: Change of Basis.
 - We learned parameters 'v' based on a change of basis z_i and target y_i .
- Part 4: Latent-Factor Models.
 - We learned parameters 'W' for basis z_i based on only on features x_i .

Wn

WKd

- You can then learn 'v' based on change of basis z_i and target y_i .
- Part 5: Neural Networks (one hidden layer).
 - Jointly learn 'W' and 'v' based on x_i and y_i .
 - Learn basis z_i that is good for supervised learning.

Why $z_i = Wx_i$?

- In PCA we had that the optimal $Z = XW^T(WW^T)^{-1}$.
- If W had normalized+orthogonal rows, Z = XW^T (since WW^T = I).
 - So $z_i = Wx_i$ in this normalized+orthogonal case.
- Why we would use $z_i = Wx_i$ in neural networks?
 - We didn't enforce normalization or orthogonality.
- Well, the value W^T(WW^T)⁻¹ is just "some matrix".
 - You can think of neural networks as just directly learning this matrix.

Softmax NLL vs. Cross-Entropy

• Multi-class objective often written as minimizing cross-entropy:

$$f(W,V) = \sum_{j=1}^{n} \sum_{j=1}^{n} I[y^{j} = c](-\log p(y^{j} = c \mid X, W, V))$$

- The indicator function is zero except for true label y^i : $f(W,V) = -\sum_{j=1}^{2} \log_p(y^j | X, W, V)$
- When we plug in the softmax likelihood, we get the softmax NLL.
 - So cross-entropy is the softmax NLL with extra terms that do nothing.
 - Cross-entropy way of writing would make more sense if training data had "soft" assignments to classes.