
CPSC 340:
Machine Learning and Data Mining

Neural Networks
Fall 2022

Last Time: Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Non-parametric latent-factor model: directly optimizes the zi.
– T-SNE tends to visualize clusters and manifold structures.
– Word2vec gives continuous alternative to bag of words.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf
http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
http://sebastianruder.com/secret-word2vec
http://sebastianruder.com/secret-word2vec

End of Part 4: Key Concepts
• We discussed linear latent-factor models:

• Represent ‘X’ as linear combination of latent factors ‘wc’.
– Latent features ‘zi’ give a lower-dimensional version of each ‘xi’.
– When k=1, finds direction that minimizes squared orthogonal distance.

• Applications:
– Outlier detection, dimensionality reduction, data compression, features for linear

models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts
• Principal component analysis (PCA):
– Often uses orthogonal factors and fits them sequentially (via SVD).
– Or uses non-orthogonal factors and fits with SGD.

• Genearlizations of PCA using ideas from linear models:
– Binary PCA, robust PCA, regularized PCA, sparse PCA, non-linear PCA.]

• Recommender systems:
– “Content-based filtering” is usually supervised learning approach.
– Collaborative-filtering only uses ratings.

• Matrix factorization approach to collaborative filtering.
– Fits regularized PCA to available entries in matrix, to “fill in” other entries.

End of Part 4: Key Concepts
• We discussed multi-dimensional scaling (MDS):
– Non-parametric method for high-dimensional data visualization.
– Tries to match distance/similarity in high-/low-dimensions.

• “Gradient descent on scatterplot points”.

• Main challenge in MDS methods is “crowding” effect:
– Methods focus on large distances and lose local structure.

• We discussed t-SNE:
– MDS focusing on neighbour distances and not large distances.

• Word2vec is a recent MDS method giving better “word features”.

Next Topic: Neural Networks

Neural Network History
• Popularity of neural networks has come in waves over the years.

– Currently, it is one of the hottest topics in science.

• Recent popularity due to unprecedented performance on some difficult tasks.
– Speech recognition.
– Computer vision.
– Natural language processing.

• These are mainly due to big datasets, deep models, and tons of computation.
– Plus tweaks to classic models and focus on structures of networks (CNNs, LSTMs).

• For a NY Times article discussing some of the history/successes/issues, see:
– https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Neural Networks: Motivation
• Many domains require non-linear transforms of the features.
– But, it may be obvious which transform to use.

• Neural network models try to learn good transformations.
– Optimize the “parameters of the features”.

• And choose a class of features that have the ability to represent many functions.

• We will first discuss the special case of “one hidden layer”.
– Then we will move onto “deep learning” with uses multiple layers.

A Graphical Summary of CPSC 340 Parts 1-5

Neural Network with One Hidden Layer
• Classic neural network structure with one hidden layer:

Neural Network with One Hidden Layer
• As a picture:

• As a function:

Neural Network with One Hidden Layer
• As a function:

• Parameters: the “k times d” matrix ‘W’, and length-k vector “v”.
– Using ‘k’ as number of “hidden units”, the dimension are:

Neural Network with One Hidden Layer
• As a function:

• Linear transformation zi=Wxi is like doing PCA.
– Mixes together the features in a way that we learn.

• Non-linear transform ‘h’ is often sigmoid applied element-wise.
– Without a non-linear transformation it degenerates to a linear model:

• !𝑦! = vT(Wxi) = (vTW)xi = wTxi (if we set ‘w’ using w=WTv).

Neural Network with One Hidden Layer
• As a function:

• Second linear transformation vTh(zi) gives final value.
– This is like using a linear model with non-linear feature transformations.

• But in this case we learned the features.

• Cost of computing !𝑦# above is O(kd).
– O(kd) to compute Wxi, O(k) to apply ‘h’, then O(k) to multiply by ‘v’.

Why Sigmoid as Non-Linear Transform?
• Consider setting ‘h’ to define binary features zi using:

– Each h(zi) can be viewed as binary feature.
• “You either have this ‘part’ or you don’t have it.”

– We can make 2k objects by all the
possible “part combinations”.

Why Sigmoid as Non-Linear Transform?
• Consider setting ‘h’ to define binary features zi using:

– Each h(zi) can be viewed as binary feature.
• “You either have this ‘part’ or you don’t have it.”

– But this is hard to optimize (non-differentiable/discontinuous).

• Sigmoid is a smooth approximation to these binary features.
– Allows you to train the model using gradient descent or SGD.

Universal Approximation with One Hidden Layer
• Classic choice of “activation” function ‘h’ is the sigmoid function.
• With enough hidden “units”, this is a “universal approximator”.

– Any continuous function can be approximated arbitrarily well (on bounded domain).

• But this result is for a non-parametric setting of the parameters:
– The number of hidden “units” must be a function of ‘n’.
– A fixed-size network is not a universal approximator.

• Other universal approximators (always non-parametric):
– K-nearest neighbours.

• Need to have ‘k’ depending on ‘n’.
– Linear models with polynomial non-linear features transformations.

• Degree of polynomial depends on ‘n’.
– Linear models with Gaussian RBFs as non-linear features transformations or kernels.

• With RBF centered on each xi.

• Recall fitting linear models with a bias variable (so !𝑦! ≠ 0 when xi=0).

– We often implement this by adding a column of ones to X.
• In neural networks we often include biases on each zic:

– As before, we could implement this by adding a column of ones to X.
• We often also want a bias on the output:

– For sigmoid ‘h’, you could equivalently fix one row of W to be 0.
• Since h(0) is a constant.

Adding Bias Variables

Adding Bias Variables

Regression and Binary Classification
• For regression problems, our prediction (ignoring biases) is:

• And we might train to minimize the squared residual:

• For binary classification, our prediction (ignoring biases) is:

• And we might train to minimize the logistic loss:

– This is like logistic regression with learned features.

Neural Network for Multi-Class Classification
• Multi-class classification with a neural network:

– Input is connected to a hidden layer (same as regression and binary case).
– Hidden layer is connected to multiple output units (one for each label.).

– We convert to probabilities for each class using softmax of the "𝑦! values.

– We can predict by maximizing p(yi | xi, W, V) over all each ‘c’ (one prediction across classes).
– We train by minimizing negative log of this probability (softmax loss, summed across examples).
– Notice that we changed tasks by only changing last layer (and loss function).

Summary
• Unprecedented performance on difficult pattern recognition tasks.
• Neural networks with one hidden layer:
– Simultaneous learn a linear model and its features zi.

• Non-linear transform avoids degeneracy.
– Universal approximator if size of layer grows with number of examples ‘n’.

• Bias variables added to each layer.
• Outputting probabilities and training with SGD.

• Next time: neural networks overfit less with more parameters?

Is Training Neural Networks Scary?
• Learning:
– For binary classification, the NLL under the sigmoid likelihood is:

• With ‘W’ fixed this is convex, but with both ‘W’ and ‘v’ as variables it is non-convex.
• And finding the global optimum is NP-hard in general.

– Nearly-always trained with variations on stochastic gradient descent (SGD).

• Many variations exist (adding “momentum”, AdaGrad, Adam, and so on).
• But SGD is not guaranteed to reach a global minimum for non-convex problems.

• Is non-convexity a big drawback compared to logistic regression?
– And if ‘k’ is large, is this likely to overfit?

Neural Networks ≥ Logistic Regression
• Consider a neural network with one hidden layer and connections from input to output layer.

– The extra connections are called “skip” connections.

• You could first set v=0, then optimize ‘w’ using logistic regression.
– This is a convex optimization problem that gives you the logistic regression model.

• You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.
– And if you are worried about overfitting, you could use early stopping based on validation set.
– Even though this is non-convex, the neural network can only improve on logistic regression.

• In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Biological Motivation

Why “Neural Network”?
• Cartoon of “typical” neuron:

• Neuron has many “dendrites”, which take an input signal.
• Neuron has a single “axon”, which sends an output signal.
• With the right input to dendrites:
– “Action potential” along axon (like a binary signal):

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential

Why “Neural Network”?

https://en.wikipedia.org/wiki/Neuron

Why “Neural Network”?

https://en.wikipedia.org/wiki/Neuron

Why “Neural Network”?

“Artificial” Neural Nets vs. “Real” Networks Nets

• Artificial neural network:
– xi is measurement of the world.
– zi is internal representation of world.
– yi is output of neuron for classification/regression.

• Real neural networks are more complicated:
– Timing of action potentials seems to be important.

• “Rate coding”: frequency of action potentials simulates continuous output.
– Neural networks don’t reflect sparsity of action potentials.
– How much computation is done inside neuron?
– Brain is highly organized (e.g., substructures and cortical columns).
– Connection structure changes.
– Different types of neurotransmitters.

Supervised Learning Roadmap
• Part 1: “Direct” Supervised Learning.
– We learned parameters ‘w’ based on the original features xi and target yi.

• Part 3: Change of Basis.
– We learned parameters ‘v’ based on a change of basis zi and target yi.

• Part 4: Latent-Factor Models.
– We learned parameters ‘W’ for basis zi based on only on features xi.
– You can then learn ‘v’ based on change of basis zi and target yi.

• Part 5: Neural Networks (one hidden layer).
– Jointly learn ‘W’ and ‘v’ based on xi and yi.
– Learn basis zi that is good for supervised learning.

Why zi = Wxi?
• In PCA we had that the optimal Z = XWT(WWT)-1.
• If W had normalized+orthogonal rows, Z = XWT (since WWT = I).
– So zi = Wxi in this normalized+orthogonal case.

• Why we would use zi = Wxi in neural networks?
– We didn’t enforce normalization or orthogonality.

• Well, the value WT(WWT)-1 is just “some matrix”.
– You can think of neural networks as just directly learning this matrix.

Softmax NLL vs. Cross-Entropy
• Multi-class objective often written as minimizing cross-entropy:

• The indicator function is zero except for true label yi:

• When we plug in the softmax likelihood, we get the softmax NLL.
– So cross-entropy is the softmax NLL with extra terms that do nothing.

• Cross-entropy way of writing would make more sense if
training data had “soft” assignments to classes.

