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Last Time: Collaborative Filtering with Latent Factors

 We discussed recommender systems using collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.
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* We discussed collaborative filtering with matrix factorization:
YeZW  yyx <uwie”

— Fit to minimize regularized squared error on available ratings (with biases).
* The learned W’ and z; can be used to predict unknown y; values.

— Can be viewed as “PCA on the available entries”.



Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

e Other issues important in recommender systems:

— Diversity: how different are the recommendations?
* If you like ‘Battle of Five Armies Extended Edition’, recommend Battle of Five Armies?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last?

* If you keep not clicking on ‘Hunger Games’, should it remain a recommendation?
— Trust: tell user why you made a recommendation.

* Quora gives explanations for recommendations.
— Social recommendation: what did your friends watch?

— Freshness: people tend to get more excited about new/surprising things.

 Collaborative filtering does not predict well for new users/movies.
— New movies don’t yet have ratings, and new users haven’t rated anything.



Content-Based vs. Collaborative Filtering

* Consider content-based filtering, our usual supervised learning (Part 3):

N _ T
im WA

— Here x; is a fixed vector of features for the movie/user.

* Usual supervised learning setup: 'y’ would contain all the y;, X would have x; as rows.
— Can predict on new users/movies, but can’t learn about each user/movie.

e If two users have the same features, then they get the exact same recommendations.

e Our latent-factor approach to collaborative filtering (Part 4):
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— Learns vector of features z, for each user ‘.
— But can’t predict on new users (with no ratings).



Hybrid Content/Collaborative: SVDfeature

SVDfeature combines content-based/collaborative filtering:
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Learns weights ‘w’ on fixed features X
— Allows predictions for generic users/movies (including new ones).

And learns movie-specific weights w! on learned user-specific features z..
— Allows more-accurate predictions for users/movies with lots of data.

Typically you also have a global bias 5, user-specific bias f;, and movie-specific £;.
— And train with SGD (see bonus slides).

Won “KDD Cup” competition in 2011 and 2012.



Social Regularization

* Many recommenders are now connected to social networks.
— “Login using your Facebook account”.

* Often, people like similar movies to their friends.

* Recent recommender systems use social regularization.
— Add a “regularizer” encouraging friends” weights to be similar:
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— |f we get a new user, recommendations are based on friend’s preferences.



Next Topic: Multi-Dimensional Scaling



Visualization High-Dimensional Data

* PCA for visualizing high-dimensional data:
— Use PCA ‘W’ matrix to linearly transform data to get the z, values.
— And then we plot the z, values as locations in a scatterplot.
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Visualization High-Dimensional Data

* PCA for visualizing high-dimensional data:
— Use PCA ‘W’ matrix to linearly transform data to get the z, values.
— And then we plot the z, values as locations in a scatterplot.

 An common alternative is multi-dimensional scaling (MDS):
— Directly optimize the pixel locations of the z, values.

e “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, Iocatlons are.
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MDS Method (“Sammon Mapping”) Video
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z. values.
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z. values.
n N 2
£(2)=z2 (lz=201 = lly, = xl)
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z. values.
n N 2
£(2)=z2 (lz=201 = lly, = xl)
= :):“4’

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z. values.
n n 2
{(Z) -':_.:Z‘E” (I, -2;]l = lly, = x)-H)
* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z. values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.

— Not convex and sensitive to initialization.

* And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions

Unfortunately, MDS often does not work well in practice.

Problem with traditional MDS methods: focus on large distances.
— MDS tends to “crowd/squash” all the data points together like PCA.

But we could consider different distances/similarities:
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— Where the functions are not necessarily the same:

* d, is the high-dimensional distance we want to match.
* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.

Early example was Sammon’s Mapping (details in bonus).
— We next discuss t-SNE, a more recent method that tends to work better.



MDS with Squared Distances vs. Sammon’s Map

* MDS based on Eucliean distances (left) vs. Sammon’s Map (right):
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Next Topic: t-SNE



Data on Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— Where Euclidean distances make sense “locally”.

* But Euclidean distances may not make sense “globally”.

— Wikipedia example: Surface of the Earth is “locally” flat.
* Euclidean distance accurately measures distance “along the surface” locally.
* For far points Euclidean distance is a poor measure of distance “along the surface”.
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e Consider data that lives on a low-dimensiona

Data on Manifolds

Il(

manifold”.

— Where Euclidean distances make sense “locally”.

* But Euclidean distances may not make sense “globally”.

 Example is the ‘Swiss roll’:
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Example: Manifolds in Image Space

* Slowly-varying image transformations exist on a manifold:
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* “Neighbouring” images are close in Euclidean distance.
— But distances between very-different images are not reliable.



Learning Manifolds

* With usual distances, PCA/MDS do not discover non-linear manifolds.
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Learning Manifolds

e With usual distances, PCA/MDS do not discover non-linear manifolds.

* We could use change of basis or kernels: but still need to pick basis.



Sammon’s Map vs. ISOMAP vs. PCA (MNIST)

AP

1Som

S ammon Ma'o

* A classic way to visualize manifolds is ISOMAP.

— Uses approximation of geodesic distance within MDS (see bonus slides).



Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)

A modern way to visualize manifolds and clusters is t-SNE.



Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)

L)
>
\
~)

"
*
& 2
¥ B x
*

-
h ]

L
8

1o

5 algoriﬂ»m do

know The label.

pﬂf visesl

S~

Rememéﬂ TImg I unsu



+

1o

5 algori‘ﬂnm do

know The label.

fﬂf visesl

S~

Rememéﬂ TImg I unsu



g HEE

+E 4
»
+...”r+..++.m. o

:
il

1o

5 abwiﬂmy do

know The label.

fﬂf visesl

S~

7] ql‘

[
|
Rememéw TImg I unsu




1o

5 algoriﬂnm do

know The label.

p«e/ viseS/

S~

7] ql\

1
|
Rememéﬂ Tlmg i wunsu




t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on distance to “neighbours” (allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d, choices):

— d,: for each x;, compute probability that each x; is a ‘neighbour”.
* Computation is similar to k-means++, but most weight to close points (Gaussian).
* Does not require explicit geodesic distance approximation.

— d,: for each z, compute probability that each z; is a ‘neighbour’.
* Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d5: Compares x; and z; using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x, if you know the z, (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

t-SNE on Wikipedia Articles




t-SNE on Product Features




t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @ CD8Tcells
® CD20+Bcells CD20-Bcells @ CD11b- Monocytes
® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



Next Topic: Word2Vec



Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” features be related is some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA is word2vec...



Using Context

* Consider these phrases:
— “the cat purred”

— “the kitten purred”

— “black cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

* Word2vec uses this insight to design an MDS distance function.



Word2Vec (Continuous Bag of Words)

A common word2vec approaches (called continuous bag of words):
— Each word ‘i’ is represented by a vector of real numbers z.

— Training data: sentence fragments with “hidden” middle word:
“We introduce basic prineiples and techniques in”
* “the fields of data mining and machine”

* “tools behind the emerging field of data”

* “techniques are now rurning behind the scenes”

* “discover patterns and make predictions in various”
* “the core data mining and machine learning”

“with motivating applications frem a variety of”

— Train so that z, of “hidden” words is are similar to z, of surrounding words.



Word2Vec (Continuous Bag of Words)

e Continuous bag of words model probability of middle word ‘i’ as:
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 We use gradient descent on negative logarithm of these probabilities:
— Makes zisz big for words appearing in same context (making z, close to z)).

— Makes z;'z; small for words not appearing together (makes z; and z far).

* Once trained, you use these z, as features for language tasks.
— Tends to work much better than bag of words.
— Allows you to get useful features of words from unlabeled text data.



Word2Vec (Skip-Gram)

A common word2vec approaches (skip gram):
— Each word ‘i’ is represented by a vector of real numbers z.

— Training data: sentence fragments with “hidden” surrounding word:
o “Weintroduecebasie principles and-techniguesin”
* “thefields-of data mintrgand-machine”
* “toolsbehindthe emerging field-of-data”
* “techniguesare-nrow running behinrd-thescenes”
* “discoverpatternsand make predictionsin-various”
* “the-core-data mining anrdmachiretearning”
o “with-motivatingapplications from a~variety-of”
— Train so that z, of “hidden” words is are similar to z, of surrounding words.

* Uses same probability as continuous bag of words.
— But denominator sums over all possible surrounding words (often just sample terms for speed).



Word2Vec Example
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* Distances between vectors might represent semantics.



Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table [4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zine: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

'I‘ab]eﬁﬂhﬁwa words that follow vﬂ.nouf. relationships. We follow the approach described above: the
relationship 1s defined by subtr: word vectors, and the result is added to another word. Thus
for example,Paris - France + Italy = Rome.) As it can be seen, accuracy is quite good, although

Word vectors for 157 languages here.



https://fasttext.cc/docs/en/crawl-vectors.html

Summary

Multi-dimensional scaling is a non-parametric latent-factor model.
Different MDS distances/losses/weights usually gives better results.
Manifold: space where local Euclidean distance is accurate.

— Structured data like images often form manifolds in space.
t-SNE is an MDS method focusing on matching small distances.

Word2vec:

— Latent-factor (continuous) representation of words.
— Based on predicting word from its context (or context from word).

Next time: deep learning.



Stochastic Gradient for SVDfeature

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:
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e Stochastic gradient for SVDfeature (formulas as bonus):
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SVDfeature with SGD: the gory details
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Tensor Factorization

e Tensors are higher-order generalizations of matrices: l ’
e = e = i = N ‘/ /—\’77}
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Generalization of matrix factorization is tensor factorization:

IJ’V\ é IC v”\C,

e Useful if there are other reIevant varlables:

* Instead of ratings based on {user,movie}, ratings based {user,movie,group}.
» Useful if you have groups of users, or if ratings change over time.



Field-Aware Matrix Factorization

* Field-aware factorization machines (FFMs):
— Matrix factorization with multiple z, or w, for each example or part.
— You choose which z, or w_ to use based on the value of feature.

 Example from “click through rate” prediction:
— E.g., predict whether “male” clicks on “nike” advertising on “espn” page.

— A previous matrix factorization method for the 3 factors used:
+4
Wf{r' w[\i‘f@ h/("'l “/;wlp f Wh;’f( WMy/?
A G/
— FFMs could use: Wi ey, ¥l W g
* wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
* wespnG is the factor we use when multiplying by a group’s latent factor.

* This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).


https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf

Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— It’s easier to warm start some models than others.



Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.

\ — Wﬂl' o‘r v'wj’n, any N twqm[o o
— Just update the counts: P( Vicodin " Spam ) = (o Lutceliyspon in e U L

Comnl of “spam" in New and oll s

— Decision trees with fixed rules: just update counts at the leaves.



Medium Case: L2-Regularized Least Squares

e |L2-regularized least squares is obtained from linear algebra:
w= (XX + A7 (Xy)

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus x.x.", which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t” new data point is O(td3).

e With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.



Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).
n n+ |
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* If we don’t have much more data, ‘t" and ‘g’ will be “close”.
— Start gradient descent on ‘g” with minimizer of ‘.
— You can show that it requires fewer iterations.
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Hard Cases: Non-Convex/Greedy Models

For decision trees:
— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:
— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

£(2)= 25 d3(kla,2) = diley)
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* A possibility is “classic” MDS with d,(x;x;) = x;'x; and d,(z,,z)) = z;'z;
— We obtain PCA in this special case (centered x, d; as the squared L2-norm).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:
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* Another possibility: di(x,x) = | |x;— x| |; and d,(z;,z)) = [ [z;— 7] |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.

£(2)= Zi (dl(z,z) d, (v x )))

X))X)
— Denominator reduces focus on large distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.
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Geodesic Distance on Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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ISOMAP

* |ISOMAP is |latent-factor model for visualizing data on manifolds:
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ISOMAP

* |ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.

0 r i?/'y\otl /)q'lz.

.............

* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.




Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x; to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold .
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is @ KNN of x..

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* X is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points
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ISOMAP

* |ISOMAP is |latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.

* Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:

e Usually distance between neighbours.

3. Compute weighted shortest path between all points. | |
 Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. |




Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:
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* PCA can perfectly capture the low-dimensional structure.

* T-SNE can capture the local structure, but can “twist” the pIaAne.
AR




Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing



https://en.wikipedia.org/wiki/Graph_drawing

e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:

n N
O\PW;MMK z z { 9( d (x,)xﬂ) 4, (2,2

)
ZEW = j:i’* 0
* Using multivariate chain rule we have:
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Multiple Word Prototypes

 What about homonyms and polysemy?

— The word vectors would need to account for all meanings.

 More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts. /

)gow"*“




luxury

Ijan; LIar,
conve

. sense
desire
roke it
laundering Entry
transaction
finance
banking
secret
cumency
money
stock cash
5
~ september
july august
april
19721971
1960s 1948
1985 14988

Multiple Word Prototypes

irvention conversation Réffer
— vari iﬂﬁ'o-tﬁr magazine
: Bl eeethod hrase meaning translatio jaguar
EEEFECN, b roblem Erm Rovels fantasy stars  ihare
EXtETt reason =
fact manga microsoft
relation Mibyis
talk tgele'.r_gsiﬂn nals
viden celebration
ta::.amera venue calendar constellation
cast P flash ) afternoon oracle o
strin dr dche?;—:ﬂ start asteroid rars
- d keyboar = pPapcsal galaxy moon
jaguar,
- ?r%%ical planet
) attempt
machine dvance gncounte
suppl approach, | retreat
PPY¢arm tar gear Ccragfiveswitch rayarse Mmj b Wity
eztate
. N cayal
couplg™ hee Tigting 9121 reqimEntn
coat FEE'[ deck
EC
ridimg L4 I i . .
dog wearing beaﬁng erHHHliElpaht',r direction Eesﬁubmarlne undergraduate
&
male warrior gap dana i port harvard
. u cqastinic
iger rrito
eqgq g ons ry san
ightin of
i lak@sks
e
orange jaguar, quesmperor
areSiidwn Unter duke




