CPSC 340:
Machine Learning and Data Mining



Last Time: PCA with Orthogonal/Sequential Basis

* When k=1, PCA has a scaling problem.

* When k > 1, have scaling, rotation, and label switching.
— Standard fix: use normalized orthogonal rows W_ of ‘W’

| wc”:l and W wc\:() for '#¢
— And fit the rows in order:

* First row “reduces error the most”.
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“Synthesis” View vs. “Analysis” View

* We said that PCA finds hyper-plane minimizing distance to data x..
— This is the “synthesis” view of PCA (connects to k-means and least squares).
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* “Analysis” view when we have orthogonality constraints:
— PCA finds hyper-plane maximizing variance in z; space.
— You pick W to “explain as much variance in the data” as possible.



Colour Opponency in the Human Eye

* Classic model of the eye is with 4 photoreceptors:

Light Section @
— Rods (more sensitive to brightness). yo =
— L-Cones (most sensitive to red). R gﬁ!
.. Bipolar cells /) )i} ||| N ansis
— M-Cones (most sensitive to green). —’:*,tiffi;'u *";'J-,Qhﬁlm
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— S-Cones (most sensitive to blue). : ";’ 0" -—
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cells
* Two problems with this system:
— Not orthogonal. §
* High correlation in particular between red/green. §
— We have 4 receptors for 3 colours. z /.
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Colour Opponency in the Human Eye

* Bipolar and ganglion cells seem to code using “opponent colors”:

— 3-variable orthogonal basis:
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* This is similar to PCA (d =4, k = 3). ""
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Colour Opponency Representation
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PCA Computation: other methods

* With linear regression, we had the normal equations
— But we also could do it with gradient descent, SGD, etc.

 With PCA we have the SVD
— But we can also do it with gradient descent, SGD, etc.

— These other methods typically don’t enforce the uniqueness “constraints”.

 Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.

— But you can do this in post-processing if you want.

— Why would we want this? We can use our tricks from Part 3 of the course:
* We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.
* We can fit huge datasets where SVD is too expensive.



PCA Computation: Alternating Minimization
* With centered data, the PCA objective is:
n 4
'F( W)27 :_g Z (<W;Zi7— X'J )2

* |n k-means we tried to optimize this with alternating minimization:
— Fix “cluster assignments” Z and find the optimal “means” W.
— Fix “means” W and find the optimal “cluster assignments” Z.

* Converges to a local optimum.

— But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization
* With centered data, the PCA objective is:
n 4
'F( W)27 :_g Z (<w;?—;7— X,J‘ )2

* |n PCA we can also use alternating minimization:
— Fix “part weights” Z and find the optimal “parts” W.
— Fix “parts” W and find the optimal “part weights” Z.

* Converges to a local optimum.
— Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:
n o4 | 2
'F( W)27 :\Z Z (<w}2;7_ Xij)
LS

e Alternating minimization steps:
— If we fix Z, this is a quadratic function of W (least squares column-wise):
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— If we fix W, this is a quadratic function of Z (transpose due to dlmen5|ons)
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PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:

n d
jy\( W)27 :g Z (<w;2;7— X’j )2

Good local minimum Strict saddle

* This objective is not jointly convex in W and Z.
— You will find different W and Z depending on the initialization.

* For example, if you initialize with all w_ =0, then they will stay at zero.

— But it’s possible to show that all “stable” local optima are global optima.

* You will converge to a global optimum in practice if you initialize randomly.

— Randomization means you don’t start on one of the unstable non-global critical points.

* E.g., sample each initial z; from a normal distribution.



PCA Computation: Stochastic Gradient Descent

* For big X matrices, you can also use stochastic gradient descent:

f(Ww2)= ZZ (Kwi2?— x, )2 = Z<<w,z> “>Z
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e Other variables stay the same, cost per iteration is only O(k).



Next Topic: Variations on PCA



Beyond Squared Error

* Our objective for latent-factor models (LFM):

n d
F(W) 2)= 2 Z (<w’)2P- Y;J')Y
)= )=t
* As before, there are alternat|ves to squared error.
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* If X has of +1 and -1 values, we could use the logistic loss:
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— And predict x; with sign(<w!, z>), which would be a binary PCA model.



Beyond Squared Error

* Our objective for latent-factor models (LFM):

F(W) Z) - % f (<WJ)2P- )(/))7
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* As before, there are alternativcjs to squared error.
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* If X has many outliers, we could use the absolute loss:
n
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— Which will robust to outliers and is called robust PCA model.



Regularized Matrix Factorization

* Recently people have also considered L2-regularized PCA:

Fw2)= Jlzw=xI2 + 2wl + 2021

* Replaces normalization/orthogonality/sequential-fitting.
— Often gives lower reconstruction error on test data.
— But requires regularization parameters A; and A,

* Need to regularize W and Z because of scaling problem.

— |f you only regularize ‘W’ it does not do anything.

* | could take unregularized solution, replace W by aW for a tiny a to
shrink | |W| | as much as | want, then multiply Z by (1/a) to get same solution.

— Similarly, if you only regularize ‘Z’ it does not do anything.



Sparse Matrix Factorization and NMF
* Alternately, many works consider L1-regularization:

n d
F(Wy2) = Izw=xIIF + 2201 + %‘? I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
* Encourage values of ‘Z’ or ‘W’ to be exactly zero as we increase A, or 4,.

e Arelated older method is non-negative matrix factorization (NMF):
— Optimizes the PCA objective but forces ‘Z’ and ‘W’ to be non-negative.
* |In some applications negative quantities do not make sense.

— The non-negative constraint also leads to sparsity (many values set to 0).
e But unlike L1-regularization, you cannot control the degree of sparsity.

— Details on NMF in bonus (including “cancer signatures” and “NBA shot charts”).
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Recent Work: Structured Sparsity

e “Structured sparsity” considers dependencies in sparsity patterns.
— Can enforce that “parts” are convex regions.
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http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:
i3

]

Typical pre-processing:

1. Usual variable centering
r] 2. “Whiten” patches.
@ (remove correlations - bonus)




Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
* Few PCs do almost everything.
* Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:
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(b) Principal components. ‘Gabor’ filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters



Latent-Factor Models for Image Patches

e Results from a non-orthogonal latent factor with L1-regularization:
™ I T I

= |

(a) With centering - gray. (b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Latent-Factor Models for Image Patches

e Results from a non-orthogonal latent factor with L1-regularization:

(c) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Recent Work: Structured Sparsity

e Basis learned with a “structured sparsity” regularizer:
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(b) With 4 x 4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Next Topic: Recommender Systems



Recommender System Motivation: Netflix Prize

e Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.

— Grand prize was $S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8t,

— 1% error reduction achieved on October 15,

— Steady improvement after that.

* ML methods soon dominated.



Motivation: Other Recommender Systems

e Recommender systems are now everywhere:
— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

* Main types of approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y; given x..
— Apply model to prediction for new users/items.

’ o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

* “Unsupervised” learning (have label matrix ‘Y’ but no features):

— We only have labels y; (rating of user i’ for movie j’).

* Example: Amazon recommendation algorithm.



Lessons Learned from Netflix Prize

* Netflix prize awarded in 2009:
— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.
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* Winning entry (and most entries) used collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.

* Asimple collaborative filtering method that does really well (7%):

— “Regularized matrix factorization”. Now adopted by many companies.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* We have some ratings available with values {1,2,3,4,5}.
 We want to predict ratings “?” by looking at available ratings.



Collaborative Filtering Problem

e Collaborative filtering is ‘filling in” the user-item matrix:
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* What rating would “Ryan Reynolds” give to “Green Lantern”?

— Why is this not completely crazy? We may have similar users and movies.



Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

Y2ZW oy <ule”
nxd  nxp kxd
User ‘i’ has latent features z..

Movie ‘j’ has latent features w.
Our loss functions sums over available ratings ‘R’:

i o=y ) 2 AN+ 2
f(2m) (% Kwr22= )™ + Azl +%
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And we add L2-regularization to both types of features.
— Basically, this is regularized PCA on the available entries of .
— Typically fit with SGD.

This simple method gives you a 7% improvement on the Netflix problem.



Adding Global/User/Movie Biases

e Qur standard latent-factor model for entries in matrix ‘Y’:
N < y
)/10 = Sw)z 7

* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias B reflectlng average overall rating:

y\) ﬁ+<w)z 7

— We could also add a user-specific bias 3, and item-specific bias (3..

= | J
ﬁ+ﬁl +6 %<W)Z,‘>
* Some users rate things higher on average, and movies are rated better on average.
* These might also be regularized.



Summary

Biological motivation for orthogonal and/or sparse latent factors.
Alternating minimization and stochastic gradient descent:
— lIterative algorithms for minimizing PCA objective.

Many of our regression tricks can be used with LFMs:
— Robust PCA uses absolute error to be roboust to outliers.
— Regularized PCA can improve generalization or give sparse factors.

Recommender systems try to recommend products.

Collaborative filtering tries to fill in missing values in a matrix.
— Matrix factorization is a common approach (“PCA with missing entries”).

Next time: should we make a scatterplot with gradient descent?



Proof: “Synthesis” View = “Analysis” View (WW' = |)

. The variance ofthez (maximized in “analysis” view):
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* The distance to the hyper-plane (minimized in “synthesis” view):
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Background Subtraction with Robust PCA
 Robust PCA methods use the absolute error:

n
FW,2)= 22 o~ |
1= J—l

* Will be robust to outliers in the matrix ‘X.
* Encourages “residuals” r; to be exactly zero. X

— Non-zero r; are where the “outliers” are.
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Digression: “Whitening”

With image data, features will be very redundant.
— Neighbouring pixels tend to have similar values.

A standard transformation in these settings is “whitening”:
— Rotate the data so features are uncorrelated.
— Re-scale the rotated features so they have a variance of 1.

Using SVD approach to PCA, we can do this with:
— Get ‘W’ from SVD (usually with k=d).

— Z = XWT (rotate to give uncorrelated features).

— Divide columns of ‘Z’ by corresponding singular values (unit variance).

Details/discussion here.


http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

Kernel PCA

From the “analysis” view (with orthogonal PCs) PCA maximizes:
T T T
F(WWXTX)
It can be shown that the solution has the form (see here):
v vV
Itxd  lrem nx(

Re-parameterizing in terms of ‘U’ gives a kernelized PCA:
FOXCTUTVXKTY) = T (UTUXK kKT
\ v

It’s hard to initially center data in ‘Z’ space, I( K
but you can form the centered kernel matrix (see here).


https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf
https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf

VQ vs. PCA vs. NMF

 How should we represent faces?

— Vector quantization (k-means).
* Replace face by the average face in a cluster.

* ‘Grandmother cell’: one neuron = one face.
e Can’t distinguish between people in the same cluster (only ‘k’ possible faces).

* Almost certainly not true: too few neurons.
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VQ vs. PCA vs. NMF

 How should we represent faces?

— Vector quantization (k-means).
— PCA (orthogonal basis).

* Global average plus linear combination of “eigenfaces”.
e “Distributed representation”.

— Coded by pattern of group of neurons: can represent infinite number of faces by changing z..

* But “eigenfaces” are not intuitive ingredients for faces.

— PCA tends to use positive/negative cancelling bases.
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VQ vs. PCA vs. NMF

 How should we represent faces?

— Vector quantization (k-means).
— PCA (orthogonal basis).
— NMF (non-negative matrix factorization):

* Instead of orthogonality/ordering in W, require W and Z to be non-negativity.
* Example of “sparse coding”:

— The z, are sparse so each face is coded by a small number of neurons.
— The w_ are sparse so neurons tend to be “parts” of the object.

2o ¥w, 4 zp ¥ W+ 2k w oz ¥ Iy

Zs ¥ e



Representing Faces

 Why sparse coding?
— “Parts” are intuitive, and brains seem to use sparse representation.
— Energy efficiency if using sparse code.
— Increase number of concepts you can memorize?

* Some evidence in fruit fly olfactory system. Sparse "J,’d;o,,.a,\/”
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Warm-up to NMF: Non-Negative Least Squares

e Consider our usual least squares problem:
n
_ | L 2
‘F(V\/) -2 é(w X = )’,7

* But assume y, and elements of x, are non-negative:
— Could be sizes (‘height’, ‘milk’, ‘/km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).
* Assume we want elements of ‘w’ to be non-negative, too:

— No physical interpretation to negative weights.
— If x;; is amount of product you produce, what does w; < 0 mean?

* Non-negativity leads to sparsity...



Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
ﬂ\v): 2' 'Z(w X; "‘\/,»)2 willh W 20
* Plotting the (constrained) objective function:
7 " wt"'-"”ﬁ"‘ )
N
77// w
O

* |n this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
F(w): 2' ‘Z(w X; "‘\/,»)2 willh W 20
* Plotting the (constrained) objective function:

Const ramei Mynvh
w/

* |n this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

e Similar to L1-regularization, non-negativity leads to sparsity.
|II

— Also regularizes: w; are smaller since can’t “cancel” negative values.

— Sparsity leads to cheaper predictions and often to more interpretability.
* Non-negative weights are often also more interpretable.

* How can we minimize f(w) with non-negative constraints?
— Naive approach: solve least squares problem, set negative w; to 0.
Comrn'fe w - (XU()\()(’\/)

Se+ “{).: mayzo)\,{sf

— This is correct when d = 1.
— Can be worse than setting w = 0 when d = 2.



Sparsity and Non-Negativity

e Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

e How can we minimize f(w) with non-negative constraints?
— A correct approach is projected gradient algorithm:

 Run a gradient descent iteration:
t+'4

-t
W = Wt % V‘F(wé)
* After each step, set negative values to 0.

_64' _ t-l»lé;

* Repeat.



Sparsity and Non-Negativity

* Projected gradient algorithm:

t-“é _64' _ t-l»lé
\Y, = Wt "'o(tV‘F(wt) W) = Ma)(g()) \/V) ;
— Similar properties to gradient descent:
e Guaranteed decrease of ‘f’ if a'is small enough.
* Reaches local minimum under weak assumptions (global minimum for convex ‘f’).

— Least squares objective is still convex when restricted to non-negative variables.
e Solution is a “fixed point”: w* = max{0, w* - at V'f(w*)}.

— Use this to decide when to stop.

— A generalization is “proximal-gradient”:

* Instead of constraints, allows non-smooth terms (“findMinL1”).



Projected-Gradient for NMF

* Back to the non-negative matrix factorization (NMF) objective:
n A |
F(W,2)= 22 Ko=) with W70

|51 )= ond Z;j 20
— Different ways to use projected gradient:
* Alternate between projected gradient steps on ‘W’ and on ‘Z’.
* Or run projected gradient on both at once.

 Or sample arandom ‘i’ and ‘j” and do stochastic projected gradient.
Y ¢

St 272~ L EW2) and (00—t R W) for seleded i and
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Non-convex and (unlike PCA) is sensitive to initialization. W oand 2 fired)

* Hard to find the global optimum. \’_\/_\_/
* Typically use random initialization. T/\
n SC‘/ N’gahvf

* Also, we usually don’t center the data with NMF.
Values +5 0.



Application: Sports Analytics

. Stephen Curry (940 shots) LeBron James (315 shots)
 NBA shot charts:

* NMF (using “KL divergence” loss with k=10 and smoothed data).

— Negative 20)| sOD) O) >O)| B)| D) nc) D) PO)| PO
i

va l ues wou I d LeBron James  0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17

Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01

not ma ke Tyson Chandler .26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01

Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03

SENSE h ere. Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00

Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry  0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34




Application: Cancer “Signatures”

e What are common sets of mutations in different cancers?

— May lead to new treatment options.
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Beyond Matrix Factorization: Topic Models

 For modeling categorical data, “topic models” are replacing NMF.

— A “fully-Bayesian” model where sparsity arises naturally.
— Most popular example is called “latent Dirichlet allocation” (CPSC 440).
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Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:

n d
F(Wy2) = Izw=xIIF + 2201 + %‘? I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
* Disadvantage of using L1-regularization over non-negativity:
— Sparsity controlled by A; and A, so you need to set these.

* Advantage of using L1-regularization:
— Sparsity controlled by A; and A,, so you can control amount of sparsity.
— Negative coefficients often do make sense.



Sparse Matrix Factorization

* |nstead of non-negativity, we could use L1-regularization:

n d
F(Wy2) = Izw=xIIF + 2201 + Z‘Z_Af I,

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

* Many variations exist:
— Mixing L2-regularization and L1-regularization.

e Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing Z’.

— K-SVD constrains each z; to have at most ‘k” non-zeroes:
e K-means is special case where k = 1.
* PCA is special case where k =d.



Canonical Correlation Analysis (CCA)

Suppose we have two matrices, ‘X’ and ‘Y’
Want to find matrices W, and W, that maximize correlation.

— “What are the latent factors in common between these datasets?”
Define the correlation matrices:

_ N - N - ’ N

?/x 7 g”i" Z‘(‘r: ’;‘ E‘/f/: 2){% " ’Z, X 7;7
Canonical correlation analysis (CCA) maximizes
T /4 s
‘—rf(Wtr\A/y 2)11 i)’/" é )

— Subject to W, and W, having orthogonal rows.

Computationally, equivalent to PCA with a different matrix.
— Using the “analysis” view that PCA maximizes Tr(WTWXTX).



Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that
x, % W'z,
In probabilistic PCA we assume that
x, v N(W2, o'l )z~ MOI)
Integrating over Z’ the marginal likelihood given ‘W’ is Gaussian,

. | W "//\/(07 WW + 62T )

Regular PCA is obtained as the limit of 0% going to O.



Generalizations of Probabilistic PCA

Probabilistic PCA model:
. | W A//\/(07 W'W + 62T )

Why do we need a probabilistic interpretation?

Shows that PCA fits a Gaussian with restricted covariance.
— Hope is that WTW + 02l is a good approximation of X™X.

Gives precise connection between PCA and factor analysis.



Factor Analysis

e Factor analysis is a method for discovering latent factors.
e Historical applications are measures of intelligence and personality.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness ;
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness ardl K,

Neuroticism Being anxious, irritable, temperamental, and moody.

* A standard tool and widely-used across science and engineering.



PCA vs. Factor Analysis

e PCA and FA both write the matrix ‘X’ as

XxZW

 PCA and FA are both based on a Gaussian assumption.

e Are PCA and FA the same?

— Both are more than 100 years old.
— People are still arguing about whether they are the same:

* Doesn’t help that some packages run PCA when you call their FA method.
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PCA vs. Factor Analysis ///Ji\\

In probabilistic PCA we assume: \‘_’y =

x v M szx) o'I)

In FA we assume for a diagonal matrix D that:

Al

X /V/V(W‘,Z{) D)
The posterior in this case is: . W~ /V(O) W_'W+D)

The difference is you have a noise variance for each dimension
— FA has extra degrees of freedom.

.



PCA vs. Factor Analysis

In practice there often isn’t a huge difference:
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Factor Analysis Discussion

e Differences with PCA:

— Unlike PCA, FA is not affected by scaling individual features.
— But unlike PCA, it’s affected by rotation of the data.
— No nice “SVD” approach for FA, you can get different local optima.

e Similar to PCA, FA is invariant to rotation of ‘W..

— So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

* Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

 But PCA and FA can’t identify the factors.

15[
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Latent data is sampled from the prior p(x;) cc exp(—5 Vlx;]) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.



Motivation for ICA

Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

But PCA and FA can’t identify the factors.
— We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach.
— Around 30 years old instead of > 100.
— Under certain assumptions it can identify factors.

The canonical application of ICA is blind source separation.



Blind Source Separation

* |nput to blind source separation:
— Multiple microphones recording multiple sources.

5 I Source 1 Source 2

- KALAAN {?
A8 [PPRUTT ] VYV U] o

¥ .
K Mixture *

Source Separation
Estimate 1 o” ~a_Estimate 2

VR
!

I FYFI T

Nl [

* Each microphone gets different mixture of the sources.
— Goal is reconstruct sources (factors) from the measurements.



Independent Component Analysis Applications

* |CA s replacing PCA and FA in many applications:

Some ICA applications are listed below: !

« optical Imaging of neuronst!?!

« neuronal spike sortingl'®!

. face recognition!®]

» modeling receptive fields of primary visual neurons©!

. predicting stock market prices(®]

» mobile phone communications [22]

. color based detection of the ripeness of tomatoes(="]

« removing artifacts, such as eye blinks, from EEG data.[#*]

* Recent work shows that ICA can often resolve direction of causality.



Limitations of Matrix Factorization

* |CA is a matrix factorization method like PCA/FA,

e Let’s assume that X =ZW for a “true” W with k = d.
— Different from PCA where we assume k < d.

* There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness

Label switching: get same model if we permute rows of W.
— We can exchange row 1 and 2 of W (and same columns of Z).
— Not a problem because we don’t care about order of factors.

Scaling: get same model if you scale a row.
— If we mutiply row 1 of W by a, could multiply column 1 of Z by 1/a.
— Can’t identify sign/scale, but might hope to identify direction.

Rotation: get same model if we rotate W.

— Rotations correspond to orthogonal matrices Q, such matrices have Q'Q = I.
— If we rotate W with Q, then we have (QW)'"QW = W'TQ'QW = WTW.

If we could address rotation, we could identify the “true” directions.



A Unigue Gaussian Property

* Consider an independent prior on each latent features z..
— E.g., in PPCA and FA we use N(0,1) for each z_.

* |If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

* The (non-intuitive) magic behind ICA:
— |f the priors are all non-Gaussian, it isn’t rotationally symmetric.
— In this case, we can identify factors W (up to permutations and scalings).



PCA vs. ICA
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Figure : Latent data is sampled from the prior p(x;) cc exp(—5 Vixi) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.



Independent Component Analysis

In ICA we approximate X with ZW,
assuming p(z,.) are non-Gaussian.

Usually we “center” and “whiten” the data before applying ICA.

There are several penalties that encourage non-Gaussianity:
— Penalize low kurtosis, since kurtosis is minimized by Gaussians.
— Penalize high entropy, since entropy is maximized by Gaussians.

The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data

e Cash flow from 5 stores over 3 years:
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ICA on Retail Purchase Data

Factors found using ICA:
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Motivation for Topic Models

 Want a model of the “factors” making up documents.
— Instead of latent-factor models, they’re called topic models.
— The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

® | like to eat broccoli and bananas.

® | ate a banana and spinach smoothie for breakfast.

® Chinchillas and kittens are cute.

® My sister adopted a kitten yesterday.

® | ook at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It's a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce
something like

* Sentences 1 and 2: 100% Topic A

* Sentences 3 and 4: 100% Topic B

* Sentence 5. 60% Topic A, 40% Topic B

* Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
* Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

— “Topics” could be useful for things like searching for relevant documents.



Term Frequency — Inverse Document Frequency

In information retrieval, classic word importance measure is TF-IDF.

First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.

— Number of times “word” ‘t” occurs in document ‘d’, divided by total words.

— E.g., 7% of words in document ‘d” are “the” and 2% of the words are “Lebron”.

Second part is document frequency df(t,D).

— Compute number of documents that have ‘t’ at least once.
— E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

TF-IDF is tf(t,d) *log(1/df(t,D)).

4



Term Frequency — Inverse Document Frequency

* The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
— It’s high if word ‘t” happens often in document ‘d’, but isn’t common.
— E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
— E.g., seeing “the” a lot tells you nothing.

 There are *many™ variations on this statistic.
— E.g., avoiding dividing by zero and all types of “frequencies”.

e Summarizing ‘n” documents into a matrix X:
— Each row corresponds to a document.
— Each column gives the TF-IDF value of a particular word in the document.



Latent Semantic Indexing

* TF-IDF features are very redundant.
— Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

— High values of these typically just indicate topic of “basketball”.

 We can probably compress this information quite a bit.

* Latent Semantic Indexing/Analysis:
— Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
— Treat the principal components as the “topics”.
— Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.



