CPSC 340: Machine Learning and Data Mining

More PCA

Andreas Lehrmann and Mark Schmidt University of British Columbia, Fall 2022

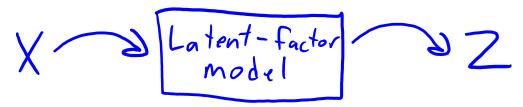
https://www.students.cs.ubc.ca/~cs-340

The 10 Algorithms Machine Learning Engineers Need to Know

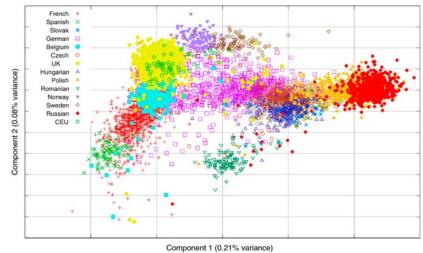
- 1. Decision trees
- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis (bonus)

Last Time: Latent-Factor Models

Latent-factor models take input data 'X' and output a basis 'Z':



- Usually, 'Z' has fewer features than 'X'.
- Uses: dimensionality reduction, visualization, factor discovery.



Trait	Description
O penness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement-oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
A greeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
N euroticism	Being anxious, irritable, temperamental, and moody.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html https://new.edu/resources/big-5-personality-traits

Last Time: Principal Component Analysis

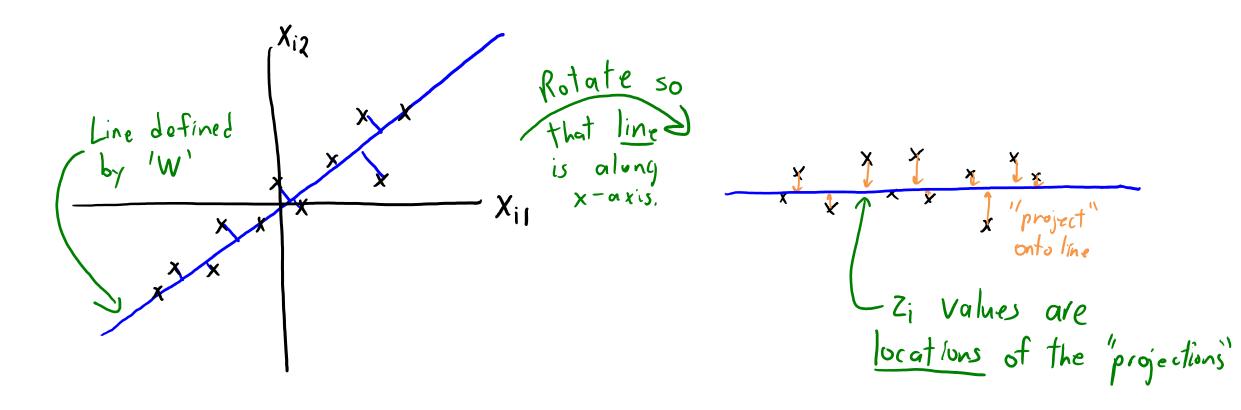
- Principal component analysis (PCA) is a linear latent-factor model:
 - These models "factorize" matrix X into matrices Z and W:

- We can think of rows w_c of W as 'k' fixed "part" (used in all examples).
- $-z_i$ is the "part weights" for example x_i : "how much of each part w_c to use".

$$\hat{x}_{i} = z_{i1} \quad w_{i} \quad +z_{i2} \quad w_{2} \quad +z_{i3} \quad w_{3} \quad +z_{i4} \quad w_{4} \quad +z_{i5} \quad w_{5} \quad +z_{i6} \quad w_{6} \quad +z_{i7} \quad w_{7} \quad +z_{i7} \quad w_{7} \quad +z_{i8} \quad w_{8} \quad +z_{i8} \quad w_{7} \quad +z_{i8} \quad w_{8} \quad +z_{i8} \quad +z_{i8} \quad w_{8} \quad +z_{i8} \quad +z$$

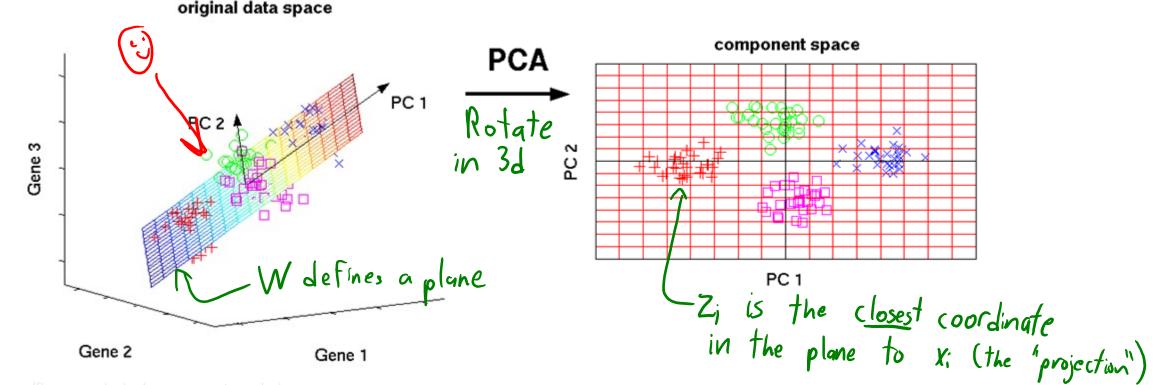
Last Time: PCA Geometry

- When k=1, the W matrix defines a line:
 - We choose 'W' as the line minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the line.



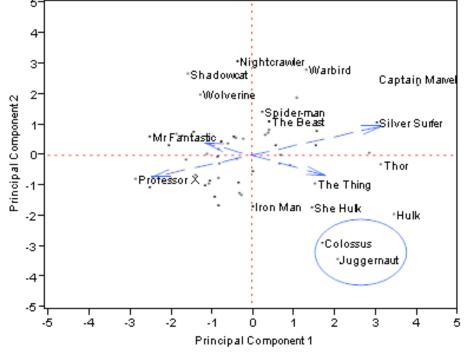
Last Time: PCA Geometry

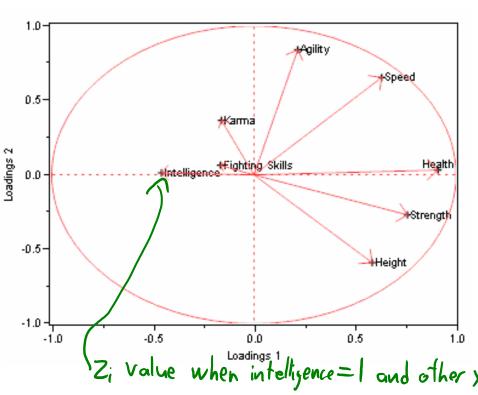
- When k=2, the W matrix defines a plane:
 - We choose 'W' as the plane minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the plane.



Last Time: PCA Geometry

- When k=2, the W matrix defines a plane:
 - Even if the original data is high-dimensional,
 we can visualize data "projected" onto this plane.





PCA Objective Function

In PCA we minimize the squared error of the approximation:

$$f(W,Z) = \sum_{i=1}^{2} ||W^{T}_{Z_{i}} - x_{i}||^{2}$$
approximation example !!

- This is equivalent to the k-means objective:
 - In k-means z_i only has a single '1' value and other entries are zero.
- But in PCA, z_i can be any real number.
 - We approximate x_i as a linear combination of all means/factors.

PCA Objective Function

In PCA we minimize the squared error of the approximation:

$$f(W,z) = \sum_{i=1}^{n} ||W^{T}z_{i} - x_{i}||^{2} = \sum_{i=1}^{n} \int_{z=1}^{d} (\langle w_{i}^{j}z_{i}^{j} \rangle - \chi_{ij}^{j})^{2}$$
approximation feature's if example it

- We can also view this as solving 'd' regression problems:
 - Each w^j is trying to predict column 'x^j' from the basis z_i.
 - The output "y_i" we try to predict here is actually the features "x_i".
 - And unlike in regression we are also learning the features z_i.

Principal Component Analysis (PCA)

The 3 different ways to write the PCA objective function:

$$f(W,Z) = \sum_{i=1}^{S} \sum_{j=1}^{d} (\langle w_{i}, z_{i} \rangle - x_{ij})^{2} \qquad (approximating x_{ij} by \langle w_{i}, z_{i} \rangle)$$

$$= \sum_{i=1}^{S} ||W^{T}z_{i} - x_{i}||^{2} \qquad (approximating x_{i} by W_{Z_{i}}^{T})$$

$$= ||ZW - X||_{F}^{2} \qquad (approximating X_{ij} by ZW_{Z_{ij}})$$

Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
 - Each column of X has a mean of zero.

• It's easy to center the data:

Set
$$M_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')

Replace each x_{ij} with $(x_{ij} - M_j)$

- There are PCA variations that estimate "bias in each coordinate".
 - In basic model this is equivalent to centering the data.

PCA Computation: Prediction

- At the end of training, the "model" is the μ_i and the W matrix.
 - PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :

1. Center: replace each
$$\tilde{x}_{ij}$$
 with $(\tilde{x}_{ij} - u_j)$

2. Find \tilde{Z} minimizing squared error:

$$\tilde{Z} = \tilde{X} W^T (WW^T)$$

And when $\tilde{Z} = \tilde{X} W^T (WW^T)$

Could just store this dxk matrix)

PCA Computation: Prediction

- At the end of training, the "model" is the μ_i and the W matrix.
 - PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :
 - The "reconstruction error" is how close approximation is to \tilde{X} :

$$\frac{1}{2} \frac{2}{\hat{x}} W - \frac{x}{\hat{x}} |_{\hat{F}}^2$$
Centered version

- Our "error" from replacing the x_i with the z_i and W.

Choosing 'k' by "Variance Explained"

Common to choose 'k' based on variance of the x_{ii}.

Var
$$(x_{ij}) = E[(x_{ij} - u_{ij})^2] = E[(x_{ij})^2] = \frac{1}{nd} \sum_{i=1}^{2} \frac{1}{j=1} \sum_{j=1}^{2} \frac{1}{j} = \frac{1}{nd} ||X||_F^2$$

Variance

Variance

Variance

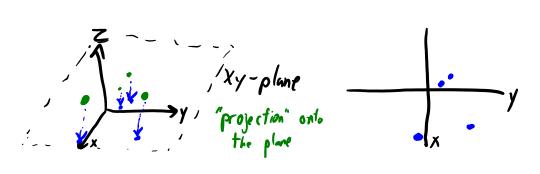
Variance

- For a given 'k' we compute (variance of errors)/(variance of x_{ii}):

- Gives a number between 0 (k=d) and 1 (k=0), giving "variance remaining".
 - If you want to "explain 90% of variance", choose smallest 'k' where ratio is < 0.10.

"Variance Explained" in the Doom Map

Recall the Doom latent-factor model (where map ignores height):



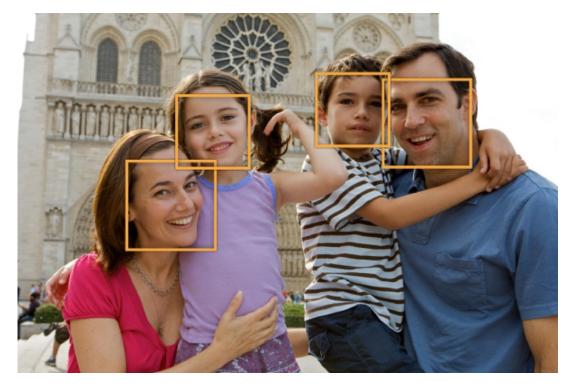
Interpretation of "variance remaining" formula:

• If we had a 3D map the "variance remaining" would be 0.

Next Topic: Eigenfaces

Application: Face Detection

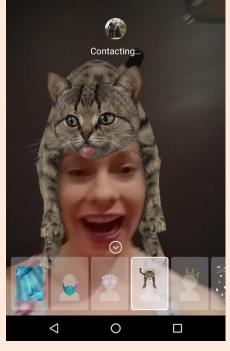
Consider problem of face detection:

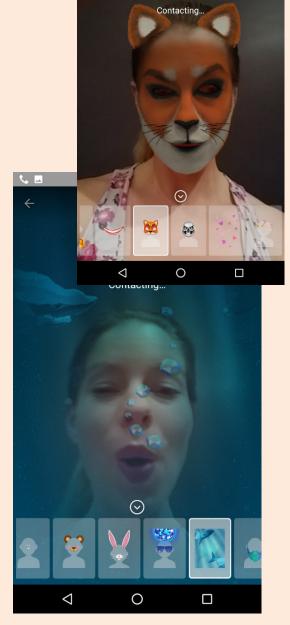


- Classic methods use "eigenfaces" as basis:
 - PCA applied to images of faces.

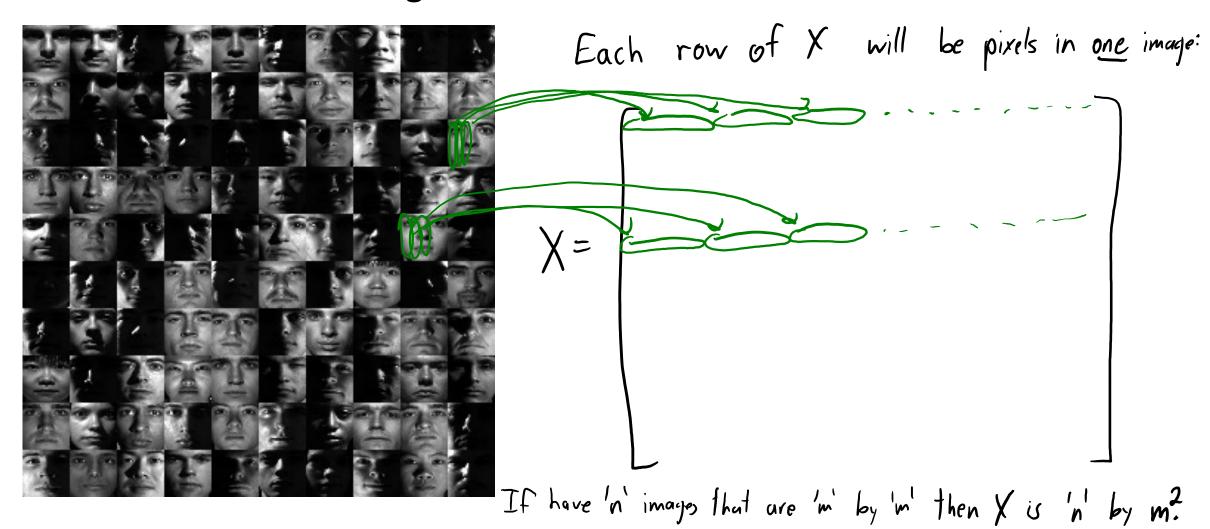


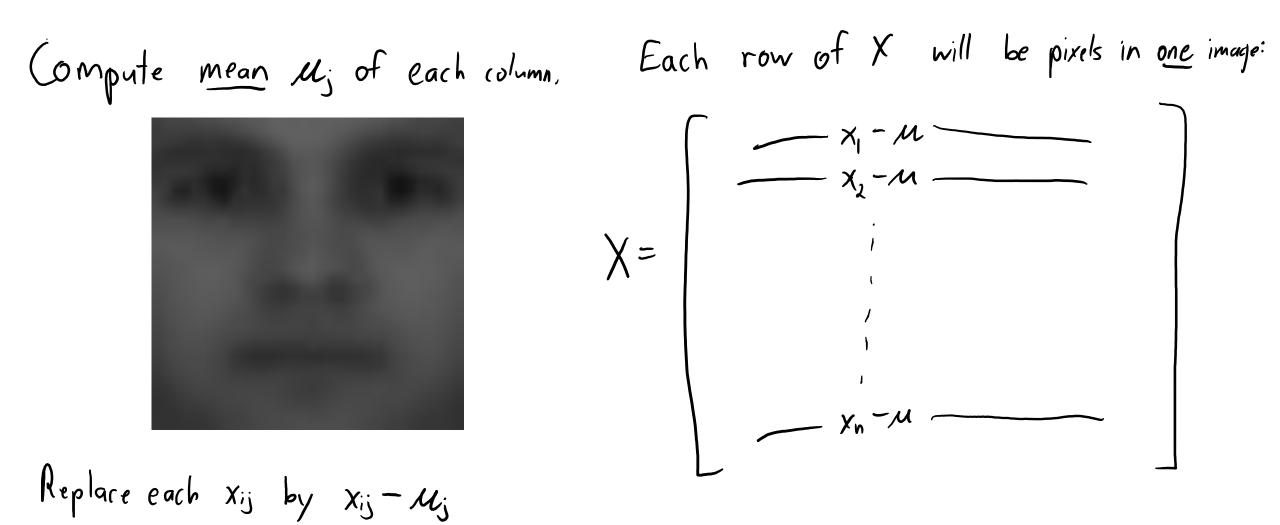
Application: Face Detection



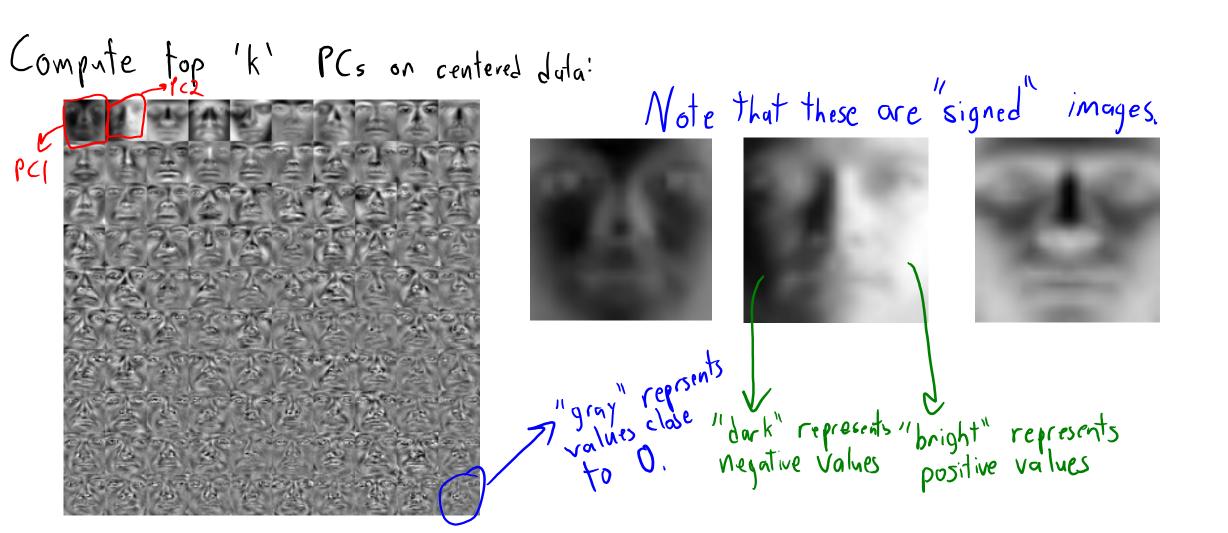


Collect a bunch of images of faces under different conditions:

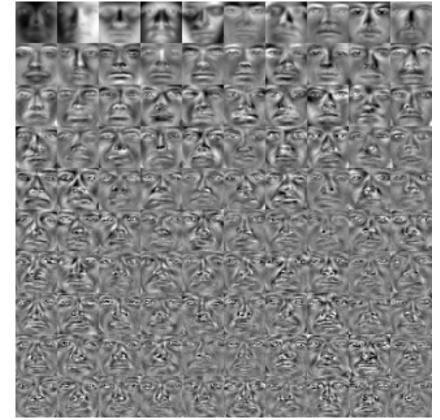




Compute top 'k' PCs on centered duta: Each row of X will be pixels in one image:



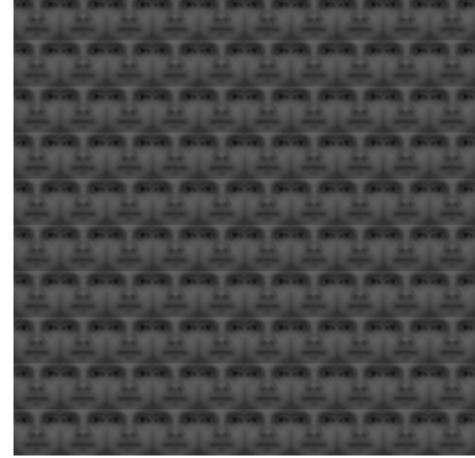
Compute top 'k' PCs on centered dula:



106 of the original faces:

"Eigenface" representation:

Reconstruction with K= 0

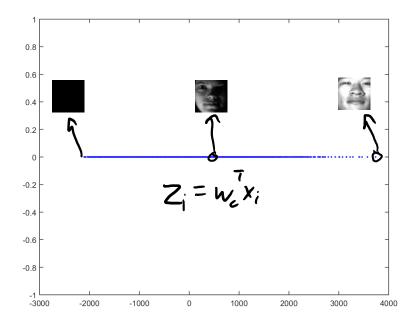


Variance explained: 0%

"Eigenface" representation: $+ z_{i1} + z_{i2} + z_{i3} + z_{i3} + z_{i3}$ $+ z_{i1} + z_{i2} + z_{i3} + z_{i3} + z_{i4}$ (first row of W)

Reconstruction with K=1

PCA Visualization



"Eigenface" representation:

$$\hat{x}_{i} = \mathcal{U} + Z_{i1} + Z_{i2} + Z_{i3} + \cdots$$

$$\hat{x}_{i} = \mathcal{U} + Z_{i1} + Z_{i2} + Z_{i3} + \cdots$$

Variance explained: 36%

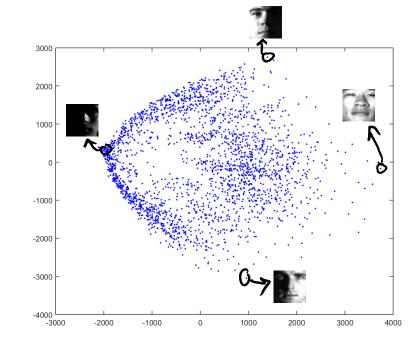
PC2

PC3

Reconstruction with K=2

Variance explained: 71%

PCA Visualization



(first row of W.

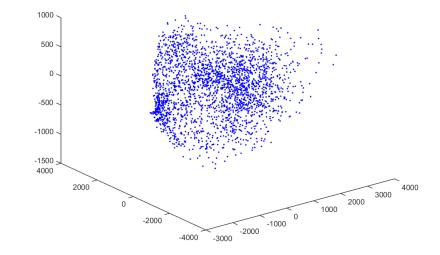
$$\frac{1}{\hat{x}_i} = \frac{1}{\mathcal{L}} + \frac{1}{\mathcal{L}} = \frac{1}{\mathcal{L}}$$

Reconstruction with K= 3

Variance explained: 76%

Eigenfaces

PCA Visualization



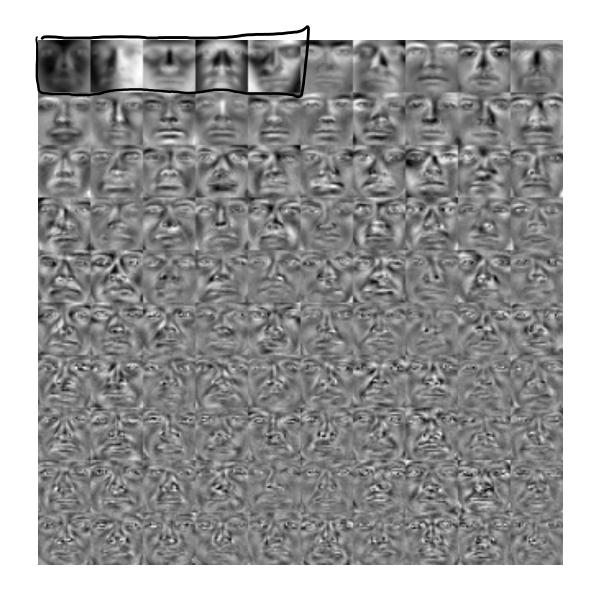
"Eigenface" representation:

$$\hat{X}_{i} = 1 + Z_{i1} + Z_{i2} + Z_{i3} + Z_{i3} + Z_{i3}$$

$$\hat{X}_{i} = 1 + Z_{i1} + Z_{i2} + Z_{i3} + Z_{i3}$$

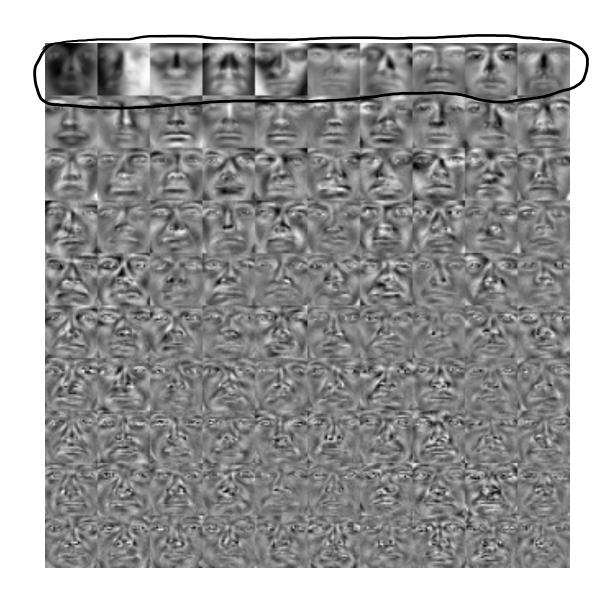
Reconstruction with K=5

Variance explained: 80°/0



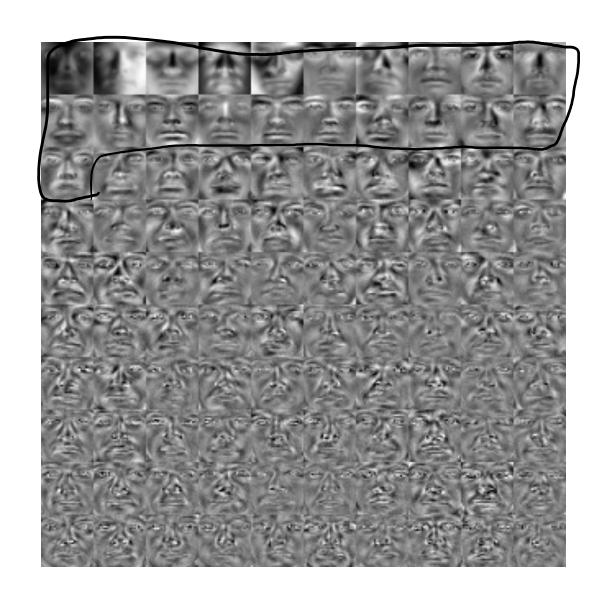
Reconstruction with K=10

Variance explained: 85%



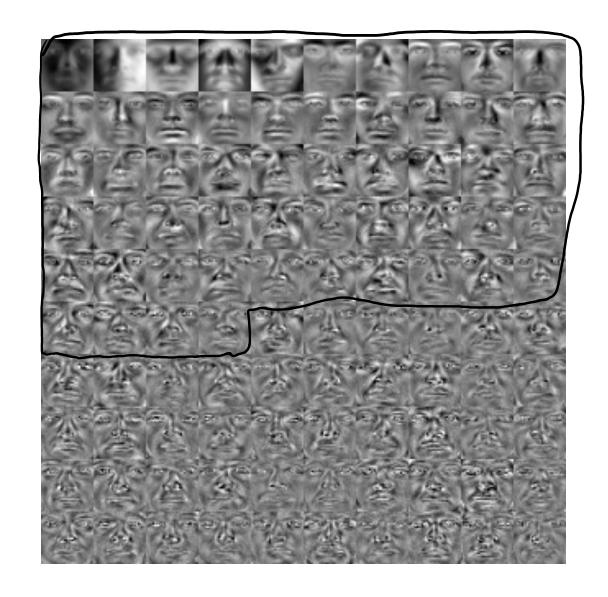
Reconstruction with K=21

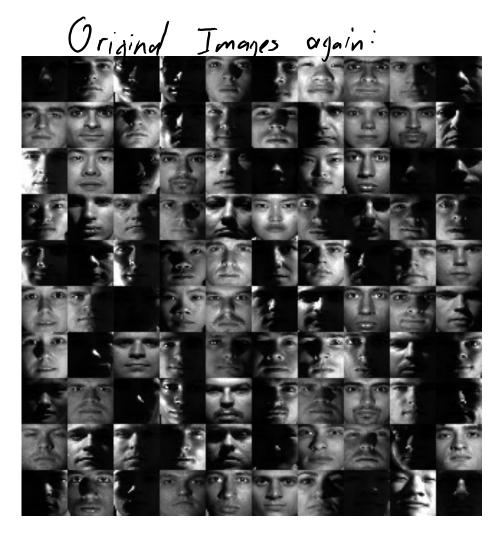
Variance explained: 90%



Reconstruction with K=54

Variance explained: 95%





Plus these "eigenfaces" & and the mean,

We con replace 1024 x; values by 54 z; values

Next Topic: Non-Uniqueness of PCA

Non-Uniqueness of PCA

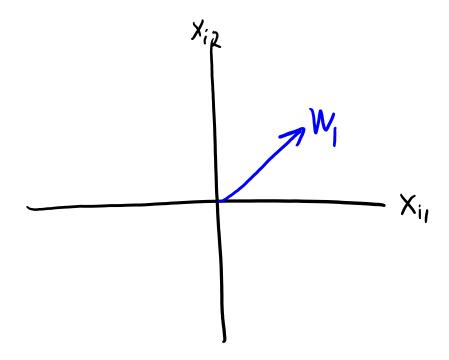
- Unlike k-means, we can efficiently find global optima of f(W,Z).
 - Algorithms coming later.

- Unfortunately, there never exists a unique global optimum.
 - There are actually several different sources of non-uniqueness.

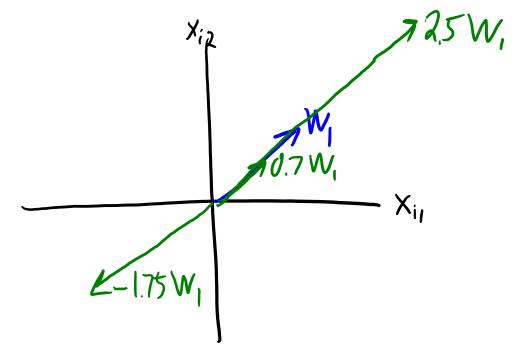
- To understand these, we'll need idea of "span" from linear algebra.
 - This also helps explain the geometry of PCA.
 - We'll also see that some global optima may be better than others.

Span of 1 Vector

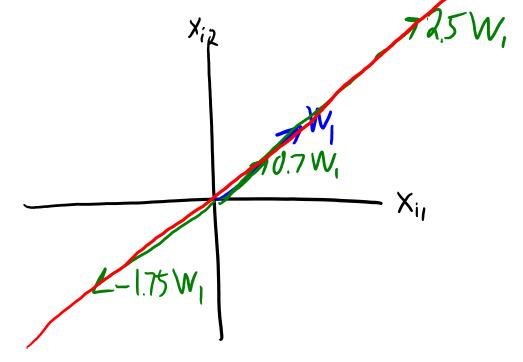
Consider a single vector w₁ (k=1).



- Consider a single vector w₁ (k=1).
- The span(w₁) is all vectors of the form z_iw₁ for a scalar z_i.

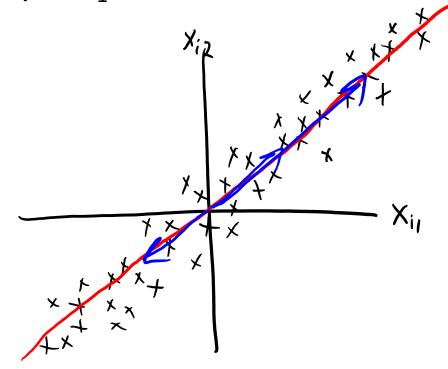


- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .



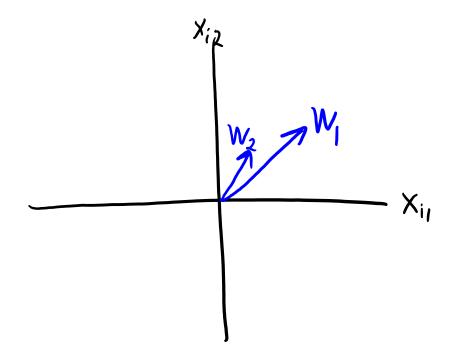
• If $w_1 \neq 0$, this forms a line.

- But note that the "span" of many different vectors gives same line.
 - Mathematically: αw_1 defines the same line as w_1 for any scalar $\alpha \neq 0$.

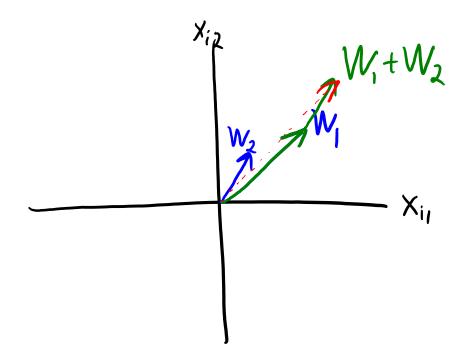


- PCA solution can only be defined up to scalar multiplication.
 - If (W,Z) is a solution, then $(\alpha W,(1/\alpha)Z)$ is also a solution. $\|(\alpha W)(\frac{1}{\alpha}Z)-\chi\|_F^2=\|W2-\chi\|_F^2$

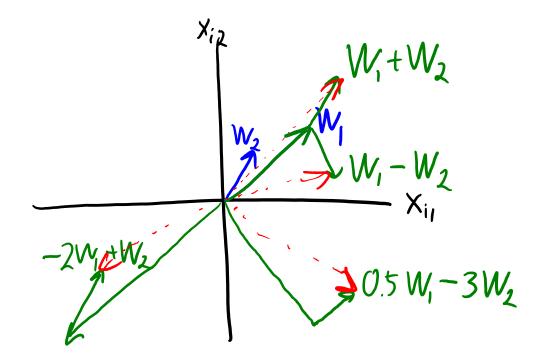
Consider two vector w₁ and w₂ (k=2).



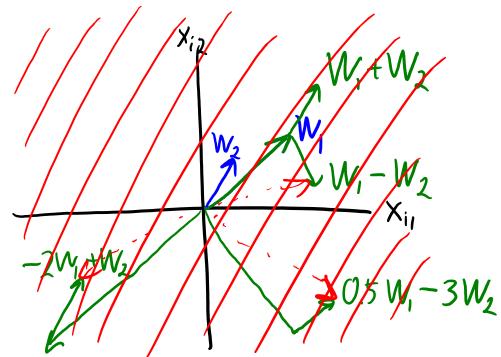
- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



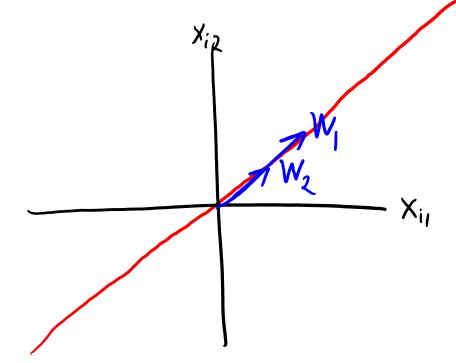
- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



- For most non-zero 2d vectors, span(w_1, w_2) is a plane.
 - In the case of two vectors in R², the plane will be *all* of R².

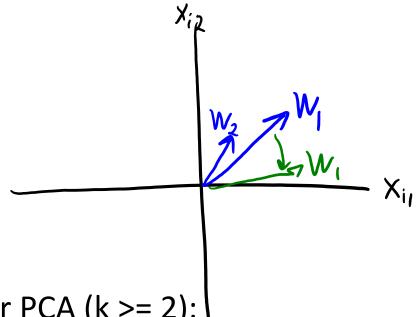
Consider two vector w₁ and w₂ (k=2).

- The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



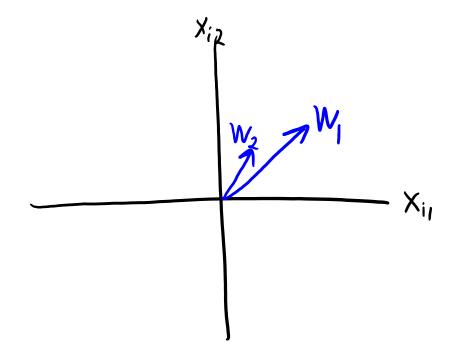
- For most non-zero 2d vectors, span(w_1, w_2) is plane.
 - Exception is if w_2 is in span of w_1 ("collinear"), then span(w_1, w_2) is just a line.

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

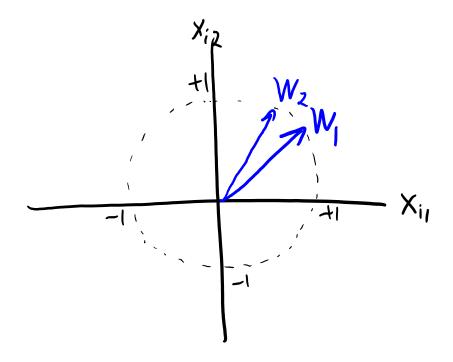


- New issues for PCA $(k \ge 2)$:
 - We have label switching: span(w_1, w_2) = span(w_2, w_1).
 - We can rotate factors within the plane (if not rotated to be collinear).

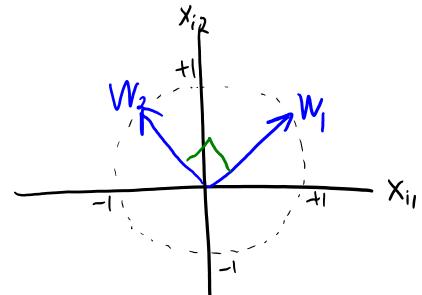
- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.



- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.



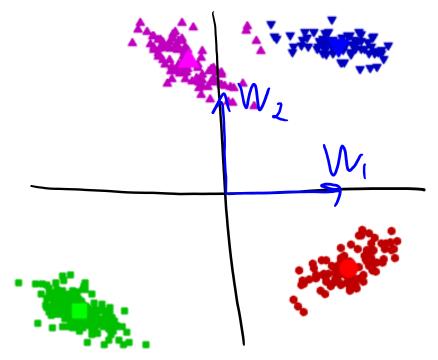
- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.
 - Orthogonality: enforce that $w_1^T w_2 = 0$ ("perpendicular").



- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate *both*).

Digression: PCA only makes sense for k ≤ d

Remember our clustering dataset with 4 clusters:



- It doesn't make sense to use PCA with k=4 on this dataset.
 - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
 - With k=2, I could set Z=X and W=I to get X=ZW exactly.

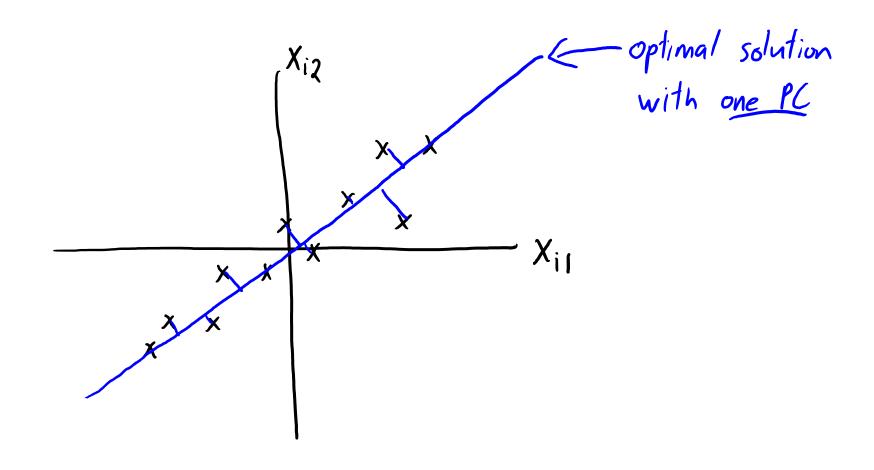
Span in Higher Dimensions

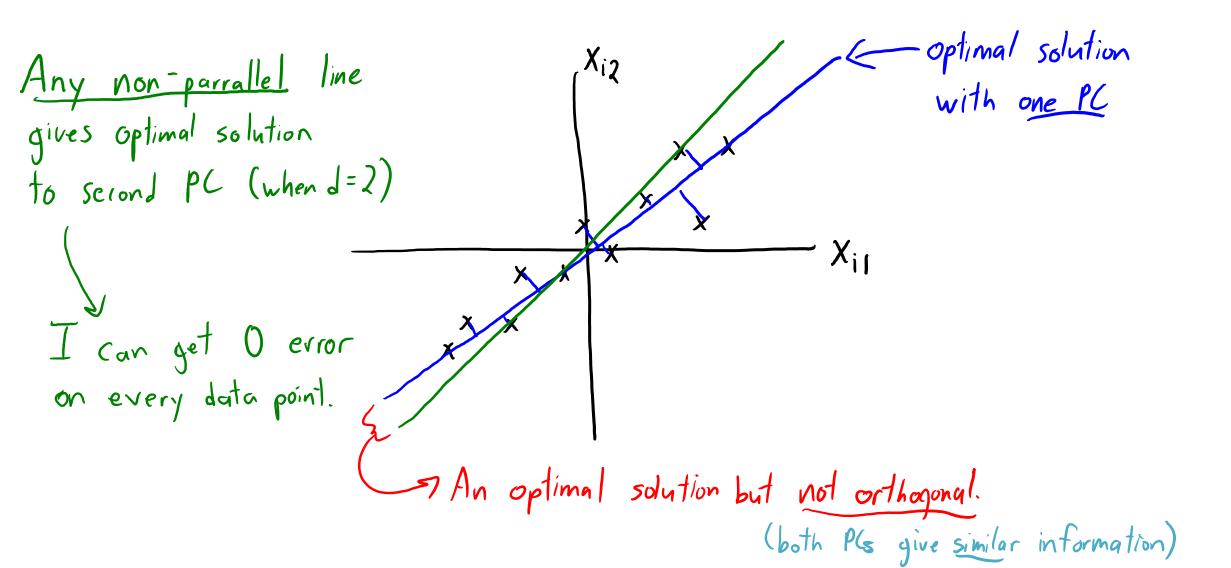
- In higher-dimensional spaces:
 - Span of 1 non-zero vector w_1 is a line.
 - Span of 2 non-zero vectors w_1 and w_2 is a plane (if not collinear).
 - Can be visualized as a 2D plot.
 - Span of 3 non-zeros vectors $\{w_1, w_2, w_3\}$ is a 3d space (if not "coplanar").
 - **—** ...

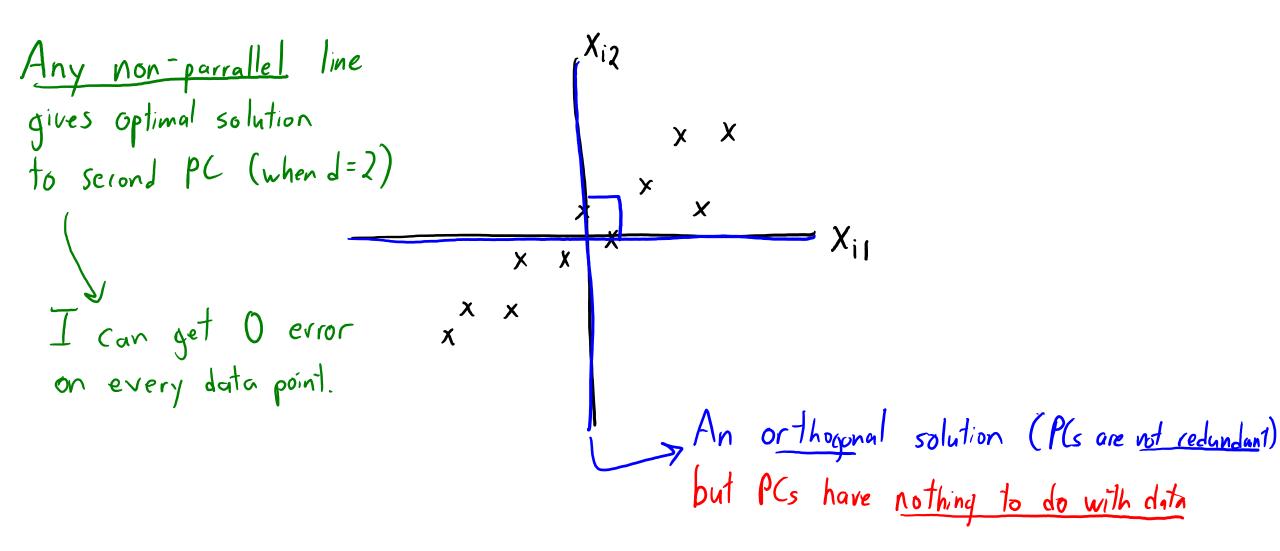
- This is how the W matrix in PCA defines lines, planes, spaces, etc.
 - Each time we increase 'k', we add an extra "dimension" to the "subspace".

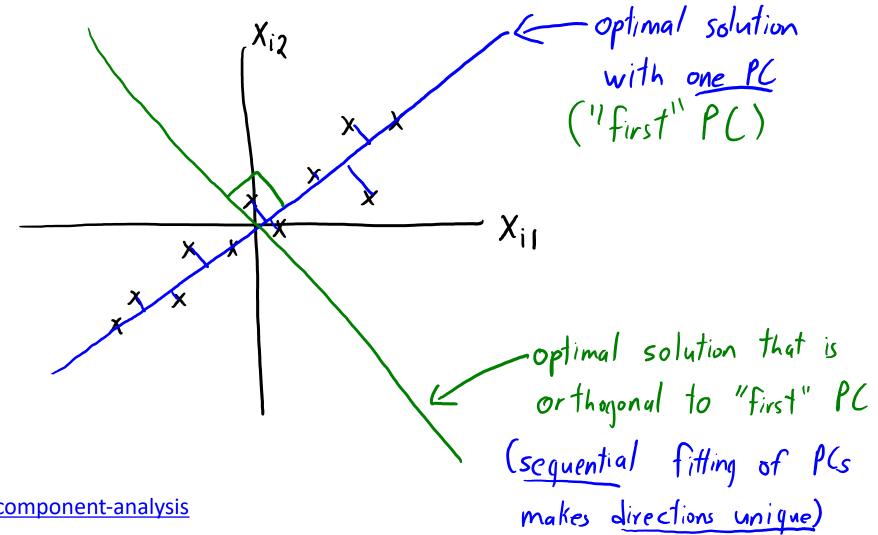
Making PCA Unique

- We've identified several reasons that optimal W is non-unique:
 - I can multiply any w_c by any non-zero α .
 - I can rotate any w_c almost arbitrarily within the span.
 - I can switch any w_c with any other $w_{c'}$.
- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w_2 given w_1 ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.









http://setosa.io/ev/principal-component-analysis

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.

- 4 lines of Julia code:
 - mu = mean(X,1)
 - -X = repmat(mu,n,1)
 - -(U,S,V) = svd(X)
 - W = V[:,1:k]'

Computing \tilde{Z} is cheaper now:

$$\widetilde{Z} = \widetilde{X} W^{T} (WW^{T})^{-1} = \widetilde{X} W^{T}$$

$$WW^{T} = \begin{bmatrix} -W_{1} - W_{2} - W_{3} & W_{4} \\ -W_{2} - W_{4} & W_{4} \end{bmatrix}$$

$$= \begin{bmatrix} 100 - 0 \\ 610 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{I}$$

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.

- 4 lines of Python code:
 - mu = np.mean(X,axis=0)
 - − X -= mu
 - U,s,Vh = np.linalg.svd(X)
 - -W = Vh[:k]

Computing Z is cheaper now:

$$Z = XW^{T}(WW^{T})^{-1} = XW^{T}$$

$$WW^{T} = \begin{bmatrix} -W_{1} - W_{2} - W_{1} & W_{2} & W_{3} \\ -W_{2} - W_{4} & W_{5} & W_{5} \end{bmatrix}$$

$$= \begin{bmatrix} 100 - 0 \\ 610 & 0 \\ 0 & 0 \end{bmatrix} = I$$

$$= \begin{bmatrix} 100 - 0 \\ 610 & 0 \\ 0 & 0 \end{bmatrix} = I$$
57

Summary

- PCA objective:
 - Minimizes squared error between elements of X and elements of ZW.
- Choosing 'k':
 - We can choose 'k' to explain "percentage of variance" in the data.
- PCA non-uniqueness:
 - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
 - Leads to non-redundant PCs with unique directions.

Next time: cancer signatures and NBA shot charts.

Making PCA Unique

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w₂ given w₁ ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.
 - ...
- Even with all this, the solution is only unique up to sign changes:
 - I can still replace any w_c by –w_c:
 - $-w_c$ is normalized, is orthogonal to the other $w_{c'}$, and spans the same space.
 - Possible fix: require that first non-zero element of each w_c is positive.
 - And this is assuming you don't have repeated singular values.
 - In that case you can rotate the repeated ones within the same plane.