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Last Time: Latent-Factor Models

e Latent-factor models take input data ‘X’ and output a basis ‘Z":
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— Usually, ‘2" has fewer features than ‘X’

* Uses: dimensionality reduction, visualization, factor discovery.
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Being curious, original, intellectual, creative, and open to

Openness -
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Component 2 (0.08% variance)

Being outgoing, talkative, sociable, and enjoying
social situations.

Extraversion

Being affable, tolerant, sensitive, trusting, kind,
and warm.

Agreeableness

Component 1 (0.21% variance)

Neuroticism Being anxious, irritable, temperamental, and moody.




Last Time: Principal Component Analysis

* Principal component analysis (PCA) is a linear latent-factor model:

— These models “factorize” matrix X into matrices Z and W:
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— We can think of rows w. of W as ‘k’ fixed “part” (used in all examples).

— z; is the “part weights” for example x;: “how much of each part w, to use”.
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Last Time: PCA Geometry

e When k=1, the W matrix defines a line:

— We choose ‘W’ as the line minimizing squared distance to the data.
— Given ‘W, the z; are the coordinates of the x; “projected” onto the line.
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* When k=2, the W matrix defines a plane:

Last Time: PCA Geometry

— We choose ‘W’ as the plane minimizing squared distance to the data.

— Given ‘W’, the z; are the coordinates of the x; “projected” onto the plane.
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Last Time: PCA Geometry

* When k=2, the W matrix defines a plane:

— Even if the original data is high-dimensional,
we can visualize data “projected” onto this plane.
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PCA Objective Function

* In PCA we minimize the squared error of the approximation:

P(W,2)= 2 [IW% =x i’
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* This is equivalent to the k-means objective:

— In k-means z, only has a single ‘1’ value and other entries are zero.

* Butin PCA, z can be any real number.
— We approximate x; as a linear combination of all means/factors.



PCA Objective Function

* In PCA we minimize the squared error of the approximation:
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 We can also view this as solving ‘d’ regression problems:

— Each w! is trying to predict column ‘X’ from the basis z,.
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* The output “y.” we try to predict here is actually the features “x.”.

— And unlike in regression we are also learning the features z..



Principal Component Analysis (PCA)

* The 3 different ways to write the PCA objective function:
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Digression: Data Centering (Important)

 |[n PCA, we assume that the data X is “centered”.

— Each column of X has a mean of zero.

* |t's easy to center the data:

n
Set = 52 x5 (meen of tdhm )
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e There are PCA variations that estimate “bias in each coordinate”.

— In basic model this is equivalent to centering the data.



PCA Computation: Prediction

III

* At the end of training, the “model” is the p, and the W matrix.

— PCA is parametric.

 PCA prediction phase:

— Given new data X, we can use Y, and W this to form 7
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PCA Computation: Prediction

* At the end of training, the “model” is the p, and the W matrix.
— PCA is parametric.
 PCA prediction phase:

— Given new data X, we can use , and W this to form Z:

— The “reconstruction error” is how close approximation is to X:
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— Our “error” from replacing the x, with the z, and W.



Choosing ‘k’ by “Variance Explained”

* Common to choose ‘k’ based on variance of the x;.
d
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— For a given ‘k” we compute (variance of errors)/(variance of x;):
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Cenlerel version

— Gives a number between 0 (k-d) and 1 (k=0), giving “variance remaining”.

 If you want to “explain 90% of variance”, choose smallest ‘k” where ratio is < 0.10.



“Variance Explained” in the Doom Map

* Recall the Doom latent-factor model (where map ignores height):
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* Interpretation of “variance remaining” formula:
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* If we had a 3D map the “variance remaining” would be 0.



Next Topic: Eigenfaces



Application: Face Detection

* Consider problem of face detection:
s a N N

[ ,
* Classic methods use “eigenfaces” as basis:
— PCA applied to images of faces.



Application: Face Detection




Eigenfaces

* Collect a bunch of images of faces under different conditions:
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Next Topic: Non-Uniqueness of PCA



Non-Uniqueness of PCA

* Unlike k-means, we can efficiently find global optima of f(W,Z).

— Algorithms coming later.

* Unfortunately, there never exists a unique global optimum.

— There are actually several different sources of non-uniqueness.

* To understand these, we’ll need idea of “span” from linear algebra.

— This also helps explain the geometry of PCA.
— We’'ll also see that some global optima may be better than others.



Span of 1 Vector

* Consider a single vector w, (k=1).




Span of 1 Vector

* Consider a single vector w, (k=1).

* The span(w,) is all vectors of the form z,w, for a scalar z..
Xia 5w,

Xi,
LK\N,




Span of 1 Vector

* Consider a single vector w, (k=1).
* The span(w,) is all vectors of the form z,w, for a scalar z..

* Ifw, 20, this forms a line.



Span of 1 Vector

* But note that the “span” of many different vectors gives same line.

— Mathematically: aw; defines the same line as w, for any scalar a # 0.

— PCA solution can only be defined up to scalar multiplication.
 If (W,2) is a solution, then (aW,(1/a)Z) is also a solution. ” (oQW)(Z'(Z)'X”FZ: ”WZ’X/fZ



Span of 2 Vectors

* Consider two vector w, and w, (k=2).




Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,;,w, + z,w, for a scalars z;; and z,,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,;,w, + z,w, for a scalars z;; and z,,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,;,w, + z,w, for a scalars z;; and z,,.

e
Yo%

— For most non-zero 2d vectors, span(wy,w,) is a plane.

* |In the case of two vectors in R?, the plane will be *all* of R?.



Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,;,w, + z,w, for a scalars z;; and z,,.

— For most non-zero 2d vectors, span(w,,w,) is plane.

* Exception is if w, is in span of w, (“collinear”), then span(w,,w,) is just a line.



Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,;,w, + z,w, for a scalars z;; and z,,.

Xia

— New issues for PCA (k >= 2):|
* We have label switching: span(w,,w,) = span(w,,w,).

* We can rotate factors within the plane (if not rotated to be collinear).



Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |[w,|| =1and | |w,]| | = 1.

Xia




Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |[w,|| =1and | |w,]| ]| = 1.




Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.
— Orthogonality: enforce that w,'w, = 0 (“perpendicular”).

— Now | can’t grow/shrink vectoﬁs (though | can still reflect).
— Now | can’t rotate one vector (but | can still rotate *both®).



Digression: PCA only makes sense for k <d

* Remember our clustering dataset with 4 clusters:

* |t doesn’t make sense to use PCA with k=4 on this dataset.

— We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
e With k=2, | could set Z=X and W=l to get X=ZW exactly.



Span in Higher Dimensions

* In higher-dimensional spaces:

— Span of 1 non-zero vector w, is a line.
— Span of 2 non-zero vectors w, and w, is a plane (if not collinear).

e Can be visualized as a 2D plot.

— Span of 3 non-zeros vectors {w,, w,, ws} is a 3d space (if not “coplanar”).

* This is how the W matrix in PCA defines lines, planes, spaces, etc.

— Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.



Making PCA Unique

 We've identified several reasons that optimal W is non-unique:
— | can multiply any w, by any non-zero a.
— | can rotate any w_ almost arbitrarily within the span.
— | can switch any w, with any other w..

 PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w,.|| = 1.
— Orthogonality: we enforce that w.'w. =0 for all c # ¢’
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.

* Then we fit w; given w, and w, (“third principal component”) giving a space.



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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PCA Computation: SVD

* How do we fit with normalization/orthogonality/sequential-fitting?

— |t can be done with the “singular value decomposition” (SVD).

— Take CPSC 302.
e 4 |ines of Julia code: Computing 7 is cheaper now:
\/ N/ VAV ~
— mu = mean(X,1) 7 = XWT(WWW-‘:XW'
— X -=repmat(mu,n,1) W: — W =] (]
— (U,S,V) = svd(X) e \'}/Wz‘;/}
— W = V[;,1:k] w0
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PCA Computation: SVD

* How do we fit with normalization/orthogonality/sequential-fitting?

— |t can be done with the “singular value decomposition” (SVD).

— Take CPSC 302.
* 4 lines of Python code: * Computing Z is cheaper now:
— mu = np.mean(X,axis=0) Z = T(wi Y ! = T
— X-=mu WL Ww’ ) X \’/'V
=  (— W —
: WV\/: — W, — l‘r ’ 7 ’7
— U,s,Vh = np.linalg.svd(X) = “l/: W, ‘;4
— W = Vh[:k] — W, |

— () 00-p -
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Summary

PCA objective:

— Minimizes squared error between elements of X and elements of ZW.
Choosing ‘k’:

— We can choose ‘k’ to explain “percentage of variance” in the data.
PCA non-uniqueness:

— Due to scaling, rotation, and label switching.

Orthogonal basis and sequential fitting of PCs (via SVD):

— Leads to non-redundant PCs with unique directions.

Next time: cancer sighatures and NBA shot charts.



Making PCA Unique

 PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w,| | = 1.
— Orthogonality: we enforce that w_.'w, =0 for all c # C’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w; given w; and w, (“third principal component”) giving a space.

* Even with all this, the solution is only unique up to sign changes:
— | can still replace any w, by —w_:
* -w_is normalized, is orthogonal to the other w,, and spans the same space.

— Possible fix: require that first non-zero element of each w, is positive.

— And this is assuming you don’t have repeated singular values.
* In that case you can rotate the repeated ones within the same plane.



