CPSC 340: Machine Learning and Data Mining

Boosting
Andreas Lehmman and Mark Schmidt
University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340
Previously: Ensemble Methods

• Ensemble methods are classifiers that have classifiers as input.
 – Also called “meta-learning”.

• They have the best names:
 – Averaging.
 – Boosting.
 – Bootstrapping.
 – Bagging.
 – Cascading.
 – Random Forests.
 – Stacking.

• Ensemble methods often have higher accuracy than input classifiers.
Ensemble Methods

• Remember the fundamental trade-off:
 1. E_{train}: How small you can make the training error.
 2. E_{approx}: How well training error approximates the test error.

• Goal of ensemble methods is that meta-classifier:
 – Does much better on one of these than individual classifiers.
 – Doesn’t do too much worse on the other.

• This suggests two types of ensemble methods:
 1. **Averaging**: improves approximation error of classifiers with high E_{approx}.
 2. **Boosting**: improves training error of classifiers with high E_{train}.
AdaBoost: Classic Boosting Algorithm

- A classic boosting algorithm for binary classification is AdaBoost.

- AdaBoost assumes we have a “base” binary classifier that:
 - Is simple enough that it doesn’t overfit much.
 - Can obtain >50% weighted accuracy on any dataset.

- Example: decision stumps or low-depth decision trees.
 - Easy to modify stumps/trees to use weighted accuracy as score.
AdaBoost: Classic Boosting Algorithm

• Overview of AdaBoost:
 1. Fit a classifier on the training data.
 2. Give a higher weight to examples that the classifier got wrong.
 3. Fit a classifier on the weighted training data.
 4. Go back to 2.
 • Weight gets exponentially larger each time you are wrong.

• Final prediction: weighted vote of individual classifier predictions.
 – Trees with higher (weighted) accuracy get higher weight.

• See Wikipedia for precise definitions of weights.
 – Comes from "exponential loss" (a convex approximation to 0-1 loss).
AdaBoost with Decision Stumps in Action

- 2D example of AdaBoost with decision stumps (with accuracy score):

- Size of training example on left is proportional to classification weight.
AdaBoost with Decision Stumps

• 2D example of AdaBoost with decision stumps (with accuracy score):
 – 100% training accuracy.
 – Ensemble of 50 decision stumps.
 • Fit sequentially, not independently.

• Are decision stumps a good base classifier?
 – They tend not to overfit.
 – Easy to get >50% weighted accuracy.

• Base classifiers that don’t work:
 – Deep decision trees (no errors to “boost”).
 – Decision stumps with infogain (doesn’t guarantee >50% weighted accuracy).
 – Weighted logistic regression (doesn’t guarantee >50% weighted accuracy).
AdaBoost Discussion

• AdaBoost with shallow decision trees gives fast/accurate classifiers.
 – Classically viewed as one of the best “off the shelf” classifiers.
 – Procedure originally came from ideas in learning theory.

• Many attempts to extend theory beyond binary case.
 – Led to “gradient boosting”, which is like “gradient descent with trees”.

• Modern boosting methods:
 – Look like AdaBoost, but don’t necessarily have it as a special case.
XGBoost: Modern Boosting Algorithm

• Boosting has seen a recent resurgence, partially due to XGBoost:
 – A boosting implementation that allows huge datasets.
 – Has been part of many recent winners of Kaggle competitions.

• As base classifier, XGBoost uses regularized regression trees.

Regression Trees

• Regression trees used in XGBoost:
 – Each split is based on 1 feature.
 – Each leaf gives a real-valued prediction.

– Above, we would predict “2.5 hours” for a 14-year-old who owns an Xbox.

• How can we fit a regression tree?

• Simple approach:
 – Predict: at each leaf, predict mean of the training y_i assigned to the leaf.
 • Weight w_L at leaf ‘L’ is set to mean(y_i) among y_i at the leaf node.
 – Train: set the w_L values by minimizing the squared error,
 \[
 f(w_1, w_2, \ldots) = \sum_{i=1}^{\hat{y_i}} (w_L - y_i)^2
 \]
 – Same speed as fitting decision trees from Week 2.
 • Use mean instead of mode, and use squared error instead of accuracy/infogain.
 – Use greedy strategy for growing tree, as in Part 1.
Boosted Regression Trees: Prediction

- Consider an **ensemble of regression trees**.
 - For an example ‘i’, they each make a **continuous prediction**:

\[
\hat{y}_i = \hat{y}_{i_1} + \hat{y}_{i_2} + \hat{y}_{i_3} + \ldots + \hat{y}_{i_k}
\]

\[
= 0.2 + (-0.1) + 0.1 + \ldots + (-0.01)
\]

- In **XGBoost**, final prediction is sum of individual predictions:

- Notice we **aren’t using the mean** as we would with random forests.
 - In boosting, each tree is **not individually trying to predict the true \(y_i\) value** (we assume they underfit).
 - Instead, each new tree tries to “fix” the prediction made by the old trees, so that sum is \(y_i\).
Boosted Regression Trees: Training

- Consider the following “gradient tree boosting” procedure:
 - Tree[1] = fit(X,y).
 - \(\hat{y} = \text{Tree}[1].\text{predict}(X)\).
 - Tree[2] = fit(X,y - \(\hat{y}\)).
 - \(\hat{y} = \hat{y} + \text{Tree}[2].\text{predict}(X)\).
 - Tree[3] = fit(X,y - \(\hat{y}\)).
 - \(\hat{y} = \hat{y} + \text{Tree}[3].\text{predict}(X)\).
 - Tree[4] = fit(X,y - \(\hat{y}\)).
 - \(\hat{y} = \hat{y} + \text{Tree}[4].\text{predict}(X)\).
 - ...

- Each tree is trying to predict residuals (\(\hat{y}_i - y_i\)) of current prediction.
 - “True label is 0.9, old prediction is 0.8, so I can improve \(\hat{y}_i\) by predicting 0.1.”
Gradient Tree Boosting in Action

\[y_i \]
\[x_i \]

\[y_i - \hat{y}_i \]
\[x_i \]

Final prediction is sum of both trees, which fits this data exactly.

\[\hat{y}_i \]
\[x_i \]

Zero residual here.
Gradient Tree Boosting in Action
Regularized Regression Trees

• Procedure monotonically decreases the training error.
 – As long as not all $w_L=0$, each tree decreases training error.

• It can **overfit** if trees are too deep or you have too many trees.
 – To restrict depth, add **L0-regularization** (stop splitting if $w_L = 0$).

$$f(w_1, w_2, \ldots) = \sum_{i=1}^{n} (w_{L_i} - r_i)^2 + \lambda_0 \|w\|_0$$
 • “Only split if you decrease squared error by λ_0.”

 – To further fight overfitting, XGBoost also adds **L2-regularization** of ‘w’.

$$f(w_1, w_2, \ldots) = \sum_{i=1}^{n} (w_{L_i} - r_i)^2 + \lambda_0 \|w\|_0 + \lambda_2 \|w\|^2$$
XGBoost Discussion

• Instead of pruning trees if score doesn’t improve, grows full trees.
 – And then prunes parts that don’t improve score with L0-regularizer added.

• Cost of fitting trees in XGBoost is same as usual decision tree cost.
 – XGBoost includes a lot of tricks to make this efficient.
 – But can’t be done in parallel like random forest (since fitting sequentially).

• In XGBoost, it’s the residuals that act like the “weights” in AdaBoost.
 – Focuses on decreasing error in examples with large residuals.

• How do you maintain efficiency if not using squared error?
 – For non-quadratic losses like logistic, there is no closed-form solution.
 – Approximates non-quadratic losses with second-order Taylor expansion.
 • Maintains least squares efficiency for other losses (by approximating with quadratic).
Next Topic: Maximum Likelihood Estimation
Motivation for Learning about MLE and MAP

• Next topic: maximum likelihood estimation (MLE) and MAP estimation.
 – Crucial to understanding advanced methods, notation can be difficult at first.

• Why are we learning about these?
 – Justifies the naïve Bayes “counting” estimates for probabilities.
 – Shows the connection between least squares and the normal distribution.
 – Makes connection between “robust regression” and “heavy tailed” probabilities.
 – Shows that regularization and Laplace smoothing are doing the same thing.
 – Justifies using sigmoid function to get probabilities in logistic regression.
 – Gives a way to write complicated ML problems as optimization problems.
 • How do you define a loss for “number of Facebook likes” or “1-5 star rating”?
 – Crucial to understanding advanced methods.
But first: “argmin” and “argmax”

• We’ve repeatedly used the **min** and **max** functions:

\[
\min_w \{ w^2 \} = 0 \quad \quad \max_w \{ \cos(\omega) \} = 1
\]

– Minimum (or maximum) value achieved by a function.

• A related set of functions are the **argmin** and **argmax**:

– The set of parameter values achieving the minimum (or maximum).

\[
\begin{align*}
\min_w \{ (w-1)^2 \} &= 0 \\
\text{{ argmin }}_w \{ (w-1)^2 \} &= 1 \\
\text{{ argmin }}_w \{ \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \} &= (X^TX + \lambda I)^{-1} (X^Ty) \\
\text{{ argmax }}_w \{ \cos(\omega) \} &= 0, 2\pi, 4\pi, \ldots
\end{align*}
\]
But first: “argmin” and “argmax”

• The last slide is a little sloppy for the following reason:
 – There may be multiple values achieving the min and/or max.
 – So the argmin and argmax return sets.

\[
\begin{align*}
\argmin_w \{ (w-1)y \} & \equiv \{ 1 \} \\
\argmax_w \{ \cos (w) \} & \equiv \{ ..., -\pi, -2\pi, 0, 2\pi, 4\pi, ... \} \\
\argmax_w \frac{1}{2} \| Xw - y \|^2 & \equiv \{ w \mid X^T Xw = X^T y \}
\end{align*}
\]

– And we don’t say a variable “is” the argmax, but that it “is in” the argmax.

\[
\exists \pi \in \argmax_w \{ \cos (w) \} \quad (X^T X + \frac{1}{2} I)^{-1} (X^T y) \in \argmin_w \left\{ \frac{1}{2} \| Xw - y \|^2 + \frac{3}{2} \| w \|^2 \right\}
\]
The Likelihood Function

• Suppose we have a dataset ‘D’ with parameters ‘w’.

• For example:
 – We flip a coin three times and obtain D={“heads”, “heads”, “tails”}.
 – The parameter ‘w’ is the probability that this coin lands “heads”.

• We define the likelihood as a probability mass function $p(D \mid w)$.
 – “Probability of seeing this data, given the parameters”.
 – If ‘D’ is continuous it would be a probability “density” function.

• If this is a “fair” coin (meaning it lands “heads” with probability 0.5):
 – The likelihood is $p(HHT \mid w=0.5) = (1/2)(1/2)(1/2) = 0.125$.
 – If $w = 0$ (“always lands tails”), then $p(HHT \mid w = 0) = 0$ (data is less likely for this ‘w’).
 – If $w = 0.75$, then $p(HHT \mid w = 0.75) = (3/4)(3/4)(1/4) \approx 0.14$ (data is more likely).
Maximum Likelihood Estimation (MLE)

• We can plot the likelihood $p(HHT \mid w)$ as a function of ‘w’:

![Graph showing the likelihood function with a peak at around 0.666]

• Notice:
 – Data has probability 0 if $w=0$ or $w=1$ (since we have ‘H’ and ‘T’ in data).
 – Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).
 – This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).

• Maximum likelihood estimation (MLE):
 – Choose parameters that maximize the likelihood: $\hat{w} \in \arg \max_w \{p(D \mid w)\}$
 • In this example, MLE is $\frac{2}{3}$.
MLE for Binary Variables (General Case)

• Consider a binary feature:

\[X = \begin{cases}
1 & \text{if } \text{feature is present} \\
0 & \text{otherwise}
\end{cases} \]

• Using ‘w’ as “probability of 1”, the maximum likelihood estimate is:

\[\hat{w} = \frac{\# \text{ of ones}}{\# \text{ of examples}} \]

• This is the “estimate” for the probabilities we used in naïve Bayes.
 – The conditional probabilities we used in naïve Bayes are also MLEs.
 • The derivation is tedious, but if you’re interested I put it [here](#).
Least Squares is Gaussian MLE

• It turns out that most objectives have an MLE interpretation:
 – For example, consider minimizing the squared error:

\[f(w) = \frac{1}{2} \| Xw - y \|^2 \]

– This gives MLE of a linear model with IID noise from a normal distribution:

\[y_i = w^T x_i + \varepsilon_i \]

where each \(\varepsilon_i \) is sampled independently from standard normal

• “Gaussian” is another name for the “normal” distribution.
– Remember that least squares solution is called the “normal equations”.

“Gaussian” is another name for the “normal” distribution.
Least Squares is Gaussian MLE

• It turns out that **most objectives have an MLE interpretation**:
 – For example, consider **minimizing the squared error**:
Minimizing the Negative Log-Likelihood (NLL)

- To compute maximize likelihood estimate (MLE), usually we equivalently minimize the negative “log-likelihood” (NLL):
 - “Log-likelihood” is short for “logarithm of the likelihood”.

\[\hat{w} \in \arg \max_w \{ p(D \mid w) \} \equiv \arg \min_w \{ - \log p(D \mid w) \} \]

- Why are these equivalent?
 - Logarithm is strictly monotonic: if \(\alpha > \beta \), then \(\log(\alpha) > \log(\beta) \).
 - So location of maximum doesn’t change if we take logarithm.
 - Changing sign flips max to min.

- See Max and Argmax notes if this seems strange.
Summary

• **Boosting**: ensemble methods that improve training error.

• **XGBoost**: modern boosting method based on regression trees.
 – Each tree modifies the prediction made by the previous trees.
 – L0- and L2-regularization used to reduce overfitting.

• **Maximum likelihood estimate**:
 – Maximizing likelihood $p(D \mid w)$ of data ‘D’ given parameters ‘w’.

• **Next time**:
 – How does regularization and Laplace smoothing fit it?