
CPSC 340:
Machine Learning and Data Mining

Boosting
Andreas Lehrmann and Mark Schmidt

University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Previously: Ensemble Methods
• Ensemble methods are classifiers that have classifiers as input.
– Also called “meta-learning”.

• They have the best names:
– Averaging.
– Boosting.
– Bootstrapping.
– Bagging.
– Cascading.
– Random Forests.
– Stacking.

• Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods
• Remember the fundamental trade-off:

1. Etrain: How small you can make the training error.
vs.

2. Eapprox: How well training error approximates the test error.

• Goal of ensemble methods is that meta-classifier:
– Does much better on one of these than individual classifiers.
– Doesn’t do too much worse on the other.

• This suggests two types of ensemble methods:
1. Averaging: improves approximation error of classifiers with high Eapprox.
2. Boosting: improves training error of classifiers with high Etrain.

AdaBoost: Classic Boosting Algorithm
• A classic boosting algorithm for binary classification is AdaBoost.

• AdaBoost assumes we have a “base” binary classifier that:
– Is simple enough that it doesn’t overfit much.
– Can obtain >50% weighted accuracy on any dataset.

• Example: decision stumps or low-depth decision trees.
– Easy to modify stumps/trees to use weighted accuracy as score.

AdaBoost: Classic Boosting Algorithm
• Overview of AdaBoost:

1. Fit a classifier on the training data.
2. Give a higher weight to examples that the classifier got wrong.
3. Fit a classifier on the weighted training data.
4. Go back to 2.

• Weight gets exponentially larger each time you are wrong.

• Final prediction: weighted vote of individual classifier predictions.
– Trees with higher (weighted) accuracy get higher weight.

• See Wikipedia for precise definitions of weights.
– Comes from “exponential loss” (a convex approximation to 0-1 loss).

https://en.wikipedia.org/wiki/AdaBoost

AdaBoost with Decision Stumps in Action
• 2D example of AdaBoost with decision stumps (with accuracy score):

– Size of training example on left is proportional to classification weight.

AdaBoost with Decision Stumps
• 2D example of AdaBoost with decision stumps (with accuracy score):
– 100% training accuracy.
– Ensemble of 50 decision stumps.

• Fit sequentially, not independently.

• Are decision stumps a good base classifier?
– They tend not to overfit.
– Easy to get >50% weighted accuracy.

• Base classifiers that don’t work:
– Deep decision trees (no errors to “boost”).
– Decision stumps with infogain (doesn’t guarantee >50% weighted accuracy).
– Weighted logistic regression (doesn’t guarantee >50% weighted accuracy).

AdaBoost Discussion
• AdaBoost with shallow decision trees gives fast/accurate classifiers.
– Classically viewed as one of the best “off the shelf” classifiers.
– Procedure originally came from ideas in learning theory.

• Many attempts to extend theory beyond binary case.
– Led to “gradient boosting”, which is like “gradient descent with trees”.

• Modern boosting methods:
– Look like AdaBoost, but don’t necessarily have it as a special case.

XGBoost: Modern Boosting Algorithm
• Boosting has seen a recent resurgence, partially due to XGBoost:
– A boosting implementation that allows huge datasets.
– Has been part of many recent winners of Kaggle competitions.

• As base classifier, XGBoost uses regularized regression trees.

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

• Regression trees used in XGBoost:
– Each split is based on 1 feature.
– Each leaf gives a real-valued prediction.

– Above, we would predict “2.5 hours” for a 14-year-old who owns an Xbox.

Regression Trees

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

• How can we fit a regression tree?

• Simple approach:
– Predict: at each leaf, predict mean of the training yi assigned to the leaf.

• Weight wL at leaf ‘L’ is set to mean(yi) among yi at the leaf node.

– Train: set the wL values by minimizing the squared error,

– Same speed as fitting decision trees from Week 2.
• Use mean instead of mode, and use squared error instead of accuracy/infogain.

– Use greedy strategy for growing tree, as in Part 1.

Regression Trees

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

Boosted Regression Trees: Prediction
• Consider an ensemble of regression trees.

– For an example ‘i’, they each make a continuous prediction:

• In XGBoost, final prediction is sum of individual predictions:

• Notice we aren’t using the mean as we would with random forests.
– In boosting, each tree is not individually trying to predict the true yi value (we assume they underfit).
– Instead, each new tree tries to “fix” the prediction made by the old trees, so that sum is yi.

Boosted Regression Trees: Training
• Consider the following “gradient tree boosting” procedure:
– Tree[1] = fit(X,y).
– !𝑦 = Tree[1].predict(X).
– Tree[2] = fit(X,y - !𝑦).
– !𝑦 = !𝑦 + Tree[2].predict(X).
– Tree[3] = fit(X,y - !𝑦).
– !𝑦 = !𝑦 + Tree[3].predict(X).
– Tree[4] = fit(X,y - !𝑦).
– !𝑦 = !𝑦 + Tree[4].predict(X).
– …

• Each tree is trying to predict residuals (!𝑦i-yi) of current prediction.
– “True label is 0.9, old prediction is 0.8, so I can improve !𝑦i by predicting 0.1.”

Gradient Tree Boosting in Action

Gradient Tree Boosting in Action

Regularized Regression Trees
• Procedure monotonically decreases the training error.
– As long as not all wL=0, each tree decreases training error.

• It can overfit if trees are too deep or you have too many trees.
– To restrict depth, add L0-regularization (stop splitting if wL = 0).

• “Only split if you decrease squared error by λ0.”

– To further fight overfitting, XGBoost also adds L2-regularization of ‘w’.

XGBoost Discussion
• Instead of pruning trees if score doesn’t improve, grows full trees.

– And then prunes parts that don’t improve score with L0-regularizer added.

• Cost of fitting trees in XGBoost is same as usual decision tree cost.
– XGBoost includes a lot of tricks to make this efficient.
– But can’t be done in parallel like random forest (since fitting sequentially).

• In XGBoost, it’s the residuals that act like the “weights” in AdaBoost.
– Focuses on decreasing error in examples with large residuals.

• How do you maintain efficiency if not using squared error?
– For non-quadratic losses like logistic, there is no closed-form solution.
– Approximates non-quadratic losses with second-order Taylor expansion.

• Maintains least squares efficiency for other losses (by approximating with quadratic).

Next Topic: Maximum Likelihood Estimation

Motivation for Learning about MLE and MAP
• Next topic: maximum likelihood estimation (MLE) and MAP estimation.
– Crucial to understanding advanced methods, notation can be difficult at first.

• Why are we learning about these?
– Justifies the naïve Bayes “counting” estimates for probabilities.
– Shows the connection between least squares and the normal distribution.
– Makes connection between “robust regression” and “heavy tailed” probabilities.
– Shows that regularization and Laplace smoothing are doing the same thing.
– Justifies using sigmoid function to get probabilities in logistic regression.
– Gives a way to write complicated ML problems as optimization problems.

• How do you define a loss for “number of Facebook likes” or “1-5 star rating”?
– Crucial to understanding advanced methods.

But first: “argmin” and “argmax”
• We’ve repeatedly used the min and max functions:

– Minimum (or maximum) value achieved by a function.

• A related set of functions are the argmin and argmax:
– The set of parameter values achieving the minimum (or maximum).

But first: “argmin” and “argmax”
• The last slide is a little sloppy for the following reason:
– There may be multiple values achieving the min and/or max.
– So the argmin and argmax return sets.

– And we don’t say a variable “is” the argmax, but that it “is in” the argmax.

The Likelihood Function
• Suppose we have a dataset ‘D’ with parameters ‘w’.

• For example:
– We flip a coin three times and obtain D={“heads”, “heads”, “tails”}.
– The parameter ‘w’ is the probability that this coin lands “heads”.

• We define the likelihood as a probability mass function p(D | w).
– “Probability of seeing this data, given the parameters”.
– If ‘D’ is continuous it would be a probability “density” function.

• If this is a “fair” coin (meaning it lands “heads” with probability 0.5):
– The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.
– If w = 0 (“always lands tails”), then p(HHT | w = 0) = 0 (data is less likely for this ‘w’).
– If w = 0.75, then p(HHT | w = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (data is more likely).

Maximum Likelihood Estimation (MLE)
• We can plot the likelihood p(HHT | w) as a function of ‘w’:

• Notice:
– Data has probability 0 if w=0 or w=1 (since we have ‘H’ and ‘T’ in data).
– Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).
– This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).

• Maximum likelihood estimation (MLE):
– Choose parameters that maximize the likelihood:

• In this example, MLE is 2/3.

MLE for Binary Variables (General Case)
• Consider a binary feature:

• Using ‘w’ as “probability of 1”, the maximum likelihood estimate is:

• This is the “estimate” for the probabilities we used in naïve Bayes.
– The conditional probabilities we used in naïve Bayes are also MLEs.

• The derivation is tedious, but if you’re interested I put it here.

https://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Least Squares is Gaussian MLE
• It turns out that most objectives have an MLE interpretation:
– For example, consider minimizing the squared error:

– This gives MLE of a linear model with IID noise from a normal distribution:

• “Gaussian” is another name for the “normal” distribution.

– Remember that least squares solution is called the “normal equations”.

Least Squares is Gaussian MLE
• It turns out that most objectives have an MLE interpretation:
– For example, consider minimizing the squared error:

Minimizing the Negative Log-Likelihood (NLL)
• To compute maximize likelihood estimate (MLE), usually we equivalently

minimize the negative “log-likelihood” (NLL):
• “Log-likelihood” is short for “logarithm of the likelihood”.

• Why are these equivalent?
– Logarithm is strictly monotonic: if α > β, then log(α) > log(β).

• So location of maximum doesn’t change if we take logarithm.
– Changing sign flips max to min.

• See Max and Argmax notes if this seems strange.

http://www.cs.ubc.ca/~schmidtm/Courses/540-W16/max.pdf

Summary
• Boosting: ensemble methods that improve training error.
• XGBoost: modern boosting method based on regression trees.
– Each tree modifies the prediction made by the previous trees.
– L0- and L2-regularization used to reduce overfitting.

• Maximum likelihood estimate:
– Maximizing likelihood p(D | w) of data ‘D’ given parameters ‘w’.

• Next time:
– How does regularization and Laplace smoothing fit it?

