CPSC 340:
Machine Learning and Data Mining

Boosting

Andreas Lehrmann and Mark Schmidt
University of British Columbia, Fall 2022
https://www.students.cs.ubc.ca/~cs-340

Previously: Ensemble Methods

classifiers N . .
 Ensemble metheds are classifiers that have classifiers as input.

— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

 Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,: How small you can make the training error.
VS.

2. E,pprox: HOw well training error approximates the test error.
* Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.
* This suggests two types of ensemble methods:

1. Averaging: improves approximation error of classifiers with high E,,ox-
2. Boosting: improves training error of classifiers with high E, ...

AdaBoost: Classic Boosting Algorithm

* A classic boosting algorithm for binary classification is AdaBoost.

 AdaBoost assumes we have a “base” binary classifier that:
— Is simple enough that it doesn’t overfit much.
— Can obtain >50% Weighted accuracy on any dataset.

\f_\lg (O’XC\")P/& /ll

d&;} .
éx l_[.y)/11 COr;IZ;?(
L /
W€’9'H:S LSMM o l>

 Example: decision stumps or low-depth decision trees.
— Easy to modify stumps/trees to use weighted accuracy as score.

AdaBoost: Classic Boosting Algorithm

* Overview of AdaBoost:

Fit a classifier on the training data.

Give a higher weight to examples that the classifier got wrong.
Fit a classifier on the weighted training data.

Go back to 2.

Weight gets exponentially larger each time you are wrong.

el S

* Final prediction: weighted vote of individual classifier predictions.
— Trees with higher (weighted) accuracy get higher weight.

* See Wikipedia for precise definitions of weights.
— Comes from “exponential loss” (a convex approximation to 0-1 loss).

https://en.wikipedia.org/wiki/AdaBoost

AdaBoost with Decision Stumps in Action

* 2D example of AdaBoost with decision stumps (W|th accuracy score):

File Edit View Insert Tools Dktdelep

Ndde NRAIKOLIDILR LS 08 el

Ensemble (Error = 0.112000)

Decision Stump 1

2

— Size of training example on left is proportional to classification weight.

AdaBoost with Decision Stumps

e 2D example of AdaBoost with decision stumps (with accuracy score):

— 100% training accuracy. :

— Ensemble of 50 decision stumps.
* Fit sequentially, not independently. 1

0.5

* Are decision stumps a good base classifier?

— They tend not to overfit.
— Easy to get >50% weighted accuracy.

0

-0.5

-1

15

* Base classifiers that don’t work:
— Deep decision trees (no errors to “boost”).
— Decision stumps with infogain (doesn’t guarantee >50% weighted accuracy).
— Weighted logistic regression (doesn’t guarantee >50% weighted accuracy).

-2
-2 -1.5 -1 -0.5 0 05 1 15 2

AdaBoost Discussion

* AdaBoost with shallow decision trees gives fast/accurate classifiers.

— Classically viewed as one of the best “off the shelf” classifiers.
— Procedure originally came from ideas in learning theory.

* Many attempts to extend theory beyond binary case.
— Led to “gradient boosting”, which is like “gradient descent with trees”.

* Modern boosting methods:

— Look like AdaBoost, but don’t necessarily have it as a special case.

XGBoost: Modern Boosting Algorithm

* Boosting has seen a recent resurgence, partially due to XGBoost:

— A boosting implementation that allows huge datasets.
— Has been part of many recent winners of Kaggle competitions.

* As base classifier, XGBoost uses regularized regression trees.

Regression Trees

Regression trees used in XGBoost:

— Each split is based on 1 feature.
— Each leaf gives a real-valued prediction.
Thpﬁiase)(?(CM'OGIfIOI')Lify,... HOW wany ‘\OVVS ((o 'fhfy /’/ay gﬁlmPS P”. o’“/>
g Q@D
L 3 ,'N' ‘u)

Q:>

Predld ion W i

— Above, we would predict “2.5 hours” for a 14-year-old who owns an Xbox.

Regression Trees

aqe <5
* How can we fit a regression tree? x: : .
h ae
e Simple approach: 25 0.8

— Predict: at each leaf, predict mean of the training vy assigned to the leaf.
* Weight w, at leaf ‘L is set to mean(y;) among y; at the leaf node.

— Train: set the w, values by m|n|m|2|ng the squared error,

'F(w,)wn) f //)

)"'
— Same speed as fitting decision trees from Week 2.
* Use mean instead of mode, and use squared error instead of accuracy/infogain.

— Use greedy strategy for growing tree, as in Part 1.

Boosted Regression Trees: Prediction

 Consider an ensemble of regression trees.
— For an example ‘', they each make a continuous prediction:

/Z\f f\f\ /Z\f\ /0y

ﬁ.OZ ﬁf—al ‘m=01 yix= = 0.0)

* In XGBoost, final prediction is sum of individual predictions:

N
- AN

R TR R RS
= ()2 400+ 08 ¢ - 2 (-0.00)

* Notice we aren’t using the mean as we would with random forests.
— In boosting, each tree is not individually trying to predict the true y; value (we assume they underfit).
— Instead, each new tree tries to “fix” the prediction made by the old trees, so that sum isy;.

Boosted Regression Trees: Training

* Consider the following “gradient tree boosting” procedure:
— Tree[1] = fit(X,y).
— y = Tree[1].predict(X).
— Tree[2] = fit(X,y - V).
— y =9 + Tree[2].predict(X).
— Tree[3] = fit(X,y - V).
— y =9 + Tree[3].predict(X).
— Tree[4] = fit(X,y - V).
— y =y + Tree[4].predict(X).
* Each tree is trying to predict residuals (V-y;) of current prediction.
— “True label is 0.9, old prediction is 0.8, so | can improve ¥, by predicting 0.1.”

Gradient Tree Boosting in Action

——
| IR
1‘ . ——
X K_\/x‘\)
Z0re /efh(w/
here

LA _1tee

A
9 o free 2) ST
J-QGLV JWE

X \x | clisn | ’
i Final ‘;/oa\tc"w\ is sum & [\, ‘\ree;\ which T ks dafa 9"*"“7

A
Sl

Gradient Tree Boosting in Action

File Edit View Inset Tools Desktop Window Help >

Dede @ 0|k E

Regression Stump 1 4OOEnsemble (Error = 4014.596549)

400
»)
. .
300 f iy 300 1 g
i e
h g . - "L
I Soasepdyt | I .?;‘.’a\";'x
200 :.“. ‘u.p{\'t_ 200 ale ‘t!-{"',
o%, o ° P 'L
e g™
100 M 100 |
™~
0t 0r
-100 } -100
- -
-200 -200 |
-300 ; -300
-10 5 0 5 10 -10 10

Regularized Regression Trees

* Procedure monotonically decreases the training error.

— As long as not all w; =0, each tree decreases training error.

* |t can overfit if trees are too deep or you have too many trees.
— To restrict depth, add LO-regularization (stop splitting if w, = 0).

Flamr)= 2 (w, =)+ A)l

* “Only split if you decrease squared error by A,.”

— To further fight overfitting, XGBoost also adds L2-regularization of ‘w’

Pl)= 2 (=0 Al + 2012

XGBoost Discussion

Instead of pruning trees if score doesn’t improve, grows full trees.
— And then prunes parts that don’t improve score with LO-regularizer added.

Cost of fitting trees in XGBoost is same as usual decision tree cost.
— XGBoost includes a lot of tricks to make this efficient.
— But can’t be done in parallel like random forest (since fitting sequentially).

In XGBoost, it’s the residuals that act like the “weights” in AdaBoost.
— Focuses on decreasing error in examples with large residuals.

How do you maintain efficiency if not using squared error?
— For non-quadratic losses like logistic, there is no closed-form solution.

— Approximates non-quadratic losses with second-order Taylor expansion.
* Maintains least squares efficiency for other losses (by approximating with quadratic).

Next Topic: Maximum Likelihood Estimation

Motivation for Learning about MLE and MAP

* Next topic: maximum likelihood estimation (MLE) and MAP estimation.
— Crucial to understanding advanced methods, notation can be difficult at first.

 Why are we learning about these?
— Justifies the naive Bayes “counting” estimates for probabilities.
— Shows the connection between least squares and the normal distribution.
— Makes connection between “robust regression” and “heavy tailed” probabilities.
— Shows that regularization and Laplace smoothing are doing the same thing.
— Justifies using sigmoid function to get probabilities in logistic regression.

— Gives a way to write complicated ML problems as optimization problems.
* How do you define a loss for “number of Facebook likes” or “1-5 star rating”?

— Crucial to understanding advanced methods.

But first: “argmin” and “argmax”

 We've repeatedly used the min and max functions:
' 2 - _
mVV;’ fw 5*0 maf gcos (w)fv'

— Minimum (or maximum) value achieved by a function.

* Arelated set of functions are the argmin and argmax:

— The set of parameter values achieving the minimum (or maximum).
ming (w-Y§=0 ovguinf Sy P B = (XK +) (X7

™ih IV 1 -
a!9w é(w 1) }’) mrgw\(&gbg(wn: 0) 2'!'1’) ‘”l;

But first: “argmin” and “argmax”

* The last slide is a little sloppy for the following reason:

— There may be multiple values achieving the min and/or max.
— So the argmin and argmax return sets.

' ”Sf"’ (on‘) »
argnnd - DY RET T e hmpnf
"Sets are equivalont *

orgmaxt (o ()] S 2% 0,25 4y 2

argmax 1) <) { =
9\0\/ ;“Xw \/" ; -~ iw \ XTYW:‘XTyf
— And we don’t say a variable “is” the argmax, but that it “is in” the argmax.

X € argpurcs (13 OTYATY (e argmind S)IY, 7 +)77

The Likelihood Function

Suppose we have a dataset ‘D’ with parameters ‘w’.

For example:
— We flip a coin three times and obtain D={"heads”, “heads”, “tails”}.
— The parameter ‘W’ is the probability that this coin lands “heads”.

We define the likelihood as a probability mass function p(D | w).
— “Probability of seeing this data, given the parameters”.
— If ‘D’ is continuous it would be a probability “density” function.

If this is a “fair” coin (meaning it lands “heads” with probability 0.5):
— The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.

— If w =0 (“always lands tails”), then p(HHT | w = 0) = 0 (data is less likely for this ‘w’).
— If w=0.75, then p(HHT | w=0.75) = (3/4)(3/4)(1/4) = 0.14 (data is more likely).

Maximum Likelihood Estimation (MLE)

* We can plot the likelihood p(HHT | w) as a function of ‘w’:

0.5

>

* Notice:
— Data has probability 0 if w=0 or w=1 (since we have ‘H’ and ‘T’ in data).
— Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).
— This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).
 Maximum likelihood estimation (MLE):

— Choose parameters that maximize the likelihood: W € aramw SL P (D)w)g
* In this example, MLE is 2/3.

MLE for Binary Variables (General Case)

* Consider a binary feature: { @
l

X=|

\
0

o_J

e Using ‘w’ as “probability of 17, the maximum likelihood estimate is:

* This is the “estimate” for the probabilities we used in naive Bayes.

— The conditional probabilities we used in naive Bayes are also MLEs.

 The derivation is tedious, but if you’re interested | put it here.

https://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Least Squares Is Gaussian MLE

* |t turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:

flw)=73 “)(w‘y”'z

— This gives MLE of a linear model with [ID noise from a normal distribution:
=T
Vi = wx * g

where each & s sampled I"lJ(ffI‘J!nHY Fom standacd normal

|H

 “Gaussian” is another name for the “normal” distribution.

— Remember that least squares solution is called the “normal equations”.

Least Squares Is Gaussian MLE

* |t turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:

| &

@ O G A
M S \\ ro o
004: @rro/$ \
96 7z g ol histogrmm
. /" on ,,of O

0\\ Z
0
o* >~ 4
; b’j

Least “squaes
G55wmpy Cr10Is Come

e frém Goussian

Minimizing the Negative Log-Likelihood (NLL)

* To compute maximize likelihood estimate (MLE), usually we equivalently
minimize the negative “log-likelihood” (NLL):
* “Log-likelihood” is short for “logarithm of the likelihood”.

\;\Vé ar()mo\f%r(())w)g E O\f}\::[y\E" ,()9 (F(D}W)>;
w /l\ |
e Why are these equivalent? " wlerl

— Logarithm is strictly monotonic: if a > B, then log(a) > log(B).
* So location of maximum doesn’t change if we take logarithm.

— Changing sign flips max to min.

 See Max and Argmax notes if this seems strange.

http://www.cs.ubc.ca/~schmidtm/Courses/540-W16/max.pdf

Summary

Boosting: ensemble methods that improve training error.
XGBoost: modern boosting method based on regression trees.

— Each tree modifies the prediction made by the previous trees.
— LO- and L2-regularization used to reduce overfitting.

Maximum likelihood estimate:

— Maximizing likelihood p(D | w) of data ‘D’ given parameters ‘w’.

Next time:

— How does regularization and Laplace smoothing fit it?

