CPSC 340:
Machine Learning and Data Mining

Stochastic Gradient
Fall 2022

Motivation: Big-N Problems

e Recall the automatic brain tumour segmentation problem:

* MRI scanners at the time produced 200x200x200 volumes.
— So one volume gives 8 million training examples.
— And you need to train on more than one volume!

e Similar issues arise in the Gmail application:
— |f every e-mail is a training example, you have LOTS of training examples.

Motivation: Big-N Problems

* Consider fitting a least squares model:
_ S, -0)
7[\(\«) T2 ?‘(WY‘ /

* Gradient methods are effective when ‘d’” is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

e But what if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, and so on.

Gradient Descent vs. Stochastic Gradient

* Recall the gradient descent algorithm:

\Nt*":: wb = OJVF(WQ

* For least squares, our gradient has the form:

V()= Ig("\;'x: B 7:‘7&:

S(a’ar Jxl

* So the cost of computing this gradient is linear in ‘n’.

— As ‘n’ gets large, gradient descent iterations become expensive.

Gradient Descent vs. Stochastic Gradient

 Common solution to this problem is stochastic gradient algorithm:

\Nt*':: Wt ~ okti]E(Wt?

* Uses the gradient of a randomly-chosen training example ‘i’:
VF*("‘J: (WTXi - Za?X.'
SCalar :[/;1
e Cost of computing this one gradient is independent of ‘n’.

— |terations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.

Stochastic Gradient Descent (SGD)

e Stochastic gradient descent (SGD) for training with large ‘n’:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = ol V(W)

* For a random training example ‘i’

— Repeat to successively refine the guess:
W’Hl:Wt_o(tvE(wt) {or 1=)) :))';)“‘

* For a random training example ‘i’.

Problem where we can use Stochastic Gradient

e Stochastic gradient applies when minimizing averages:

~
T \’V7 = Z(W)(|]‘ (S(’V\q/fJ e,rror>

T (W> = 'ILI\ Z lo()(' +exr)()vWX)) (loj"+i° rf(j(CSS\OV‘)

1=

F w) = ——l—) 2 [lg(J (’ (’YP ‘}/‘,w X~,)"‘—2’/!;»//2] (Lz’rf’ymlou}z,,/ /o()isfll)

‘»\(w): 71) 1(:(\'\) (OW noM_i_on 7Pof 7 he 99/\1'4%/ co.>e)

i=1
* Basically, all our regression losses except “brittle” regression.
— Recall: multiplying by positive constant doesn’t change location of optimal ‘w’

Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The expected dlrect|on is the full gradient

T’(’,Xfe(f '\‘loq over \/‘\f'\'/ er eack é)um,!
ely

Chaice oF ¢ andam do{inition of is eqaall |,
exampe expegtafionm

— The algorithm is going in the right direction on average.

gfﬁJlan'/ over

ol

— P(am/,[ls

Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradient:|

=

\W/ Y

Gradient Descent in Action

Stochastic Gradient in Action

§,.—|)[\(W)
-‘\(\\,7 = (W7)(, '/1)2
fl) = Wyt
f(.) = (w'rs = /4>2 | x
() = (D=) w? v
{T; (w) = (w Ve © \/,)) ‘R(W) .z(w) ‘F;(\”) “\q("’) 'FS{W)
S'}ocl\asfic
3/ol‘1(/)‘f
' Mininizes
averaqe
- ,‘/‘A‘é Value

Stochastic Gradient in Action

fe,)
E(w) = (W-IJQ b72>l
—
| : I X
w? W W
z(“’)
S'}ocl\asfic
3’0(‘?(‘41'
Mm{m/?()
/ aAverage
__— Valye

Stochastic Gradient in Action

Fe,)
2 —
fy () = (w'ry = y;> ——+——] =
WO v W w
£
S'}ocl\asfic
3’0(‘?(‘41'
Mm{m/?()
aveéraqge

VO\\\A e

Stochastic Gradient in Action

F)
"\‘(\v? = (W7)(, u‘yl)z
—
———
3
WO W R W
Dw)
§+ocl\asf¢(
3/ollicﬂ‘f
/ M)mm/?()
—7 averaqe

o H:%z/ 1< Value

Stochastic Gradient in Action

)
-]
7
—
——5—)
3 X
RV W
_ T 2
LG = (W' ys) _ l filo)
§+ocl\asf¢(
3’0(‘?(‘/)""
W\)mm/?()
—7 averaqe
' o ‘rlis' FIvE Iy Value

Effect of ‘w’ Location on Progress
‘R(w> 1(“’) _F;(w) “\q(w) {\g(w)

P
\/\/\/
W

(:,\/Gr\/ V‘Fl (W> eré

G\/er\/ VFI (W) ert

/ ,
* /R.e (ON O.P (OﬁFU‘S(O/\ ‘

Some Vﬁ(w) pom"

OWar‘lS W Gftcl
Some doni

Po‘,,,ffs *OWCJ'(\S w (Jo‘m‘}s *ovvc.rcls \/\/;F

 We'll still make good progress if most gradients points in right direction.

Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:

N
2
L Z VR = YD
3:0.4;”1 of avesage graJ;mT
ex auple /! over all eyamples

—_
) = |

If the variance is O, every step goes in the right direction.
— We're outside of the region of confusion.

If the variance is small, most steps point in the direction.

— We’re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.

— Middle of region of confusion, where w™ lives.

Effect of the Step-Size

 We can reduce the effect of the variance with the step size:
— As the step size gets smaller, the variance has less of an effect.

* For a fixed step-size, SGD makes progress until variance is too big.

* This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

0
> W

A+)

Fqgf (omverjwwe

fo the bal

- We (an Ji\/)cle ‘H/\e rodius (;-f
— / loq” N 2 on i/'v‘lc/ina o<t /;y 2
f\ Chod Hales lomerto gef o Lel)

,’(F mﬂ'on) < Q b“” \A/l-’l'\ /‘at[lu)
A Fro‘mrhonql 1o ot

Stochastic Gradient with Constant Step Size

\
AN
)
D
N
2
N~
=
S .-
S _ ‘
(& bt errelic /;f[w,/uu)
¥ o Is v\,i’/‘ih 0(01) O‘P 0,)1//)”(// {\4
‘Q.—-." -) - - T T T 'rol(of'vp"rvr(f’(’)pj
(V"l{'f Cr ,I’a ijuwl:"/oﬁ)

— _

Stochastic Gradient with Constant Step Size

Olw) roqor is also
((,,'I n lodlf

Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.
— Shrinks size of ball to zero so we converge tow”.

e But it can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach the ball.

e Stochastic gradient converges to a stationary point if:
— Ratio of sum of squared step-sizes over sum of step-sizes converges to O.

//lww ch Nvise qmcls /u-—\ — Z(D(T
= — O

1/ Ob
Aa‘fv ‘)[;/)/om (‘awj Z
t [
— This choice also works for non-smooth funtions like SVMs.
* Function must be continuous and not “too crazy” (we’re still figuring it out for non-convex).

Stochastic Gradient with Decreasing Step Sizes

* For convergence step-sizes need to satisfy: f(o(/Zo(=)

* Classic solution is to use a step-size sequence like ot = O(1/1).
— Like setting at = .001/t.

= o° 20 2 _ B
22 1500 Z("‘C)—zc1<°<7
t:n ti / t:’ o
'we can jd evefywliff‘ﬁ“ eqecf OF vanane jues lo zéro

* Unfortunately, this often works badly in practice:
— Steps get really small really fast.
— Some authors add extra parameters like at = y/(ft + A), which helps a bit.
— One of the only cases where this works well: binary SVMs with at = 1/At.

Stochastic Gradient with Decreasing Step Sizes

o2 2 17,4
* For convergence step-sizes need to satisfy: %(o(() /%'o((=)

* Better solution is to use a step-size sequence like a'= O(l/\/t).
— Like setting at = OOl/\/t

éoﬁ _Zl *0(\1_/’-) Z(dt) ZlfO(’D(JI()
t =/ t:l (— t=
— Both sequences diverge, but denominator diverges faster.
* This approach (roughly) optimizes rate that ratio goes to zero.

— Better worst-case theoretical properties (and more robust to step-size).
— Often better in practice too.

Stochastic Gradient with Constant Step Sizes?

Alternately, could we just use a constant step-size?
— Like setting a' = .001 for all ‘t’.

This will not converge to a stationary point in general.
— However, do we need it to converge?

What if you only care about the first 2-3 digits of the test error?
— Who cares if you are not able to get 10 digits of optimization accuracy?

There is a step-size small enough to achieve any fixed accuracy.
— Just need radius of “ball” to be small enough.

Mini-batches: Using more than 1 example

* Does it make sense to use more than 1 random example?
— Yes, you can use a “mini-batch” Bt of examples.

W T ot - S VF (W) oo "’

B{I i€t e— J of C’VO!*‘”//PS’

— Radius of ball is inversely proportional to the mini-batch size.

* If you double the batch size, you half the radius of the ball.
— Big gains for going from 1 to 2, less big gains from going from 100 to 101.

* You can use a bigger step size as the batch size increases (“linear scaling” rule).
— Gets you to the ball faster (though diverges if step-size gets too big).

* Do not need decreasing step sizes if batch size is increasing (“batching”).

— Useful for vectorizing/parallelizing code.

* Evaluate one gradient on each core.

Gradient Descent vs. Stochastic Gradient vs. Hybrid

A |
’_——q T/Me o |
~ a fo \()‘a Tr “g al (’Y"M'o,tj
2
n
T stochastic gradient descent
=
@)
L :
—gradient descent
fime "

* Gradient descent makes consistent progress with slow iterations.

e Stochastic gradient descent has fast iterations but progress slows.
— Algorithm to choose depends on available time and desired accuracy.

Gradient Descent vs. Stochastic Gradient vs. Hybrid

2

n

T stochastic gradient descent
=

@)

S | hybri .

yoria gradient descent
time -

* Hybrid deterministic-stochastic methods can outperform both.
— For example, batching methods that grow the batch size.
— Make consistent progress but eventually have high iteration costs.

Gradient Descent vs. Stochastic Gradient vs. Hybrid

2
n
T stochastic gradient descent
=
@) .
S | hyorid dient d .

ow grg ient descen

time

e 2012: methods with cost of stochastic gradient, progress of full gradient.
— Key idea: if ‘n’ is finite, you can use a memory instead of having o, go to zero.
— First was stochastic average gradient (SAG), “low storage” version is SVRG.

Lagrange Prize in
Continuous Optimization
2018

Mathematical Optimization
Society and Society for Industr

This graph shows how algorithms have become tast and more efficient over time. The horizontal
axis represents time and the vertical axis represents error. Older algorithms (yellow) were very
slow but had very little error. Faster algorithms were created by only analyzing some of the data
(orange). The method was faster but had an accuracy limit. Schmidt's algorithm is faster and has
no accuracy limit. Aiken Lao / The Ubysse

Random vs. Re-shuffle SGD

Classic SGD: i, sampled randomly “with replacement”.

SGD with “random shuffling”:
— Generate a random ordering of the example 1,2,...,n.
— Do an SGD step on each example, following the random order.

* Sampling “without replacement”.

— Go back to step 1.

We used to view this as an “engineering trick”.
— |t seemed to work better than random SGD but we did not know why.

We now know random shuffling converges faster in many cases.
— This was only proven recently.

Early Stopping of SGD

* |n gradient descent, we can stop when gradient is close to zero.

* |n stochastic gradient:
— Individual gradients do not necessarily go to zero.
— We cannot see full gradient, so we do not know when to stop.

* Practical trick:
— Every ‘k’ iterations (for some large ‘k’), measure validation set error.
— Stop if the validation set error “is not improving”.

* This “early stopping” can also reduce overfitting.

14

Machine Learning with “n = oo

14

* Here are some scenarios where you effectively have “n = co0”:
— A dataset that is so large we cannot even go through it once (Gmail).
— A function you want to minimize that you can’t measure without noise.
— You want to encourage invariance with a continuous set of transformation:

* You consider infinite number of translations/rotations instead of a fixed number.

3—3 33

— Learning from simulators with random numbers (physics/chem/bio):

eeeeeeeeeeeeeeeeeee

after 0:000-ms-and Otransitions

Stochastic Gradient with Infinite Data

Previous slide gives examples with infinite sequence of IID samples.

How can you practically train on infinite-sized datasets?

Approach 1 (exact optimization on finite ‘n’):
— Grab ‘n’ data points, for some really large ‘n’.
— Fit a regularized model on this fixed dataset (“empirical risk minimization”).

Approach 2 (stochastic gradient for ‘n’ iterations):
— Run stochastic gradient iteration for ‘n’ iterations.
— Each iteration considers a new example, never re-visiting any example.

Stochastic Gradient with Infinite Data

Approach 2 works because of an amazing property of stochastic
gradient:

— The classic convergence analysis does not rely on ‘n’ being finite.

Further Approach 2 only looks at a data point once:
— Each example is an unbiased approximation of test data.

So Approach 2 is doing stochastic gradient on test error:
— It cannot overfit.

Up to a constant, Approach 1 and 2 have same test error bound.
— This is sometimes used to justify SGD as the “ultimate” learning algorithm.
e “Optimal test error by computing gradient of each example once!”

— In practice, Approach 1 usually gives lower test error.
* The constant factor matters!

Summary

Stochastic gradient methods let us use huge datasets.

Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but classic O(1/t) steps are bad.

— O(l/\/t) works better, but still pretty slow.
— Constant step-size is fast, but only up to a certain point.

SGD practical issues: mini-batching, early stopping.
SAG and other methods fix SGD convergence for finite datasets.
Infinite datasets can be used with SGD and do not overfit.

Next time:
— A model that has been dominating Kaggle ML competitions.

A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
— Eg, O(t: Z <'- Hovv Jo we C"\0056 TL?) (om;{‘an'{?
\I3

* We don’t know how to set step size as we go in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.

Polyak-Ruppert Iterate Averaging

* Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with at = O(1/\/t) or a' constant.
2. Take some weighted average of the wt values.

¢ 1 | |
= k K K i I B, |
W f vV W, Here) v S a Sca/ar g U [Ffi") Cll/t(/a e

) —~t- k

[c= L/ ”WeJC/LJ“ O'C ,“/quﬁ'om /i w — ?” , /W

k-

 Average does not affect the algorithm, it’s just “watching”. ¢
e Surprising result shown by Polyak and by Ruppert in the 1980s:

— Asymptotically converges as fast as stochastic Newton’s method.

Stochastic Gradient with Averaging

0
W

A4)

Fast (onver 7%(6

fo the bal
Averac}e of erratic

) [931"0‘\/’05:’ Can Conuerye
oy e
((solulion) 'S —Q ball with radius
l . Fro‘mrhonql to &t

