
CPSC 340:
Machine Learning and Data Mining

Kernel Trick

Fall 2022

Last Time: Convolutions

• We considered building a classifier to classify pixels in an image:

– To represent “context” of a pixel we discussed using convolutions.

– Convolutions are weighted combinations of the nearby pixels.

– Can approximate image “derivatives” and “integrals”.

• At multiple scales and in multiple directions.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

http://setosa.io/ev/image-kernels

http://setosa.io/ev/image-kernels

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

3D Convolution

3D Convolution

3D Convolution

3D Convolution

3D Convolution

Convolutions as Features

• Classic vision methods use convolutions as features:

– Usually have different types/variances/orientations.

– Can take maxes across locations/orientations/scales.

• Notable convolutions:

– Gaussian (blurring/averaging).

– Laplace of Gaussian
(second-derivative).

– Gabor filters
(directional first- or higher-derivative).

Filter Banks

• To characterize context, we used to use filter banks like “MR8”:
– 1 Gaussian filter, 1 Laplacian of Gaussian filter.

– 6 max(abs(Gabor)) filters:
• 3 scales of sine/cosine.

• Takes absolute value of maximum across 6 orientations.

• Convolutional neural networks (Part 5) are replacing filter banks.
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Next Section: Kernel Trick

Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.
– We previously discussed using convolutions to engineer features.

• Good performance was obtained with linear classifiers (SVMs/logistic).
– Provided you did feature selection or used regularization.

• One of the only methods that worked better:
– Regularized linear classifier with a low-order polynomial basis (p=2 or p=3).

• Makes the data “closer to separable” in the higher-dimensional space.

Input: Output:

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under non-linear transform (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Support Vector Machines for Non-Separable

• Can we use linear models for data that is not close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

• Polynomial basis for d=2 and p=2:

• With d=4 and p=3, the polynomial basis would include:

– Bias variable and the xij: 1, xi1, xi2, xi3, xi4.

– The xij squared and cubed: (xi1)2, (xi2)2, (xi3)2, (xi4)2, (xi1)3, (xi2)3, (xi3)3, (xi4)3.

– Two-term interactions: xi1xi2, xi1xi3, xi1xi4, xi2xi3, xi2xi4, xi3xi4.

– Cubic interactions: xi1xi2xi3, xi2xi3xi4, xi1xi3,xi4, xi1xi2xi4,
xi1

2xi2, xi1
2xi3, xi1

2xi4, xi1xi2
2, xi2

2xi3, xi2
2xi4, xi1xi3

2, xi2xi3
2,xi3

2xi4, xi1xi4
2, xi2xi4

2, xi3xi4
2.

Kernel Trick

• If we go to degree p=5, we’ll have O(d5) quintic terms:

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
– ‘Z’ has k=O(dp) columns, so it does not fit in memory.

• Could try to search for a good subset of these.
– “Hierarchical forward selection” (bonus).

• Alternating, you can use all of them with the “kernel trick”.
– For special case of L2-regularized linear models.

How can you use an exponential-sized basis?

• Which of these two expressions would you rather compute?

– Expressions are equal, but left way costs O(p) while right costs O(1).

• Which of these two expressions would you rather compute?

– Expressions are equal, but left way has infinite terms and right costs O(1).

• Can we add weights to the terms in sum, and use these tricks?

The “Other” Normal Equations

• Recall the L2-regularized least squares objective with basis ‘Z’:

• We showed that the minimum is given by

(in practice you still solve the linear system, since inverse is less numerically unstable – see CPSC 302)

• With some work (bonus slide), this can equivalently be written as:

• This is faster if n << k:
– After forming ‘Z’, cost is O(n2k + n3) instead of O(nk2 + k3).

– But for the polynomial basis, this is still too slow since k = O(dp).

The “Other” Normal Equations
• With the “other” normal equations we have
• Given test data ෨𝑋, predict ො𝑦 by forming ෨𝑍 and then using:

• Notice that if you can from K and ෨𝐾 then you do not need Z and ෨𝑍.
• Key idea behind “kernel trick” for certain bases (like polynomials):

– We can efficiently compute K and ෩𝐾 even though forming Z and ෨𝑍 is intractable.
• In the same way we can comptue (x+1)9 instead of x9 + 9x8 + 36x7 + 84x6…

Gram Matrix

• The matrix K = ZZT is called the Gram matrix K.

• K contains the dot products between all training examples.
– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.

Gram Matrix

• The matrix ෩𝐾 = ෨𝑍ZT has dot products between train and test examples:

• Kernel function: k(xi, xj) = zi
Tzj.

– Computes dot product between in basis (zi
Tzj) using original features xi and xj.

The Kernel Trick

The Kernel Trick

Linear Regression vs. Kernel Regression

Degenerate Example: “Linear Kernel”

• Consider two examples xi and xj for a 2-dimensional dataset:

• As an example kernel, the “linear kernel” just uses original features:

• In this case the inner product zi
Tzj is k(xi,xj) = xi

Txj:

– But in this case model is still a linear function of original features.

Example: Degree-2 Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (1 + xi

Txj)
2:

Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xi
Txj)

4

• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.

– But cost of computing one k(xi,xj) is O(d) instead of O(dp) to compute zi
Tzj.

– Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

• Using polynomial basis of degree ‘p’ with the kernel trick:

– Compute K and ෩𝐾 using:

– Make predictions using:

• Training cost is only O(n2d + n3), despite using k=O(dp) features.

– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.

– Testing cost is only O(ndt), cost to form ෩𝐾.

An Infinite-Dimensional Basis?

• Suppose d=1 and I want to use this infinite set of features (d = ∞):

• The kernel function has a simple form:

• For these features, even though d=∞, cost of kernel is O(1).

Gaussian-RBF Kernel

• Previous slide is a special case of the Gaussian RBF kernel:

– Where we have introduced a variance hyper-parameter 𝜎2.

– This is the most popular kernel function.

• Same formula as Gaussian RBF features, but not equivalent:

– Before we used Gaussian RBFs as a set of ‘n’ features.

– Now we are using Gaussian RBFs as a dot product (for infinite features).

• In practice, Gaussian RBFs as features or as kernels gives similar performance.

Motivation: Finding Gold

• Kernel methods first came from mining engineering (“Kriging”):

– Mining company wants to find gold.

– Drill holes, measure gold content.

– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php

Kernel Trick for Non-Vector Data

• Consider data that doesn’t look like this:

• But instead looks like this:

• We can interpret k(xi,xj) as a “similarity” between objects xi and xj.

– We don’t need features if we can compute “similarity” between objects.

– Kernel trick lets us fit regression models without explicit features.

– There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Kernel Trick for Non-Vector Data

• Recent list of types of data where people have defined kernels:

• Bonus slide overviews a particular “string” kernel.

https://arxiv.org/pdf/1802.04784.pdf

Valid Kernels

• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:

– There must exist a mapping from the xi to some zi such that k(xi,xj) = zi
Tzj.

• It can be hard to show that a function satisfies this.

– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:

• Kernel k-nearest neighbours.

• Kernel clustering k-means (allows non-convex clusters)

• Kernel density-based clustering.

• Kernel hierarchical clustering.

• Kernel distance-based outlier detection.

• Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized (see bonus):

• Kernel robust regression with L2-regularization.

• Kernel brittle regression with L2-regularization.

• Kernel hinge loss (SVM) or logistic loss with L2-regularization.

• Kernel multi-class SVM or multi-class logistic
with L2-regularization.

Logistic Regression with Kernels

Summary

• Common convolution filters for computer vision:
– Gaussian, Laplacian of Gaussian, and Gabor filters.

• Filter banks: make features by taking a bunch of convolutions.
• High-dimensional bases allows us to separate non-separable data.
• “Other” normal equations are faster when n < d.
• Kernel trick allows us to use high-dimensional bases efficiently.

– Write model to only depend on inner products between features vectors.

• Kernels let us use similarity between objects, rather than features.
– Allows some exponential- or infinite-sized feature sets.
– Applies to distance-based and linear models with L2-regularization.

• Next time:
– How do we train on all of Gmail?

Image Convolution Examples

Image Coordinates

• Should we use the image coordinates?
– E.g., the pixel is at location (124, 78) in the image.

• Considerations:
– Is the interpretation different in different areas of the image?

– Are you using a linear model?
• Would “distance to center” be more logical?

– Do you have enough data to learn about all areas of the image?

Alignment-Based Features

• The position in the image is important in brain tumour application.

– But we didn’t have much data, so coordinates didn’t make sense.

• We aligned the images with a “template image”.

Alignment-Based Features

• The position in the image is important in brain tumour application.

– But we didn’t have much data, so coordinates didn’t make sense.

• We aligned the images with a “template image”.

– Allowed “alignment-based” features:

Motivation: Automatic Brain Tumor Segmentation

• Final features for brain tumour segmentation:
– Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.

• All with 3 variances.

• Max(Gabor) with sine and cosine on orginal (3 variances).

Motivation: Automatic Brain Tumour Segmentation

• Logistic regression and SVMs among best methods.

– When using these 72 features from last slide.

– If you used all features I came up with, it overfit.

• Possible solutions to overfitting:

– Forward selection was too slow.

• Just one image gives 8 million training examples.

– I did manual feature selection (“guess and check”).

– L2-regularization with all features also worked.

• But this is slow at test time.

• L1-regularization gives best of regularization and feature selection.

SIFT Features

• Scale-invariant feature transform (SIFT):

– Features used for object detection (“is particular object in the image”?)

– Designed to detect unique visual features of objects at multiple scales.

– Proven useful for a variety of object detection tasks.

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

Feature Selection Hierarchy

• Consider a linear models with higher-order terms,

• The number of higher-order terms may be too large.

– Can’t even compute them all.

– We need to somehow decide which terms we’ll even consider.

• Consider the following hierarchical constraint:

– You only allow w12 ≠ 0 if w1 ≠ 0 and w2 ≠ 0.

– “Only consider feature interaction if you are using both features already.”

Hierarchical Forward Selection

• Hierarchical Forward Selection:

– Usual forward selection, but consider interaction terms obeying hierarchy.

– Only consider w12 ≠ 0 once w1 ≠ 0 and w2 ≠ 0.

– Only allow w123 ≠ 0 once w12 ≠ 0 and w13 ≠ 0 and w23 ≠ 0.

– Only allow w1234 ≠ 0 once all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

Why is inner product a similarity?

• It seems weird to think of the inner-product as a similarity.

• But consider this decomposition of squared Euclidean distance:

• If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
– So “high similarity” according to inner product is like “small Euclidean distance”.

– The only difference is that the inner product is biased by the norms of the
training examples.

– Some people explicitly normalize the xi by setting xi = (1/||xi||)xi, so that inner
products act like the negation of Euclidean distances.
• E.g., Amazon product recommendation.

A String Kernel

• A classic “string kernel”:
– We want to compute k(“cat”, “cart”).
– Find all common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
– Weight them by total length in original strings:

• ‘c’ has length (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.

– Add up the weighted lengths of common subsequences to get a similarity:

where γ is a hyper-parameter controlling influence of length.

• Corresponds to exponential feature set (counts/lengths of all subsequences).
– But kernel can be computed in polynomial time by dynamic programming.

• Many variations exist.

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems have shown that
any L2-regularized linear model can be kernelized:

Kernel Trick for Other Methods

• Besides L2-regularized least squares, when can we use kernels?

– “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

– Linear models without regularization fit with gradient descent.

• If you starting at v=0 or with any other value in span of rows of ‘Z’.

