CPSC 340:
Machine Learning and Data Mining

Last Time: Convolutions

 We considered building a classifier to classify pixels in an image:

— To represent “context” of a pixel we discussed using convolutions.

— Convolutions are weighted combinations of the nearby pixels.

2[-’,)11] - é 2 WL.):;).ZJXE’.J.‘-J'I)’JZ +Jh2]

VI Pt

— Can approximate image “derivatives” and “integrals”.

~ ~
o /N
P / \
50 A / N\
0as ‘//' as. // \\‘
000 e / \
at \.

013 / AN
- yd wl \

7 / N\
o1 yd wl \\
—pd /

e At multiple scales and in mui”t-if)_lé directions.

Image Convolution Examples

Image Convolution Examples

GausS\m\ Comvo’\/\)l bp:

)

b_Lu\’r_S irv\aﬁe '}0 fe(fe;e,rl

ﬂveraﬂe
(Smoo‘f hi'\())

Image Convolution Examples

GausS\m\ Comvo’\/\)l bp:

)

(smm”~(r vari ant(;)

b_Lu\’r_S irv\aﬁe '}0 fe(fe;e,rl

ﬂveraﬂe
(Smoo‘f hi'\())

Image Convolution Examples syl

Larg]a(i GN o)[C’q \ASS' an

l How Mv(,ln chO l{ IOOK
[ike o black dof
SUrr oum‘eé \o\/ wklfe_)

\\

Image Convolution Examples

Blacc fwhif,

as siJes o

LO‘YJ}“U N 07[Ga WSS G

(l(mf\)or votrioW\(e)

Simllar FNP"OM’%W May [at

Jo\nc i ‘o(asca, %c.w_)l('m O'V‘(l LC’\/V

Image Convolution Examples

"Emlaos;\ {ilfer

k-
o !
— Qq
N —
I

qu\\/ Pl\o'}os L\or 6q0(+§

ave 5\43"' Cowo [t on .

http://setosa.io/ev/image-kernels

http://setosa.io/ev/image-kernels

Image Convolution Examples

, ltirordal beild 1o it
Gabor Fifer i

(qussiaw VV\\AHJV)“‘(J loy

Sine or coQine)

)

¥ SO
\\ AN

GO\V‘SS'WV\ Pq”"”e' g"”e fW\CTMS

Image Convolution Examples

Go\Lor Filter
(qussiaw VV\\AHJV)“‘(J loy

Sine or coQine)

)

Dl"ﬁ\frm'll Orifn"\a\"'ows 070

the sinelaging Jot s
detecd d\anJos with diflesen]

m O\ﬁfﬂ"}aﬂu 24 dorivatives have o dvection.

Image Convolution Examples

Go\'oor Filter
(qussiaw VV\\AHJV)“‘(J loy

Sine or cosine)

)

(Sma”w va r"av\(e)

Image Convolution Examples

Go\'oor Filter
(qussiam VV\\AHJV)“‘(J loy

Sine or cogme)

)

(Slﬂ\d\"f(Vowiame)

Ve r1ical Qrion“?\‘hof\

—CO'V\ °|°'}O\'W\ o“nfr Of;ew\"’ﬁ"‘wS L\/
r0+a+fm),

“‘/V\o\y be simlar 1o effect of VI o

§imr I cell"

3D Convolution

3D

Conv olutions

=
s
<
N

O

3D Convolution

Ganssian §ilter

3D Convolution

Gawnssian Tilter
(t\\ql\er vqr\ance on

SNN’/\ o\\qnne')

3D Convolution

N

>
W
e

3D Convolution

(70\110(xi'hr 6N

Gac\\ (\M\m\cl-

Convolutions as Features

e Classic vision methods use convolutions as features:
— Usually have different types/variances/orientations.
— Can take maxes across locations/orientations/scales.

e Notable convolutions:

— Gaussian (blurring/averaging).

— Laplace of Gaussian
(second-derivative).

.

— Gabor filters -
(directional first- or higher-derivative). =
B

Filter Banks

 To characterize context, we used to use filter banks like “MR8”:

ENNIIA-E
ENNIAE
EEREEE
NI
S E

— 1 Gaussian filter, 1 Laplacian of Gaussian filter.

— 6 max(abs(Gabor)) filters:

* 3 scales of sine/cosine.
* Takes absolute value of maximum across 6 orientations.

=N

\

= AN

e Convolutional neural networks (Part 5) are replacing filter banks.

Next Section: Kernel Trick

Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
— We previously discussed using convolutions to engineer features.

Input: Output:

* Good performance was obtained with linear classifiers (SVMs/logistic).
— Provided you did feature selection or used regularization.

 One of the only methods that worked better:

— Regularized linear classifier with a low-order polynomial basis (p=2 or p=3).
* Makes the data “closer to separable” in the higher-dimensional space.

Support Vector Machines for Non-Separable

 Can we use linear models for data that is not close to separable?

Support Vector Machines for Non-Separable

 Can we use linear models for data that is not close to separable?

— It may be separable under non-linear transform (or closer to separable).

4
Xiz lxi)
<A .
* X " x
%
¥ X M W
ot o ¥
§ oo
. & oo
A) = -_X'l J X
;) L = 2
X A St X)(
% 4 ¥ | - i
* X)
ﬁ x|l xil
% * » X)

Support Vector Machines for Non-Separable

 Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).

2 2 4. A
Xiz lXi) }".: w, X, T Wzﬁ)(n}‘i) w Xy
« A y X
* X % "
¥ b
X ¥ oy *
P X
M W . y W , _._|""-.I"Il X
. i a
o b0 Xy X
. A L Y X v
" - o xll L Jw-.,.-.‘ X 2
4 - W ' r VAl
W L !
&: x_,r'xi)_
% X . X I 4

Support Vector Machines for Non-Separable

 Can we use linear models for data that is not close to separable?
— It may be separable under change of basis (or closer to separable).

2 2 2
Xi2 A Y= W X w2 ws
« A y x
* X » "
%
X —— ! [, W X X X
R "
x [’) X {I:“-} ’ X
. 0 y -_'u, ¢ SN x
x _ﬁ/ﬂ/ 11'1 s N) 2
) 5 y \ : - X,
% L b
" Ln Of‘zyhm}-"’ 2 X%,
¥ X % X SPqc "

Multi-Dimensional Polynomial Basis

e Recall fitting polynomials when we only have 1 feature:

A
yi' W W X +

W)

x &

* We can fit these models using a change of basis:

X

-

(02)
—-0.5
|

_LIJ

’Z:

~102 (0)?
I -05 (-05)7
l l (Nt

]y (4)*

e How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:

X=1
| ~0§

0.%
0.5
-0l

—

} 2=

101 g (020 (03F ©N@)
o e (R (gs)? (D0S)
L vs o (0 (ot CoIC0N

L.c'GS X, Xiz (xi’)l (xil)z (X:l)(fiz)

* With d=4 and p=3, the polynomial basis would include:

— Bias variable and the x;;: 1, x;3, X;, X;3, X;4-

— The x; squared and cubed: (x;1)?, (x;,)% (X3)% (%i4)% (%1)%, (%2)%, (Xi3)3, (Xi)°.

— Two-term interactions: X,;X.,, X.; X3, Xi1 X4, Xi5Xi3, Xi5Xig, Xi3Xi.

— Cubic interactions: X;;X;,Xi3, Xi;XisXig, Xi1Xi3,Xia, Xi1Xi2Xia,
Xir2Xin, Xir2Xiny Xia2Xon, XiaXinZ, Xin2Xin, Xin2X:r, XiaXiaZ, XinXiaZ, Xia2Xin) Xia X 12, XX 12, XiaX: 12
11 722 7M1 Ni32 M N4 MAN2 2 N2 32 N2 N4y N3 2 Mi27M3 N3 N4y N4 o Mi27Mi4 o N34

Kernel Trick

If we go to degree p=5, we'll have O(d®) quintic terms:

y Y y 3 2 3 1 3 2 g 4

g
X\I7X}I X'27 XI' Y37~.-7XH yoJ7 X" x'17xl| x‘S7'--7xll Xlé 74-—7X'2 7X'2X X‘J

By

For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
— ‘7" has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— “Hierarchical forward selection” (bonus).

Alternating, you can use all of them with the “kernel trick”.
— For special case of L2-regularized linear models.

How can you use an exponential-sized basis?

* Which of these two expressions would you rather compute?

ot G367 19554 D6xS +106x% T4 24267454 Of (v1))!

— Expressions are equal, but left way costs O(p) while right costs O(1).

 Which of these two expressions would you rather compute?
3 W 5

EaXqx 2,40 or e
L T T

— Expressions are equal, but left way has infinite terms and right costs O(1).

X

 Can we add weights to the terms in sum, and use these tricks?

The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis Z’:

Fv)= ":'z 2y - \/”Z + _?. vll?
We showed that the minimum is given by
=(277+21)"' 7"
! Kk x K /

(in practice you still solve the linear system, since inverse is less numerically unstable — see CPSC 302)

With some work (bonus slide), this can equivalently be written as:

- 5T T A=
V-~ Z (ZZ t)i) 7
.)
This is faster if n << k: n xn
— After forming ‘Z’, cost is O(nk + n3) instead of O(nk? + k3).

— But for the polynomial basis, this is still too slow since k = O(dP).

The “Other” Normal Equations

T T B
* With the “other” normal equations we have v <= l (ZZ + :U—) y
* Given test data X, predict § by forming Z and then using:

i
= :\Z/’Z.'(ZZT + QI)‘IY
— Y
KK)
o = KK Y, = Ku
£ xn N xn n x|

* Notice that if you can from K and K then you do not need Z and Z.

* Key idea behind “kernel trick” for certain bases (like polynomials):

— We can efficiently compute K and K even though forming Z and Z is intractable.
* Inthe same way we can comptue (x+1)° instead of x° + 9x® + 36x” + 84x°...

Gram Matrix

e The matrix K=2Z"is called the Gram matrix K.

T f Z| —) (l , ,__.
— PR T ———
K: Zz - 2:7‘ 2, 2, - 2,
] _) , /
— “"-zn - L.-v -~
VV\/ \/W
73 Z'
Z|TZ| Z,'l,; &5
]
_ 2212‘ z{,-'zz : ~Zz‘ V4N
- : ‘"‘ .. ; "
Zn_lz\ Zr:.zl' o -Zh-'zr\
—_— N\ — —

N
* K contains the dot products between all training examples.
— Similar to ‘2’ in RBFs, but using dot product as “similarity” instead of distance.

Gram Matrix

 The matrix K = ZZ" has dot products between train and test examples:

s (R (11 I”
K: ZZ - R 2, 2, T 2,
A
L ""’—'—-Zt-—’_._ Lﬂ\/\/\/ -
|
\{'\/ ZT
- a
Zszl %/:'zz B
~ ~
_\ %y %y Z; Zn
- l ‘ . { .t
~ A~ ~
5020 Wl 720
e N/ —

n
* Kernel function: k(x, x) = z,z,.

— Computes dot product between in basis (z,'z) using original features x; and x;.

The Kernel Trick

———

ID afrly Iinear fe?fv;.slom) I Oi':/ nee(f "D khov /\/ omc/ /?/

USe X)LO FONV\ Z; T
TS CO"’!)D wle Z,', 2:
Use X, o Torm 2 —

J
\ .

o<1

Fma/ (e§u/f 1S N XN (‘\0 """ﬁe" A“’V /'/7‘0 2 'S>

The Kernel Trick

———

ID afrly Imear fQYNJ.SlOV\) I Oi’.‘/ need o khov /\/ om(/ //(V

US@ X, DA X% 2T X T
> R2AP M [£
VSC X) ‘/' S5 //;//(, ’ £
\ 1 7
I(_ ////b of A //Z
Z)

/’/

Fma/ f¢°§u/f 1S N XN (‘\0 """#P" A“’V /'/7‘0 2 'S>

Linear Regression vs. Kernel Regression

l_mear Ret)mssion ’4eme | Re") eSS on
'fO\IVIm9 —‘o\mm ’
| FO m lya((S Z ‘FrOM .) } FO"W\ Il’\nfr d)ronc'lS '< 'Frow\ X
2 Com Wle V:© (Z Z‘f‘/)_[)'l (Z'\/) Q COM wf{ u__ (K-l- //]7') \/
omp - f

K x nx l

N6I\ i Faramt Fric
lm ’T\vsfm Z.

v

I FO(M LaS‘S Z ?fom/)\(/ I Form |1ANer f’VUo(uc‘fS ’< From X OMJ&/
,01 (omrm“e y d (omrude 7,-

-(t(|\ '(nn"'

@o“\ m'“\a(ls Wake ﬂf s ime r,\pJ;("iwf,

IH

Degenerate Example: “Linear Kerne

* Consider two examples x; and x; for a 2-dimensional dataset:
-)Xi1> X)‘:(X')l))‘)?)

* As an example kernel, the “linear kernel” just uses original features:

2 () 2 ()
* In this case the inner product sz iS k(xi,xj) = X'X;:
Z Z-
¢
X Y]

— But in this case model is still a linear function of original features.

Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
=\)Xi1> X)‘:(X')l))‘)?)
* Now consider a particular degree-2 basis:
_ (.2 2 _ (. 2
Z(- (xil 7\‘_2' xilxj]7xi2) Z - (XJ'I HXJ)XJ){)2>
* |n this case the inner product z;'z; is k(x;,x;) = (x; X.)2
- 2 2
Z, 'z)- = X X). \E Xu u)(\ﬁ ij) t X,z 32

2

= xl' 27(.{ 12 XJ|)()_2 +X\2XJ2
2 N
- (X(| JI X.QX)D.) (Owir'elll’\j f'he 51ere
X X

= (q'5)* E Mo peed for 2i o comute 272

Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
|
Zi - [l \sz.n ﬁ"i) an ‘D_Xu Xiq y/z)J
* |n this case the inner product zisz is K(x;,x;) = (1 + xiij)Z:
- T 2
Cl+ x,"xd-)l =] + A’y * (xi %)

2,2 | 22
= | + Axx;, 1 2%, X)2 X X "'QX,', X, %%2 ¥ Xiz X)2

el
M, |

:[I @X., @XQ x"l ﬁY,,X.Z X,‘zz] D’(ﬂ

Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:
- 7

valent fo i Wi - X
E?w vatenl 1o wsing o 2, with Wekjkh’é Versons of)(I»,')X,-,EXQ)X,?X,;}Z))(.‘/XQ} X-;/ :
>Mily -

* To also get lower-order terms use k(xi,xj) =(1+ xiij)4
* The general degree-p polynomial kernel function:

k(’(;;YJ'): (’ + X,’"S‘)P

— Works for any number of features ‘d.
— But cost of computing one k(x;x;) is O(d) instead of O(dP) to compute zisz.
— Take-home message: | can compute dot-products without the features.

Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

- 1N ko= (4% %)
,<U - (/ +X| XJ> , V (&) [)/7 Tmin t)(ow.lp/e

— Make predictions using: kfj,,,r/e
>, K(K+ 5U.> VL =
A/ t " m nx| \)m:(l(w‘qf)‘l\/

* Training cost is only O(n%d + n3), despite using k=0(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n” matrix.

— Testing cost is only O(ndt), cost to form K.

An Infinite-Dimensional Basis?

e Suppose d=1 and | want to use this infinite set of features (d = 0):

! L4
"e"r’(X.)[I ri, \i"L" ,» TR ‘\r:"'r]
* The kernel function has a 5|mple form:
Ie Cxyx,) = Z,‘7‘J
| §6

-el("(le)er‘?(: Z)(l + T’.;X"S + il‘gx.‘jxj)“'%)ﬁs)()"}w Vny}r + -]
-)

':pxr (’({)‘J’)
= exr(~£x,-2 -%X; *Xixg.)

= ex((‘ j’;(xi "S)z)

* For these features, even though d=oo, cost of kernel is O(1).

Gaussian-RBF Kernel

* Previous slide is a special case of the Gaussian RBF kernel:

k(xnxg): e’(P(‘ \'X.’z‘o);.”l)

— Where we have introduced a variance hyper-parameter ¢2.
— This is the most popular kernel function.

 Same formula as Gaussian RBF features, but not equivalent:
— Before we used Gaussian RBFs as a set of ‘n’ features.
— Now we are using Gaussian RBFs as a dot product (for infinite features).

* In practice, Gaussian RBFs as features or as kernels gives similar performance.

Motivation: Finding Gold

* Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a kernel regression model (typically use RBF kernels).
Input Process Qutput

Kernel Trick for Non-Vector Data

[] ’ [}]
Consider data that doesn’t look like this:
[0.5377 0.3188 3.5784 | (+1]
¥ 1.8339 1.3077 2.7694 / 1
~ | -2.2588 —0.4336 —1.3499|° Y7 [-1]°
| 0.8622 0.3426 3.0349 | +1]
* But instead looks like this:
[Do you want to go for a drink sometime? | 1]
J'achéte du pain tous les jours. —1
X = . Y = -
Fais ce que tu veux. —1
| There are inner products between sentences? | +1]

* We can interpret k(x;x;) as a “similarity” between objects xi and xj.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Kernel Trick for Non-Vector Data

* Recent list of types of data where people have defined kernels:

trees (Collins & Dufty, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gértner
et al., 2002), fuzzy domains (Guevara et al., 2017), dis-
tributions (Hein & Bousquet, 2005; Martins et al., 2009;
Muandet et al., 2011), groups (Cuturi et al., 2005) such as
specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).
* Bonus slide overviews a particular “string” kernel.

Valid Kernels

What kernel functions k(x;x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x,x;) = z;'z;.

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?
— We can compute Euclidean distance with kernels:

2, = 201" = 22 =222+ 22 = k(x,x,) = 2KGy,) + K(x,x)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
» Kernel clustering k-means (allows non-convex clusters)
* Kernel density-based clustering.
* Kernel hierarchical clustering.
e Kernel distance-based outlier detection.
* Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized (see bonus):
Kernel robust regression with L2-regularization.

Kernel brittle regression with L2-regularization.
Kernel hinge loss (SVM) or logistic loss with L2-regularization.

\—(\/_/7 W/ Th o IDﬂf"(‘A/af /M///MPII '/a?'zon

C an rere V/pfenjl(‘/lov\ (oS\/
-rram O(ﬁtj"{) "(0 O(W'Clt)

Kernel multi-class SVM or multi-class logistic L/Vuméf’r of
with L2-regularization.

support veclars

Regression with Kernels

Logistic

kernel-Linear Logistic Regression

Linear Logistic Regression

.
[T N
$
o U
A2 3
“
~ S

3
> 3
S 3
~ “
0
—

B

origiral rf’a IWIH

kerel-REF Logistic Regression

k.ernel-Foly Logistic Regression

Summary

Common convolution filters for computer vision:
— Gaussian, Laplacian of Gaussian, and Gabor filters.

Filter banks: make features by taking a bunch of convolutions.
High-dimensional bases allows us to separate non-separable data.
“Other” normal equations are faster when n < d.

Kernel trick allows us to use high-dimensional bases efficiently.
— Write model to only depend on inner products between features vectors.

Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to distance-based and linear models with L2-regularization.

Next time:
— How do we train on all of Gmail?

Image Convolution Examples
Mﬂ)(Gloso,vﬂle leWﬁ

Letween horizontal and

\ve rl'ic q, Gmlaofi

S7

S
MU Ximumn

absalute

\V

“Hb'i?(t\n’m'/\/erﬂwl elye e Teclor ’

Image Coordinates

Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

Considerations:
— |s the interpretation different in different areas of the image?

— Are you using a linear model?
* Would “distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?

Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.

(Look A:Ffm# })(J(CM)U

\)
we ¥e s(\owm‘| M"JC”CS/M

ij Glith’"{ SN g_p,)

Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

* We aligned the images with a “template image”. ()r'7;m/ pivel

— Allowed “alignment-based” features: Vﬂ’ue>
‘)ro(,a\ LIII fy o) £
5’0'\/ W\aﬂ'\of q‘t &
Tk\g ()IIYQ‘ GVh()AC} A(]LW/ ,‘]7?{

\(a/ue ¢p fpmréft,
l”m}c q{ 7‘/_;
0Ca 1'6)".

Fory of prg o
\,\,'m\ ,‘-QW\‘\Q\\?'

> [efi-right
Aﬂ"l? I'J/a“*y\]otyel, ?

Symmetry diffectre

Motivation: Automatic Brain Tumor Segmentation

* Final features for brain tumour segmentation:

— Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
e All with 3 variances.
* Max(Gabor) with sine and cosine on orginal (3 variances).

0(](}, N,(P—/ ga

i

ibn HP

D

1 NPIRN " u ,\ ‘ S
v ¢/ R

-~ 0 1

-3 /\/”'V(G_GLUIS

Motivation: Automatic Brain Tumour Segmentation

* Logistic regression and SVMs among best methods.
— When using these 72 features from last slide.
— If you used all features | came up with, it overfit.

* Possible solutions to overfitting:

— Forward selection was too slow.

* Just one image gives 8 million training examples.
— | did manual feature selection (“guess and check”).
— L2-regularization with all features also worked.

e But this is slow at test time.
* L1-regularization gives best of regularization and feature selection.

SIFT Features

e Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.

Feature Selection Hierarchy

* Consider a linear models with higher-order terms,

A

* The number of higher-order terms may be too large.

— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

* Consider the following hierarchical constraint:
— You only allow w,, # 0 if w; # 0 and w, # 0.
— “Only consider feature interaction if you are using both features already.”

Hierarchical Forward Selection

* Hierarchical Forward Selection:
— Usual forward selection, but consider interaction terms obeying hierarchy.
— Only consider w,, # 0 once w, # 0 and w, # 0.
— Only allow w,,; # 0 once w,, # 0 and w3 # 0 and w,; # 0.
— Only allow w,,,, # 0 once all threeway interactions are present.

-II..:I
Fig 9: Power set of the set {1,...,4}: in blue, an anthorized set of selected subsets,
In red, an example of a group used within the norm (a subset and all of its

descendants in the DAG).

Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX 4+ AD7IXT = XT(XXT + 2D (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)Y'FH'=E'F(H-GE'F)™'.

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD)TXT = AT+ XTX) XY = A1+ X717 XY = (AT =-XT(-DX)'XT = —(A1-X"(-DX)"' X" (-1
Now apply the matrix inversion with £ = A (so E~' = (5)1), ¥ = X", H=—1I (so H~' = -1 too), and
G=X:

~(M = XT(=DX)'XT(-1) = =(5 -

Now use that (1/a)A~" = (aA)™!, to push the (—=1/X) inside the sum as — A,

NixT-r-x (l) XT)1.

-(%}IJ{"'(—I - X G) XUy = XTAL+ XXT) ' = XT(XXT 4+ A1),

Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

gl — 7 Ll (12
'lj_“)(',“ X)”Z ;’2‘ 11 X X 4?"”3“
* If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.
— Some people explicitly normalize the x; by setting x. = (1/| [x| |)x,, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.

B question stop following

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — z;]||)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent” here mean?

Also, why now "we are using them as inner product"? Is it because we now regard k(a:z-, :L‘j) as the inner product of z;
and z;, which are some magical transformation of z; and z;? (Like k(z;, z;) = (1 + iE;-FzL‘j)p is the inner product of z;
and z;, which are polynomial transformation of x; and ;)7

b

{ "l,g,, Chenliang Zhou 2@ & months ago Oh so is my following reasoning correct?:
VA
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + X)) 1 ZTy = ZZT(ZZT + X\I) y.

In Gaussian RBF kernel, we have y = IE’(K + AI) 1y where where K and K are those 2
horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K = Z, so

j=Z(Z+)y

o~

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + X\I)~(for G-RBF basis) # Z(Z + MI)~!(for G-RBF kernel).

A String Kernel

e Aclassic “string kernel”:
— We want to compute k(“cat”, “cart”).
— Find all common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
— Weight them by total length in original strings:
* ‘¢’ has length (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.

— Add up the weighted lengths of common subsequences to get a similarity:
S N N N N N N
‘c’ ‘a’ ‘t’ ‘ca’ ‘at’ ‘ct’ ‘cat’

where vy is a hyper-parameter controlling influence of length.

* Corresponds to exponential feature set (counts/lengths of all subsequences).
— But kernel can be computed in polynomial time by dynamic programming.

* Many variations exist.

Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, ;) are valid kernels, then the following are valid kernels:

o ki(d(xq), d(xj)).
L {}kl(T%qu) + ﬁk’z(TtT_}.) for a > () and 6 > 0.
o ki(wi, xj)ka(zs, x;5).
o O(x;)ky(xi,x;)0(xy).
@ D}{p(kl(iﬂi,:ﬁj)).
e Example: Gaussian-RBF kernel:

2
Ls — ;5
(i, 35) = exp (_M 3|)

O—Q
2 / \ 2
. 2 .
oo (LY e | 2 a7y | (1)
- o/ NGl 1N o7
~ \&20 ualld) ~
S A S B S

exp(valid)

Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,
- X
argmin » fi(w"x;) + §||’w||2-
Setting the gradient equal to zero we get
n
(i= Z fl(wlz))z; + M.
i=1

So any solution w* can written as a linear combination of features x;,

n n

w' = —§ fo((W*)TiEz')iEi = Z Zil;

=1 =1

This is called a representer theorem (true under much more general conditions).

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems have shown that
any L2-regularized linear model can be kernelized:

_.Tvc ’earhmc) Con Laﬂ wrle/n n 7'/: *f()rm W\m f/zv},tﬂ//‘///.? WCWSO}W
‘”\% W\Je/ \N‘Cn}\ (ova foM (wa)pn*u ﬂpo,,mn) l \\

w¢ (an re~ UJMaN‘t}f"‘ZG n f‘{rMS (DP V= Z‘L
S'v’mg VW"' ‘F(Z Z “)"L 4“ ZZ w
b I3

=77w =k v

\V4
Y - ' OY\,y /MeJ /k'

WA

K

/47t 11‘31 Jme i \,Wuu wse %

~

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.

* If you starting at v=0 or with any other value in span of rows of Z’.

Ifﬂf‘qiﬁov\s of eLmJnd' Aeswnj on ‘F(ZV) can ,06 w,’"lHﬁf\ as \/:ZIW
W&)'Ic‘!\ 'etS WS fb"faram\gTQ/ige as ‘F(ZZT(L>

A?l "wo)'/ "f’rm” \/UV\ \/wv'u wS€ Zv = ?ZT(A :/;:u
— s e
X'w)

