Last Time: Feature Engineering

• We discussed feature engineering:
 – Designing a set of features to achieve good performance on a problem.

• We discussed various issues:
 – Feature aggregation/discretization to address coupon counting.
 – Feature scaling to address features of different scales.
 – Non-linear transforms to make relationships more linear.

• We started discussing feature engineering on text data:
 – Bag of words:
 • Loses a LOT of information.
 • But let’s us learn fast if word order isn’t that relevant.
 – Trigrams (“sets of 3 adjacent words”):
 • Captures local context of a word.
 • But requires collecting a lot of coupons: $3^{(\text{number of words})}$.
Text Example 3: Part of Speech (POS) Tagging

• Consider problem of finding the verb in a sentence:
 – “The 340 students jumped at the chance to hear about POS features.”

• Part of speech (POS) tagging is the problem of labeling all words.
 – >40 common syntactic POS tags.
 – Current systems have ~97% accuracy on standard (“clean”) test sets.
 – You can achieve this by applying a “word-level” classifier to each word.
 • That independently classifies each word with one of the 40 tags.

• What features of a word should we use for POS tagging?
POS Features

- **Regularized multi-class logistic regression** with these features gives ~97% accuracy:
 - Categorical features whose **domain is all words** ("lexical" features):
 - The word (e.g., “jumped” is usually a verb).
 - The previous word (e.g., “he” hit vs. “a” hit).
 - The previous previous word.
 - The next word.
 - The next next word.
 - Categorical features whose **domain is combinations of letters** ("stem" features):
 - Prefix of length 1 (“what letter does the word start with?”)
 - Prefix of length 2.
 - Prefix of length 3.
 - Prefix of length 4 (“does it start with JUMP?”)
 - Suffix of length 1.
 - Suffix of length 2.
 - Suffix of length 3 (“does it end in ING?”)
 - Suffix of length 4.
 - **Binary features** ("shape" features):
 - Does word contain a number?
 - Does word contain a capital?
 - Does word contain a hyphen?

- **Total number of features:** ~2 million (same accuracy with ~10 thousand using L1-regularization).
Ordinal Features

• Categorical features with an ordering are called ordinal features.

• If using decision trees, makes sense to replace with numbers.
 – Captures ordering between the ratings.
 – A rule like (rating ≥ 3) means (rating ≥ Good), which make sense.
Ordinal Features

• With linear models, “convert to number” assumes ratings are equally spaced.
 – “Bad” and “Medium” distance is similar to “Good” and “Very Good” distance.
• One alternative that preserves ordering with binary features:

<table>
<thead>
<tr>
<th>Rating</th>
<th>≥ Bad</th>
<th>≥ Medium</th>
<th>≥ Good</th>
<th>Very Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very Good</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Good</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Good</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Very Bad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Medium</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• Regression weight w_{medium} represents:
 – “How much medium changes prediction over bad”.
• Bonus slides discuss “cyclic” features like “time of day”.
Next Topic: Personalized Features
Motivation: “Personalized” Important E-mails

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:41 am</td>
<td>A2, tutorials, marking</td>
</tr>
<tr>
<td>10:20 am</td>
<td>Intro to Computer Science</td>
</tr>
<tr>
<td>9:49 am</td>
<td>Convergence rates for cu</td>
</tr>
<tr>
<td>8:01 am</td>
<td>Graduation Project Demo</td>
</tr>
<tr>
<td>7:57 am</td>
<td>Label propagation</td>
</tr>
</tbody>
</table>

- Features: bag of words, trigrams, regular expressions, and so on.

- There might be some “globally” important messages:
 - “This is your mother, something terrible happened, give me a call ASAP.”

- But your “important” message may be unimportant to others.
 - Similar for spam: “spam” for one user could be “not spam” for another.
"Global" and "Local" Features

• Consider the following weird feature transformation:

<table>
<thead>
<tr>
<th>“340”</th>
<th>“340” (any user)</th>
<th>“340” (user?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>User 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>User 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>User 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td><no “340”></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>User 3</td>
</tr>
</tbody>
</table>

• First feature: did “340” appear in this e-mail?
• Second feature: if “340” appeared in this e-mail, who was it addressed to?

• First feature will increase/decrease importance of “340” for every user (including new users).
• Second (categorical feature) increases/decreases importance of “340” for a specific user.
 – Lets us learn more about specific users where we have a lot of data
“Global” and “Local” Features

• Recall we usually represent categorical features using “1 of k” binaries:

<table>
<thead>
<tr>
<th>“340”</th>
<th>“340” (any user)</th>
<th>“340” (user = 1)</th>
<th>“340” (user = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• First feature “moves the line up” for all users.
• Second feature “moves the line up” when the e-mail is to user 1.
• Third feature “moves the line up” when the e-mail is to user 2.
The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):

\[X = \begin{bmatrix} \vdots \end{bmatrix}, \quad y = \begin{bmatrix} "important" \\
"not important" \\
\vdots \end{bmatrix} \]

"global" features: shared by all users

"local" features for user "1": set to 0 for all other users.

"local" features for user "2"

We only need to store the user ID and list of non-zero features.
Predicting Importance of E-mail For New User

• Consider a new user:
 – We start out with no information about them.
 – So we use global features to predict what is important to a generic user.
 \[\hat{y}_i = \text{sign}(w_g^T x_{ig}) \]
 – Weights on local/user features are initialized to zero.
 – With more data, update global features and user’s local features:
 – Local features make prediction personalized.
 \[\hat{y}_i = \text{sign}(w_g^T x_{ig} + w_u^T x_{iu}) \]
 – What is important to this user?
• G-mail system: classification with logistic regression.
 – Trained with a variant of stochastic gradient descent (later).
Next Topic: Convolutions
Motivation: Automatic Brain Tumor Segmentation

• Task: labeling tumors and normal tissue in multi-modal MRI data.

• Applications:
 – Radiation therapy target planning, quantifying treatment responses.
 – Mining growth patterns, image-guided surgery.

• Challenges:
 – Variety of tumor appearances, similarity to normal tissue.
 – Grumbly scientist to me in 2003: “you are never going to solve this problem.”
Naïve Voxel-Level Classifier

• We could treat classifying a voxel as **supervised learning**:
 – Standard representation of image: each pixel gets “intensity” between 0 and 255.

\[x_i = (98, 187, 246) \]

\[y_i = "tumour" \]

• We can formulate predicting \(y_i \) given \(x_i \) as supervised learning.
• But it **does not work** at all with these features.
Need to Summarize Local Context

• The individual pixel intensity values are almost meaningless:
 – The same x_i could lead to different y_i.

• Intensities not standardized.
• Non-trivial overlap in signal for different tissue types.
• “Partial volume” effects at boundaries of tissue types.
Need to Summarize Local Context

- We need to represent the “context” of the pixel (what is around it).
 - Include all the values of neighbouring pixels as extra features?
 - Run into coupon collection problems: requires lots of data to find patterns.
 - Measure neighbourhood summary statistics (mean, variance, histogram)?
 - Variation on bag of words problem: loses spatial information present in voxels.
 - Standard approach uses convolutions to represent neighbouroughd.
Example: Measuring “brightness” of an Area

- This pixel is in a “bright” area of the image, which reflects “bleeding” of tumour.
 - But the actual numeric intensity value of the pixel is the same as in darker “gray matter” areas.

- I want a feature saying “this pixel is in a bright area of the image”.
 - This will help identify that it’s a tumour pixel.

- Obvious way to measure brightness in area: take average pixel intensity in “neighbourhood”.

\[
Z = \frac{1}{|\text{nei}|} \sum_{k \in \text{nei}} X_k
\]

- Applying this “averaging” to every pixel gives a new image:

- We can use “pixel value in new image” as a new feature.
 - New feature helps identify if pixel is in a “bright” area.
The annoying thing about squares

• “Take the average of a square window” loses spatial information.
• Example:
Fixing the “square” issues

• Consider instead “blurring” the image.
 – Gets rid of “local” noise, but better preserves spatial information.

• How do you “blur”?
 – Take weighted average of window, putting more “weight” on “close” pixels:

\[z = \sum w_k x_k \]
Fixing the “square” issues

• Another neat thing we can do: use negative weights.
 – These features can describe “differences” across space.

• These “weighted averages of neighbours” are called “convolutions”.
 – I think of convolutions as the “words” that make up image regions.
Convolutions: Big Picture

- How do you use convolutions to get features?
 - Apply several different convolutions to your image.
 - Each convolution gives a different “image” value at each location.
 - Use these different image values to give features at each location.

![Diagram showing convolutions and feature extraction from an image.](image)
Convolutions: Big Picture

• What can features coming from convolutions represent?
 – Some filters give you an average value of the neighbourhood.
 – Some filters approximate the “first derivative” in the neighbourhood.
 • “Is there a change from low to dark to bright?”
 • “If so, from which direction in space?”
 – Some filters approximate the “second derivative” in the neighbourhood.
 • “Is there a spike or is the change speeding up?”

• Hope: we can characterize “what happens in a neighbourhood”, with just a few numbers.
1D Convolution Example

• Consider a 1D “signal” (maybe from sound):
 – We will come back to images later.

• For each “time”:
 – Compute dot-product of signal at surrounding times with a “filter” of weights.

\[w = [-0.1416, -0.1781, -0.2746, 0.1640, 0.8607, 0.1640, -0.2746, -0.1781, -0.1416] \]

• This gives a new “signal”:
 – Measures a property of “neighbourhood”.
 – This particular filter shows a local “how spiky” value.
1D Convolution (notation is specific to this lecture)

• 1D convolution input:
 – Signal ‘x’ which is a vector length ‘n’.
 • Indexed by i=1,2,...,n.
 – Filter ‘w’ which is a vector of length ‘2m+1’:
 • Indexed by i=-m,-m+1,...,-2,0,1,2,...,m-1,m

• Output is a vector of length ‘n’ with elements:
 \[Z_i = \sum_{j=-m}^{m} w_j x_{i+j} \]
 – You can think of this as centering w at position ‘i’, and taking a dot product of ‘w’ with that “part” \(x_i \).
1D Convolution

- **1D convolution example:**
 - Signal ‘x’:

 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 |

 - Filter ‘w’:

 | 0 | -1 | 2 | -1 | 0 |

 - Convolution ‘z’:
1D Convolution

• 1D convolution example:
 – Signal ‘x’:

 – Filter ‘w’:

 – Convolution ‘z’:

 Take dot-product: \(0 \cdot 0 + 1 \cdot (-1) + 1 \cdot 2 + 1 \cdot (-1) + 3 \cdot 0\)
1D Convolution

- **1D convolution example:**
 - Signal ‘x’:

0	1	1	2	3	5	8	13

 - Filter ‘w’:

 0 | -1 | 2 | -1 | 0

 - Convolution ‘z’:

 -1 | 0 |
1D Convolution

• 1D convolution example:
 – Signal ‘x’:
 - Signal: 0, 1, 1, 2, 3, 5, 8, 13
 – Filter ‘w’:
 - Filter: 0, -1, 2, -1, 0
 – Convolution ‘z’:
 - Result: -1, 0, -1, 0
1D Convolution

- **1D convolution example:**
 - **Signal ‘x’:**

0	1	1	2	3	5	8	13
 - **Filter ‘w’:**

0	-1	2	-1	0
 - **Convolution ‘z’:**

 | -1 | 0 | -1 | -1 |
1D Convolution Examples

• Examples:
 – “Identity”

\[
\mathbf{w} = [0 \ 1 \ 0] \quad \mathbf{z} = [0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13]
\]

Let \(x = [0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13] \)

– “Translation”

\[
\mathbf{w} = [0 \ 0 \ 1] \quad \mathbf{z} = [1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13 \ ?]
\]

\(x_0 + 1 \cdot x_1 + 0 \cdot x_2 \)

\(0 \cdot x_0 + 1 \cdot x_1 + 0 \cdot x_2 \)
1D Convolution Examples

- “Identity”
 \[w = [0, 1, 0] \]

- “Local Average”
 \[w = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}] \]

Let \(x = [0, 1, 1, 2, 3, 5, 8, 13] \)

\[z = [?, \frac{2}{3}, \frac{1}{3}, 2, 3\frac{1}{3}, 5\frac{1}{3}, 8\frac{2}{3}, ?] \]
Boundary Issue

• What can we do about the “?” at the edges?

If \(x = [0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13] \) and \(w = [\frac{1}{3} \ \frac{1}{3} \ \frac{1}{3}] \) then \(z = [? \ 2\frac{2}{3} \ 1\frac{1}{3} \ 2 \ 3\frac{1}{3} \ 5\frac{1}{3} \ 8\frac{2}{3} \ 0?] \)

• Can assign values past the boundaries:
 • “Zero”: \(x = 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \)
 • “Replicate”: \(x = 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \)
 • “Mirror”: \(x = 2 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \)

• Or just ignore the “?” values and return a shorter vector:

\[z = [2\frac{2}{3} \ 1\frac{1}{3} \ 2 \ 3\frac{1}{3} \ 5\frac{1}{3} \ 8\frac{2}{3}] \]
Formal Convolution Definition

• We’ve defined the convolution as:

\[Z_i = \sum_{j=-m}^{m} w_j x_{i+j} \]

• In other classes you may see it defined as:

\[Z_i = \sum_{j=-m}^{m} w_j x_{i-j} \quad (\text{reverses } 'w') \]
\[Z_i = \int_{-\infty}^{\infty} w_j x_{i-j} \, dj \]

(assumes signal + filter are continuous)

• For simplicity we use “+” instead of “-”,
and assume ‘w’ and ‘x’ are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.
1D Convolution Examples

• **Translation** convolution shift signal:

 – “What is my neighbour’s value?”

\[w = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \]
1D Convolution Examples

- Averaging convolution ("is signal generally high in this region?"
 - Less sensitive to noise (or spikes) than raw signal.

\[w = \left[\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9} \right] \]
1D Convolution Examples

- **Gaussian convolution** (“blurring”): \(w_i \propto e^{-\frac{i^2}{2\sigma^2}} \)

 - Compared to averaging it’s more smooth and maintains peaks better.

 \[
 W = \begin{bmatrix}
 0.0001 & 0.0041 & 0.0540 & 0.1420 & 0.3989 & 0.2420 & 0.0540 & 0.0041 & 0.0001 \\
 \end{bmatrix}
 \]

 \(\sigma = 1, \ m = 4 \)
1D Convolution Examples

- **Sharpen** convolution enhances peaks.
 - An “average” that places **negative weights** on the surrounding pixels.

\[w = [-1, \ 3, \ -1] \]
1D Convolution Examples

- **Centered difference** convolution approximates first derivative:
 - Positive means change from low to high (negative means high to low).

\[w = [-1, 0, 1] \]
Digression: Derivatives and Integrals

• **Numerical derivative approximations** can be viewed as filters:
 – Centered difference: [-1, 0, 1] (derivativeCheck in findMin).

• **Numerical integration approximations** can be viewed as filters:
 – “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).

• **Derivative filters add to 0, integration filters add to 1,**
 – For constant function, derivative should be 0 and average = constant.
1D Convolution Examples

- **Laplacian** convolution approximates second derivative:
 - “Sum to zero” filters “respond” if input vector looks like the filter

\[w = [-1, 2, -1] \]
Laplacian of Gaussian Filter

- Laplacian of Gaussian is a smoothed 2nd-derivative approximation:

\[w_i = \left(1 - \frac{i^2}{2\sigma^2}\right) e^{\frac{-i^2}{2\sigma^2}} \]

(then subtract mean)

\[w = [-0.1416 \ -0.1781 \ -0.2746 \ 0.1640 \ 0.9607 \ 0.1640 \ -0.2746 \ -0.1781 \ -0.1416] \]

($\sigma^2 = 1$, $m = 4$)
Images and Higher-Order Convolution

• 2D convolution:
 – Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image.
 – Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.

• The 2D convolution is given by:

\[
z[i_1, i_2] = \sum_{j_1=-m}^{m} \sum_{j_2=-m}^{m} w[j_1, j_2] \times x[i_1+j_1, i_2+j_2]
\]

• 3D and higher-order convolutions are defined similarly.

\[
z[i_1, i_2, i_3] = \sum_{j_1=-m}^{m} \sum_{j_2=-m}^{m} \sum_{j_3=-m}^{m} w[j_1, j_2, j_3] \times x[i_1+j_1, i_2+j_2, i_3+j_3]
\]

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
Image Convolution Examples

Identity convolution:
(zeros with a '1' at w_{0,0})

Compute \(z[i,j] \) for this location

\[\ast \]

multiply element-wise and add up result to get \(z[i,j] \)
Image Convolution Examples

Identity convolution:
(zeros with a '1' at w_{0,0})

\[w \star \text{Compute } z[l_{i,j}] \text{ for this location} \]

\[z[l_{i,j}] \text{ multiply element-wise and add up result to get } \]

\[z[l_{i,j}] \]
Image Convolution Examples

Translation Convolution:

\[\text{Boundary: "zero"} \]
Image Convolution Examples

Translation Convolution:

Boundary: "replicate"
Image Convolution Examples

Translation Convolution:

Boundary: "mirror"

Flips
Image Convolution Examples

Translation Convolution:

\[
\begin{array}{c}
\ast \\
\end{array}
= \\
\text{Boundary: "ignore"}
\]
Summary

• **Text features** (beyond bag of words): trigrams, lexical, stem, shape.
 – Try to capture important invariances in text data.

• **Global vs. local features** allow “personalized” predictions.

• **Convolutions** are flexible class of signal/image transformations.
 – Can approximate directional derivatives and integrals at different scales.
 – **Max(convolutions)** can yield features invariant to some transformations.

• Next time:
 – A trick that lets you find gold and use the polynomial basis with d > 1.
Cyclic Features

- **Cyclic features** arise in many settings, especially with times:

<table>
<thead>
<tr>
<th>Time</th>
<th>Day</th>
<th>Date</th>
<th>Month</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:05pm</td>
<td>Wed</td>
<td>29</td>
<td>Jul</td>
<td>15</td>
</tr>
<tr>
<td>10:20am</td>
<td>Sun</td>
<td>24</td>
<td>Apr</td>
<td>16</td>
</tr>
<tr>
<td>9:10am</td>
<td>Tue</td>
<td>3</td>
<td>May</td>
<td>16</td>
</tr>
<tr>
<td>11:20am</td>
<td>Sun</td>
<td>15</td>
<td>Jun</td>
<td>18</td>
</tr>
<tr>
<td>10:15pm</td>
<td>Thu</td>
<td>8</td>
<td>Aug</td>
<td>19</td>
</tr>
</tbody>
</table>

 - Reflects ordering of months
 - But this says that “Jan” and “Dec” are far.
 - We might want to incorporate the “cycle” that “1” comes after “12”.
Cyclic Features

• One way to model cyclic features is as coordinates on unit circle.
 – Dividing circumference evenly across the cyclic values.

• Replace “Day” with the x-coordinate and y-coordinate (2 features).
 – Reflects that “Mon” is same distance from “Tue” as it is from “Sun”.

https://www.abcteach.com/documents/clip-art-circle07-77-bw-i-abcteachcom-17022
Linear Models with Binary Features

\[\chi = \begin{array}{c|c}
\text{Feature 1} & \text{Feature 2} \\
0.5 & X \\
3 & O \\
5 & O \\
2.5 & \Delta \\
1.5 & X \\
3 & \Delta \\
\ldots & \ldots \\
\end{array} \]
Linear Models with Binary Features

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>2.5</td>
<td>Δ</td>
</tr>
<tr>
<td>1.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Δ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[X = \left(\begin{array}{c}
0.5 \\
3 \\
5 \\
2.5 \\
1.5 \\
3 \\
\
\end{array} \right) \]

Model 1: only bias

\[y_i = w_0 \]
Linear Models with Binary Features

$$X = \begin{bmatrix}
0.5 & X \\
3 & O \\
5 & O \\
2.5 & \triangle \\
1.5 & X \\
3 & \triangle \\
\ldots & \ldots
\end{bmatrix}$$

Model 1: only bias
$$y_i = w_0$$

Model 2: bias + feature
$$y_i = w_0 + w_1 x_{i1}$$
Linear Models with Binary Features

\[X = \begin{bmatrix} \text{Feature 1} & \text{Feature 2} \\ 0.5 & X \\ 3 & O \\ 5 & O \\ 2.5 & \Delta \\ 1.5 & X \\ 3 & \Delta \\ \ldots & \ldots \end{bmatrix} \]

- Model 1: only bias
 \[y_i = w_0 \]

- Model 2: bias + feature
 \[y_i = w_0 + w_1 x_{i1} \]

- Model 3: "local" bias + feature
 \[y_i = w_e + w_1 x_{i1} \] with shape \[w_e \]
Linear Models with Binary Features

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>2.5</td>
<td>Δ</td>
</tr>
<tr>
<td>1.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Δ</td>
</tr>
</tbody>
</table>

\[x = \begin{bmatrix} w_0 + w_1 x_{i1} \\ w_e + w_{e1} x_{i1} \end{bmatrix} \]

Model 1: only bias
\[y_i = w_0 \]

Model 2: bias + feature
\[y_i = w_0 + w_1 x_{i1} \]

Model 3: "local" bias + feature
\[y_i = w_e + w_{e1} x_{i1} \]

Model 4: "local" bias and "local" slope
\[y_i = w_e + w_{e1} x_{i1} \]
Linear Models with Binary Features

Feature 1
<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>2.5</td>
<td>Δ</td>
</tr>
<tr>
<td>1.5</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Δ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[x = \begin{bmatrix} 0.5 & 3 & 5 & 2.5 & 1.5 & 3 \end{bmatrix} \]

- **Model 1:** only bias
 \[y_i = w_0 \]

- **Model 2:** bias + feature
 \[y_i = w_0 + w_1 x_{i1} \]

- **Model 3:** “local” bias + feature 1
 \[y_i = w_0 + w_1 x_{i1} + w_2 + w_3 x_{i2} \]

- **Model 4:** “local” bias and “local” slope
 \[y_i = w_0 + w_1 x_{i1} + w_2 + w_3 x_{i2} \]

Could also share information across categories with global bias slope:
\[y_i = w_0 + w_1 x_{i1} + w_2 + w_3 x_{i2} \]
Global and Local Features for Domain Adaptation

• Suppose you want to solve a classification task, where you have very little labeled data from your domain.
• But you have access to a huge dataset with the same labels, from a different domain.
• Example:
 – You want to label POS tags in medical articles, and pay a few $$$ to label some.
 – You have access the thousands of examples of Wall Street Journal POS labels.
• Domain adaptation: using data from different domain to help.
Global and Local Features for Domain Adaptation

• “Frustratingly easy domain adaptation”:
 – Use “global” features across the domains, and “local” features for each domain.
 – “Global” features let you learn patterns that occur across domains.
 • Leads to sensible predictions for new domains without any data.
 – “Local” features let you learn patterns specific to each domain.
 • Improves accuracy on particular domains where you have more data.
 – For linear classifiers this would look like:

\[\hat{y}_i = \text{sign}(w_g^T x_{ig} + w_d^T x_{id}) \]

- Features/weights specific to domain
- Features used across domains
FFT implementation of convolution

• Convolutions can be implemented using fast Fourier transform:
 – Take FFT of image and filter, multiply elementwise, and take inverse FFT.

• It has faster asymptotic running time but there are some catches:
 – You need to be using periodic boundary conditions for the convolution.
 – Constants matter: it may not be faster in practice.
 • Especially compared to using GPUs to do the convolution in hardware.
 – The gains are largest for larger filters (compared to the image size).