CPSC 340:
Machine Learning and Data Mining



Last Time: Feature Engineering

 We discussed feature engineering:
— Designing a set of features to achieve good performance on a problem.

 We discussed various issues:
— Feature aggregation/discretization to address coupon counting.
— Feature scaling to address features of different scales.
— Non-linear transforms to make relationships more linear.

* We started discussing feature engineering on text data:

— Bag of words:

* Loses a LOT of information.

e But let’s us learn fast if word order isn’t that relevant.
— Trigrams (“sets of 3 adjacent words”):

* Captures local context of a word.
* But requires collecting a lot of coupons: 3(number of words),



Text Example 3: Part of Speech (POS) Tagging

* Consider problem of finding the verb in a sentence:
— “The 340 students jumped at the chance to hear about POS features.”

e Part of speech (POS) tagging is the problem of labeling all words.
— >40 common syntactic POS tags.
— Current systems have ~“97% accuracy on standard (“clean”) test sets.

IH

— You can achieve this by applying a “word-level” classifier to each word.

* That independently classifies each word with one of the 40 tags.

 What features of a word should we use for POS tagging?



POS Features

Regularized multi-class logistic regression with these features gives ~97% accuracy:

— Categorical features whose domain is all words (“lexical” features):
* The word (e.g., “jumped” is usually a verb).
* The previous word (e.g., “he” hit vs. “a@” hit).
* The previous previous word.
* The next word.
* The next next word.
— Categorical features whose domain is combinations of letters (“stem” features):
* Prefix of length 1 (“what letter does the word start with?”)
* Prefix of length 2.
* Prefix of length 3.
* Prefix of length 4 (“does it start with JUMP?”)
* Suffix of length 1.
* Suffix of length 2.
» Suffix of length 3 (“does it end in ING?”)
» Suffix of length 4.
— Binary features (“shape” features):
* Does word contain a number?
* Does word contain a capital?
* Does word contain a hyphen?

Total number of features: ~2 million (same accuracy with ~10 thousand using L1-regularization).



Ordinal Features

* Categorical features with an ordering are called ordinal features.

Bad

Very Good
Good
Good
Very Bad
Good

Medium
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* If using decision trees, makes sense to replace with numbers.
— Captures ordering between the ratings.
— A rule like (rating 2 3) means (rating > Good), which make sense.



Ordinal Features

* With linear models, “convert to number” assumes ratings are equally spaced.
— “Bad” and “Medium” distance is similar to “Good” and “Very Good” distance.

* One alternative that preserves ordering with binary features:
Bad 1 0 0

Very Good
Good
Good
Very Bad
Good
Medium 1

* Regression weight w_ . represents:
— “How much medium changes prediction over bad”.

* Bonus slides discuss “cyclic” features like “time of day”.
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Next Topic: Personalized Features



Motivation: “Personalized” Important E-mails

| » Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists  Intro to Computer Science 10:20 am
Inbox (3) »
» Issam Laradiji Inbox Convergence rates forcu = 9:49 am
Starred
<!mpu§nt > *» sameh, Mark, sameh (3) Inbox  Graduation ProjectDema = 8:01 am
Sent Mal » Mark .. sara, Sara (11) Label propagation & (37 am

Mirafks (414

* Features: bag of words, trigrams, regular expressions, and so on.

* There might be some “globally” important messages:

— “This is your mother, something terrible happened, give me a call ASAP.”

* But your “important” message may be unimportant to others.

— Similar for spam: “spam” for one user could be “not spam” for another.



“Global” and “Local” Features

e Consider the following weird feature transformation:

m “340” (any user) “340” (user?)

1 1 User 1
1 ‘—-—-—> 1 User 1
1 - 1 User 2
0 0 <no “340”>
1 1 User 3

* First feature: did “340” appear in this e-mail?
e Second feature: if “340” appeared in this e-mail, who was it addressed to?

* First feature will increase/decrease importance of “340” for every user (including new users).

* Second (categorical feature) increases/decreases importance of “340” for a specific user.
— Lets us learn more about specific users where we have a lot of data



“Global” and “Local” Features

* Recall we usually represent categorical features using “1 of k” binaries:

m “340” (any user) “340” (user = 1) “340” (user = 2)
1 1 0
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* First feature “moves the line up” for all users.
* Second feature “moves the line up” when the e-mail is to user 1.
* Third feature “moves the line up” when the e-mail is to user 2.



The Big Global/Local Feature Table for E-mails

 Each row is one e-mail (there are lots of rows):
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Predicting Importance of E-mail For New User

* Consider a new user:
— We start out with no information about them.
— So we use global features to predict what is important to a generic user.

j= sign (
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\d/ Q(roSs WSErs.
— Weights on local/user features are initializedTo zero.

* With more data, update global features and user’s local features:
— Local features make prediction personalized.
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— What is important to this user? — o user

* G-mail system: classification with logistic regression.
— Trained with a variant of stochastic gradient descent (later).



Next Topic: Convolutions



Motivation: Automatic Brain Tumor Segmentation

e Task: labeling tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

e Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— Grumbly scientist to me in 2003: “you are never going to solve this problem.”



Naive Voxel-Level Classifier

* We could treat classifying a voxel as supervised learning:
— Standard representation of image: each pixel gets “intensity” between 0 and 255.

Xi= (7% 7 '?7) 2'*67 )/,-:' Fumour

* We can formulate predicting y, given x. as supervised learning.
 But it does not work at all with these features.



Need to Summarize Local Context

* The individual pixel intensity values are almost meaningless:

— The same x; could lead to different vy..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
e “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

* We need to represent the “context” of the pixel (what is around it).

— Include all the values of neighbouring pixels as extra features?

* Run into coupon collection problems: requires lots of data to find patterns.

— Measure neighbourhood summary statistics (mean, variance, histogram)?

* Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.



Example: Measuring “brightness” of an Area

- This pixel is in a “bright” area of the image, which reflects “bleeding” of tumour.
- But the actual numeric intensity value of the pixel is the same as in darker
“gray matter” areas.

- | want a feature saying “this pixel is in a bright area of the image”.
- This will us help identify that it’s a tumour pixel.

- Obvious way to measure brightness in area: take average pixel intensity in “neighbourhood”.
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- Applying this “averaging” to every pixel gives a new image:

- We can use “pixel value in new image” as a new feature.
- New feature helps identify if pixel is in a “bright” area.




The annoying thing about squares

 “Take the average of a square window” loses spatial information.
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Fixing the “square” issues

* Consider instead “blurring” the image.

— Gets rid of “local” noise, but better preserves spatial information.
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 How do you “blur”?

— Take weighted average of window, putting more “weight” on “close” pixels:
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Fixing the “square” issues

* Another neat thing we can do: use negative weights.
— These features can describe “differences” across space.
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* These “weighted averages of neighbours” are called “convolutions”.
— | think of convolutions as the “words” that make up image regions.



Convolutions: Big Picture

* How do you use convolutions to get features?
— Apply several different convolutions to your image.
— Each convolution gives a different “image” value at each location.
— Use theses different image values to give features at each location.
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Convolutions: Big Picture

* What can features coming from convolutions represent?
— Some filters give you an average value of the neighbourhood.

— Some filters approximate the “first derivative” in the neighbourhood.
* “Is there a change from low to dark to bright?”
* “If so, from which direction in space?”

— Some filters approximate the “second derivative” in the neighbourhood.
* “Is there a spike or is the change speeding up?”

* Hope: we can characterize “what happens in a neighbourhood”,
with just a few numbers.



1D Convolution Example

|||||||||

* Consider a 1D “signal” (maybe from sound):
— We will come back to images later.

e For each “time”:

L
777777777777777

— Compute dot-product of signal at surrounding times with a “filter” of weights.

w= L0116 01781 =74 QICHD 0467 01440 -0274, -0 -

* This gives a new “signal”: N 1|
01t anE \
— Measures a property of “neighbourhood”. | [‘ X
sres  rper of re e
— This particular filter shows a local . VT | I
“how spiky ” value. / -
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1D Convolution (notation is specific to this lecture)

e 1D convolution input:

— Signal X" which is a vector length ‘n’". x=[01 | 2 3 § ¢ [3]
* Indexed by i=1,2,...,,n.
— Filter ‘w’ which is a vector of length 2m+1’: -
| g w -~ [ O -~ 2 '_, O]
* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m w. Ww W, w w
-2 -( (o)

* Qutputis a vector of length ‘n” with elements:

<= Jém% Tiv,

— You can think of this as centering w at position 7,
and taking a dot product of ‘w’ with that “part” x..



1D Convolution

1D convolution example:

— Signal x’:
0 1 1 2 3 13
— Filter ‘w’:
o | 1 | 2 | 1 | 0

— Convolution Z’:




1D Convolution

e 1D convolution example:

— Signal x’: _— e
' 1 1 2 3 8 13
e Sl i D)

— Filter ‘w’:
1 | 2 | 4 | o )
(}/ Jakeo l‘di'lro/lwl’/'((/‘O 1 l{- /) 1 /2

— Convolution ‘z"; Y2(¢1)+ 5'0)




1D Convolution

1D convolution example:

— Signal x’:
0 1 1 2 3
— Filter ‘w’: l
o | 1 | 2 | 1 | 0
— Convolution Z’: l

-1 0




1D Convolution

1D convolution example:

— Signal x’:
0 1 1 2 3
— Filter ‘w’: l
o | 1 | 2 | 1 | 0
— Convolution Z’: l

-1 0 -1




1D Convolution

1D convolution example:

— Signal x’:
0 1 1 2 3 5 13
— Filter ‘w’: i
o | 1 | 2 | 1 | 0

— Convolution Z’:




1D Convolution Examples

* Examples: let x=LO I 1 2 3 & 1 I%J
— “Identity”
Coyw=C0 1 0) 2=LO | | 2 % G % I3

O'X0+|')(,+0'JQ O‘X""'-[)‘*(}‘x;

— “Translation” 2 ?]
_ L] )V 2 3 6 % .

0-xo+ 0%+ ),



1D Convolution Examples

 Examples:
— “Identity”

o \=C0 | 0)

— “Local Average”
("% % %)

et x=LO 1 1 2 3 5 8 13]
__— -
‘k‘vm,e avormyC



Boundary Issue

 What can we do about the “?” at the edges?
T x=C0 1|23 6 313) and wil% % %) then 227 % 1% 2 3% S i 7;\
* Can assign values past the boundaries:

e “Zero”: x:OO O :O \ ’ 2 3 7; 8 '3_1 O D 0
« “Replicate”; x=0 9 O :O | 2 3 G 3 '3-: 31313
 “Mirror”: R= 7\ | I (:O \ ’ 2 3 g 3 '3_2 g g 3

* Orjustignore the “?” values and return a shorter vector:

=[% 1y 2 34 6% %)



Formal Convolution Definition

We’ve defined the convolution as:
m

Z/' - \)ém“{) Xi+J'
In other classes you may see it defined as: 0D
m
2= 2, “ = g W, d

J ~N
(r&v-lr&:) W ) ( Ass5 WMLS slfjml 1{2//‘o(~ are (M]’/MIJM>

For simplicity we use “+” instead of “-”,
and assume ‘w’ and ‘x” are sampled at discrete points (not functions).

But keep this mind if you read about convolutions elsewhere.



1D Convolution Examples

* Translation convolution shift signal:

— “What is my neighbour’s value?”

W:[[OOOOO

0 00

37 37




1D Convolution Examples

* Averaging convolution (“is signal generally high in this region?”

— Less sensitive to noise (or spikes) than raw signal.
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1D Convolution Examples

-2
L
* Gaussian convolution (“blurring”): Ww;Xexp 201)

— Compared to averaging it’s more smooth and maintains peaks better.

W= [ 0.0000 0.0644 00540 01420 (3659 024920 00840 0 ot 0.000/]
(o - l) m> Y
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1D Convolution Examples

* Sharpen convolution enhances peaks.
— An “average” that places negative weights on the surrounding pixels.

wel-l 3 1]

-3.7

-3.7




1D Convolution Examples

* Centered difference convolution approximates first derivative:
— Positive means change from low to high (negative means high to low).

w=l-I 0 1]

-3.7

04

03

02

01+ - Illll'll ||"-‘_|' II'\I‘:I |I | |||

-01

02

-0.3




Digression: Derivatives and Integrals

 Numerical derivative approximations can be viewed as filters:

— Centered difference: [-1, O, 1] (derivativeCheck in findMin). /

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter). A
/

as
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02 AN
\
1o 075 050 025 000 025 k0 Q75 100

e Derivative filters add to O, integration filters add to 1,
— For constant function, derivative should be 0 and average = constant.



1D Convolution Examples

e Laplacian convolution approximates second derivative:
— “Sum to zero” filters “respond” if input vector looks like the filter

w=l-1 2 1]

-3.7 0.6

041

0.2

021

041

-0.6



Laplacian of Gaussian Filter

 Laplacian of Gaussian is a smoothed 2"9-derivative approximation:

W, = “”;ﬁg C’/"(""QZL) W= L0916 “QI781 =744 QILHD 0%467 0140 0274 -0 -Omi)
(“PV\ sublract W‘PM\) (9 =1 = 4)

-3.7 0.25
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0.05

—————————————

-0.056

01

015

02

-0.25



Images and Higher-Order Convolution

e 2D convolution:
— Signal X’ is the pixel intensities in an ‘n’ by ‘n’ image.

— Filter ‘w’ is the pixel intensities in a 2m+1’ by 2m+1’ imagi

* The 2D convolution is given by:

2!:!,)113 - 2 2 W[.),,Jj])([,—l-l-“)/z ‘fJ,z':]

JZ M Jzz‘m

* 3D and higher-order convolutions are defined similarly.

[ z)gj Z Z_ Z WC)')JZ;)Z‘JX[' w2023 J;]
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Summary

Text features (beyond bag of words): trigrams, lexical, stem, shape.

— Try to capture important invariances in text data.
Global vs. local features allow “personalized” predictions.
Convolutions are flexible class of signal/image transformations.

— Can approximate directional derivatives and integrals at different scales.
— Max(convolutions) can yield features invariant to some transformations.

Next time:
— A trick that lets you find gold and use the polynomial basis with d > 1.



Cyclic Features

Cyclic features arise in many settings, especially with times:

EE N N T T

12:05pm

10:20am  Sun 24 Apr 16
9:10am Tue 3 May 16
11:20am  Sun 15 Jun 18
10:15pm  Thu 8 Aug 19

Could use ordinal: “Jan”->1, “Feb”->2, “Mar”->3, and so on.

— Reflects ordering of months

— But this says that “Jan” and “Dec” are far.

— We might want to incorporate the “cycle” that “1” comes after “12”.



Cyclic Features

* One way to model cyclic features is as coordinates on unit circle.

— Dividing circumference evenly across the cyclic values.
)
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* Replace “Day” with the x-coordinate and y-coordinate (2 features).
— Reflects that “Mon” is same distance from “Tue” as it is from “Sun”.



Linear Models with Binary Features
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Linear Models with Binary Features
Feature 1 | Feature2
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Feature 1 | Feature2
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Linear Models with Binary Features
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Linear Models with Binary features
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Linear Models with Binarvw/features
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Linear Models with Binary reature>
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Global and Local Features for Domain Adaptation

Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

But you have access to a huge dataset with the same labels,
from a different domain.
Example:

— You want to label POS tags in medical articles, and pay a few SSS to label
some.

— You have access the thousands of examples of Wall Street Journal POS
labels.

Domain adaptation: using data from different domain to help.



Global and Local Features for Domain Adaptation

* “Frustratingly easy domain adaptation”:

III

— Use “global” features across the domains, and “local” features for each

domain.
o ”n .
— “Global” features let you learn patterns that occur across domains.
* Leads to sensible predictions for new domains without any data.

I”

— “Local” features let you learn patterns specific to each domain.

* Improves accuracy on particular domains where you have more data.
— For linear classifiers this would look like:
A\ o T
= S | |
\/| ()V\( \/Vj X|9 + WJ XIJ> ‘Feq lwv(’j/.,vaq[/.fs S' Cc'{\l’(,

10 clomq'n
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FFT implementation of convolution

* Convolutions can be implemented using fast Fourier transform:
— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* |t has faster asymptotic running time but there are some catches:
— You need to be using periodic boundary conditions for the convolution.
— Constants matter: it may not be faster in practice.

e Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



