
CPSC 340:
Machine Learning and Data Mining

Convolutions

Fall 2022



Last Time: Feature Engineering

• We discussed feature engineering:
– Designing a set of features to achieve good performance on a problem.

• We discussed various issues:
– Feature aggregation/discretization to address coupon counting.

– Feature scaling to address features of different scales.

– Non-linear transforms to make relationships more linear.

• We started discussing feature engineering on text data:
– Bag of words:

• Loses a LOT of information.

• But let’s us learn fast if word order isn’t that relevant.

– Trigrams (“sets of 3 adjacent words”):
• Captures local context of a word.

• But requires collecting a lot of coupons: 3(number of words).



Text Example 3: Part of Speech (POS) Tagging

• Consider problem of finding the verb in a sentence:

– “The 340 students jumped at the chance to hear about POS features.”

• Part of speech (POS) tagging is the problem of labeling all words.

– >40 common syntactic POS tags.

– Current systems have ~97% accuracy on standard (“clean”) test sets.

– You can achieve this by applying a “word-level” classifier to each word.

• That independently classifies each word with one of the 40 tags.

• What features of a word should we use for POS tagging?



POS Features
• Regularized multi-class logistic regression with these features gives ~97% accuracy:

– Categorical features whose domain is all words (“lexical” features):
• The word (e.g., “jumped” is usually a verb).
• The previous word (e.g., “he” hit vs. “a” hit).
• The previous previous word.
• The next word.
• The next next word.

– Categorical features whose domain is combinations of letters (“stem” features):
• Prefix of length 1 (“what letter does the word start with?”)
• Prefix of length 2.
• Prefix of length 3.
• Prefix of length 4 (“does it start with JUMP?”)
• Suffix of length 1.
• Suffix of length 2.
• Suffix of length 3 (“does it end in ING?”)
• Suffix of length 4.

– Binary features (“shape” features):
• Does word contain a number?
• Does word contain a capital?
• Does word contain a hyphen?

• Total number of features: ~2 million (same accuracy with ~10 thousand using L1-regularization).



Ordinal Features

• Categorical features with an ordering are called ordinal features.

• If using decision trees, makes sense to replace with numbers.
– Captures ordering between the ratings.

– A rule like (rating ≥ 3) means (rating ≥ Good), which make sense.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

Rating

2

5

4

4

1

4

3



Ordinal Features

• With linear models, “convert to number” assumes ratings are equally spaced.
– “Bad” and “Medium” distance is similar to “Good” and “Very Good” distance.

• One alternative that preserves ordering with binary features:

• Regression weight wmedium represents: 
– “How much medium changes prediction over bad”.

• Bonus slides discuss “cyclic” features like “time of day”.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

≥ Bad ≥ Medium ≥ Good Very Good

1 0 0 0

1 1 1 1

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

1 1 0 0



Next Topic: Personalized Features



Motivation: “Personalized” Important E-mails

• Features: bag of words, trigrams, regular expressions, and so on.

• There might be some “globally” important messages:

– “This is your mother, something terrible happened, give me a call ASAP.”

• But your “important” message may be unimportant to others.

– Similar for spam: “spam” for one user could be “not spam” for another.



“Global” and “Local” Features
• Consider the following weird feature transformation:

• First feature: did “340” appear in this e-mail?
• Second feature: if “340” appeared in this e-mail, who was it addressed to?

• First feature will increase/decrease importance of “340” for every user (including new users).
• Second (categorical feature) increases/decreases importance of “340” for a specific user.

– Lets us learn more about specific users where we have a lot of data

“340” (any user) “340” (user?)

1 User 1

1 User 1

1 User 2

0 <no “340”>

1 User 3

“340”

1

1

1

0

1



“Global” and “Local” Features

• Recall we usually represent categorical features using “1 of k” binaries:

• First feature “moves the line up” for all users.

• Second feature “moves the line up” when the e-mail is to user 1.

• Third feature “moves the line up” when the e-mail is to user 2.

“340” (any user) “340” (user = 1) “340” (user = 2)

1 1 0

1 1 0

1 0 1

0 0 0

1 0 0

“340”

1

1

1

0

1



The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):



Predicting Importance of E-mail For New User

• Consider a new user:
– We start out with no information about them.
– So we use global features to predict what is important to a generic user.

– Weights on local/user features are initialized to zero.

• With more data, update global features and user’s local features:
– Local features make prediction personalized.

– What is important to this user?

• G-mail system: classification with logistic regression.
– Trained with a variant of stochastic gradient descent (later).



Next Topic: Convolutions



Motivation: Automatic Brain Tumor Segmentation

• Task: labeling tumors and normal tissue in multi-modal MRI data.

• Applications:
– Radiation therapy target planning, quantifying treatment responses.
– Mining growth patterns, image-guided surgery.

• Challenges:
– Variety of tumor appearances, similarity to normal tissue.
– Grumbly scientist to me in 2003: “you are never going to solve this problem.”

Input: Output:



Naïve Voxel-Level Classifier

• We could treat classifying a voxel as supervised learning:
– Standard representation of image: each pixel gets “intensity” between 0 and 255.

• We can formulate predicting yi given xi as supervised learning.

• But it does not work at all with these features.



Need to Summarize Local Context

• The individual pixel intensity values are almost meaningless:

– The same xi could lead to different yi.

• Intensities not standardized.

• Non-trivial overlap in signal for different tissue types.

• “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

• We need to represent the “context” of the pixel (what is around it).

– Include all the values of neighbouring pixels as extra features?

• Run into coupon collection problems: requires lots of data to find patterns.

– Measure neighbourhood summary statistics (mean, variance, histogram)?

• Variation on bag of words problem: loses spatial information present in voxels.

– Standard approach uses convolutions to represent neighbourhood.



Example: Measuring “brightness” of an Area
- This pixel is in a “bright” area of the image, which reflects “bleeding” of tumour.
- But the actual numeric intensity value of the pixel is the same as in darker
“gray matter” areas.

- I want a feature saying “this pixel is in a bright area of the image”.
- This will us help identify that it’s a tumour pixel.

- Obvious way to measure brightness in area: take average pixel intensity in “neighbourhood”.

- Applying this “averaging” to every pixel gives a new image:

- We can use “pixel value in new image” as a new feature.
- New feature helps identify if pixel is in a “bright” area.



The annoying thing about squares

• “Take the average of a square window” loses spatial information.

• Example:



Fixing the “square” issues

• Consider instead “blurring” the image.

– Gets rid of “local” noise, but better preserves spatial information.

• How do you “blur”?

– Take weighted average of window, putting more “weight” on “close” pixels:



Fixing the “square” issues

• Another neat thing we can do: use negative weights.
– These features can describe “differences” across space.

• These “weighted averages of neighbours” are called “convolutions”.
– I think of convolutions as the “words” that make up image regions.



Convolutions: Big Picture

• How do you use convolutions to get features?

– Apply several different convolutions to your image.

– Each convolution gives a different “image” value at each location.

– Use theses different image values to give features at each location.



Convolutions: Big Picture

• What can features coming from convolutions represent?
– Some filters give you an average value of the neighbourhood.

– Some filters approximate the “first derivative” in the neighbourhood.
• “Is there a change from low to dark to bright?”

• “If so, from which direction in space?”

– Some filters approximate the “second derivative” in the neighbourhood.
• “Is there a spike or is the change speeding up?”

• Hope: we can characterize “what happens in a neighbourhood”,
with just a few numbers.



1D Convolution Example

• Consider a 1D “signal” (maybe from sound):

– We will come back to images later.

• For each “time”:

– Compute dot-product of signal at surrounding times with a “filter” of weights.

• This gives a new “signal”:

– Measures a property of “neighbourhood”.

– This particular filter shows a local 
“how spiky ” value.



1D Convolution (notation is specific to this lecture)

• 1D convolution input:

– Signal ‘x’ which is a vector length ‘n’.

• Indexed by i=1,2,…,n.

– Filter ‘w’ which is a vector of length ‘2m+1’:

• Indexed by i=-m,-m+1,…-2,0,1,2,…,m-1,m

• Output is a vector of length ‘n’ with elements:

– You can think of this as centering w at position ‘i’,
and taking a dot product of ‘w’ with that “part” xi. 



1D Convolution

• 1D convolution example:

– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0



1D Convolution

• 1D convolution example:

– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0

-1



1D Convolution

• 1D convolution example:

– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0

-1 0



1D Convolution

• 1D convolution example:

– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0

-1 0 -1



1D Convolution

• 1D convolution example:

– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0

-1 0 -1 -1



1D Convolution Examples

• Examples: 

– “Identity”

– “Translation”



1D Convolution Examples

• Examples: 

– “Identity”

– “Local Average”



Boundary Issue

• What can we do about the “?” at the edges?

• Can assign values past the boundaries:
• “Zero”:

• “Replicate”:

• “Mirror”:

• Or just ignore the “?” values and return a shorter vector:



Formal Convolution Definition

• We’ve defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we use “+” instead of “-”,
and assume ‘w’ and ‘x’ are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.



1D Convolution Examples

• Translation convolution shift signal:

– “What is my neighbour’s value?”



1D Convolution Examples

• Averaging convolution (“is signal generally high in this region?”

– Less sensitive to noise (or spikes) than raw signal.



1D Convolution Examples

• Gaussian convolution (“blurring”):

– Compared to averaging it’s more smooth and maintains peaks better.



1D Convolution Examples

• Sharpen convolution enhances peaks.

– An “average” that places negative weights on the surrounding pixels.



1D Convolution Examples

• Centered difference convolution approximates first derivative:

– Positive means change from low to high (negative means high to low).



Digression: Derivatives and Integrals

• Numerical derivative approximations can be viewed as filters:

– Centered difference: [-1, 0, 1] (derivativeCheck in findMin).

• Numerical integration approximations can be viewed as filters:

– “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).

• Derivative filters add to 0, integration filters add to 1, 

– For constant function, derivative should be 0 and average = constant.

42



1D Convolution Examples

• Laplacian convolution approximates second derivative:

– “Sum to zero” filters “respond” if input vector looks like the filter



Laplacian of Gaussian Filter

• Laplacian of Gaussian is a smoothed 2nd-derivative approximation:



Images and Higher-Order Convolution

• 2D convolution:

– Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image.

– Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.

• The 2D convolution is given by:

• 3D and higher-order convolutions are defined similarly.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Summary

• Text features (beyond bag of words): trigrams, lexical, stem, shape.

– Try to capture important invariances in text data.

• Global vs. local features allow “personalized” predictions.

• Convolutions are flexible class of signal/image transformations.

– Can approximate directional derivatives and integrals at different scales.

– Max(convolutions) can yield features invariant to some transformations.

• Next time:

– A trick that lets you find gold and use the polynomial basis with d > 1.



Cyclic Features

• Cyclic features arise in many settings, especially with times:

• Could use ordinal: “Jan”->1, “Feb”->2, “Mar”->3, and so on.

– Reflects ordering of months

– But this says that “Jan” and “Dec” are far.

– We might want to incorporate the “cycle” that “1” comes after “12”.

Time Day Date Month Year

12:05pm Wed 29 Jul 15

10:20am Sun 24 Apr 16

9:10am Tue 3 May 16

11:20am Sun 15 Jun 18

10:15pm Thu 8 Aug 19



Cyclic Features

• One way to model cyclic features is as coordinates on unit circle.
– Dividing circumference evenly across the cyclic values.

• Replace “Day” with the x-coordinate and y-coordinate (2 features).
– Reflects that “Mon” is same distance from “Tue” as it is from “Sun”.

https://www.abcteach.com/documents/clip-art-circle07-77-bw-i-abcteachcom-17022



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Linear Models with Binary Features

Feature 1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …



Global and Local Features for Domain Adaptation

• Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

• But you have access to a huge dataset with the same labels,
from a different domain.

• Example:

– You want to label POS tags in medical articles, and pay a few $$$ to label 
some.

– You have access the thousands of examples of Wall Street Journal POS 
labels.

• Domain adaptation: using data from different domain to help.



Global and Local Features for Domain Adaptation

• “Frustratingly easy domain adaptation”:

– Use “global” features across the domains, and “local” features for each 
domain.

– “Global” features let you learn patterns that occur across domains.

• Leads to sensible predictions for new domains without any data.

– “Local” features let you learn patterns specific to each domain.

• Improves accuracy on particular domains where you have more data.

– For linear classifiers this would look like:



FFT implementation of convolution

• Convolutions can be implemented using fast Fourier transform:

– Take FFT of image and filter, multiply elementwise, and take inverse FFT.

• It has faster asymptotic running time but there are some catches:

– You need to be using periodic boundary conditions for the convolution.

– Constants matter: it may not be faster in practice.

• Especially compared to using GPUs to do the convolution in hardware.

– The gains are largest for larger filters (compared to the image size).

65


