CPSC 340: Machine Learning and Data Mining

Convolutions Fall 2022

Last Time: Feature Engineering

- We discussed feature engineering:
 - Designing a set of features to achieve good performance on a problem.
- We discussed various issues:
 - Feature aggregation/discretization to address coupon counting.
 - Feature scaling to address features of different scales.
 - Non-linear transforms to make relationships more linear.
- We started discussing feature engineering on text data:
 - Bag of words:
 - Loses a LOT of information.
 - But let's us learn fast if word order isn't that relevant.
 - Trigrams ("sets of 3 adjacent words"):
 - Captures local context of a word.
 - But requires collecting a lot of coupons: 3^(number of words).

Text Example 3: Part of Speech (POS) Tagging

- Consider problem of finding the verb in a sentence:
 - "The 340 students jumped at the chance to hear about POS features."
- Part of speech (POS) tagging is the problem of labeling all words.
 - >40 common syntactic POS tags.
 - Current systems have ~97% accuracy on standard ("clean") test sets.
 - You can achieve this by applying a "word-level" classifier to each word.
 - That independently classifies each word with one of the 40 tags.
- What features of a word should we use for POS tagging?

POS Features

- Regularized multi-class logistic regression with these features gives ~97% accuracy:
 - Categorical features whose domain is all words ("lexical" features):
 - The word (e.g., "jumped" is usually a verb).
 - The previous word (e.g., "he" hit vs. "a" hit).
 - The previous previous word.
 - The next word.
 - The next next word.
 - Categorical features whose domain is combinations of letters ("stem" features):
 - Prefix of length 1 ("what letter does the word start with?")
 - Prefix of length 2.
 - Prefix of length 3.
 - Prefix of length 4 ("does it start with JUMP?")
 - Suffix of length 1.
 - Suffix of length 2.
 - Suffix of length 3 ("does it end in ING?")
 - Suffix of length 4.
 - Binary features ("shape" features):
 - Does word contain a number?
 - Does word contain a capital?
 - Does word contain a hyphen?
- Total number of features: ~2 million (same accuracy with ~10 thousand using L1-regularization).

Ordinal Features

• Categorical features with an ordering are called ordinal features.

- If using decision trees, makes sense to replace with numbers.
 - Captures ordering between the ratings.
 - A rule like (rating \geq 3) means (rating \geq Good), which make sense.

Ordinal Features

- With linear models, "convert to number" assumes ratings are equally spaced.
 - "Bad" and "Medium" distance is similar to "Good" and "Very Good" distance.
- One alternative that preserves ordering with binary features:

Rating	≥ Bad	≥ Medium	≥ Good	Very Good
Bad	1	0	0	0
Very Good	1	1	1	1
Good	 1	1	1	0
Good	1	1	1	0
Very Bad	0	0	0	0
Good	1	1	1	0
Medium	1	1	0	0

- Regression weight w_{medium} represents:
 - "How much medium changes prediction over bad".
- Bonus slides discuss "cyclic" features like "time of day".

Next Topic: Personalized Features

Motivation: "Personalized" Important E-mails

COMPOSE		Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @ 10:41 am
		Holger, Jim (2)	lists Intro to Computer Science 10:20 am
Inbox (3) Starred		Issam Laradji	Inbox Convergence rates for cu
Important	🗆 ☆ ⋗	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C 8:01 am
Sent Mail	🗆 🕁 »	Mark sara, Sara (11)	Label propagation @ 7:57 am

• Features: bag of words, trigrams, regular expressions, and so on.

- There might be some "globally" important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

"Global" and "Local" Features

• Consider the following weird feature transformation:

"340"		"340" (any user)	"340" (user?)
1		1	User 1
1	\rightarrow	1	User 1
1		1	User 2
0		0	<no "340"=""></no>
1		1	User 3

- First feature: did "340" appear in this e-mail?
- Second feature: if "340" appeared in this e-mail, who was it addressed to?
- First feature will increase/decrease importance of "340" for every user (including new users).
- Second (categorical feature) increases/decreases importance of "340" for a specific user.
 - Lets us learn more about specific users where we have a lot of data

"Global" and "Local" Features

• Recall we usually represent categorical features using "1 of k" binaries:

"340"		"340" (any user)	"340" (user = 1)	"340" (user = 2)
1		1	1	0
1	$ \rightarrow $	1	1	0
1		1	0	1
0		0	0	0
1		1	0	0

- First feature "moves the line up" for all users.
- Second feature "moves the line up" when the e-mail is to user 1.
- Third feature "moves the line up" when the e-mail is to user 2.

The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):

Predicting Importance of E-mail For New User

- Consider a new user:
 - We start out with no information about them.
 - So we use global features to predict what is important to a generic user.

$$\hat{y}_i = \text{Sign}(w_g^T x_{ig})$$
 = features/weights shared
across users.

- Weights on local/user features are initialized to zero.
- With more data, update global features and user's local features:
 - Local features make prediction *personalized*.

- What is important to *this* user?
- G-mail system: classification with logistic regression.
 - Trained with a variant of stochastic gradient descent (later).

Next Topic: Convolutions

Motivation: Automatic Brain Tumor Segmentation

• Task: labeling tumors and normal tissue in multi-modal MRI data.

- Applications:
 - Radiation therapy target planning, quantifying treatment responses.
 - Mining growth patterns, image-guided surgery.
- Challenges:
 - Variety of tumor appearances, similarity to normal tissue.
 - Grumbly scientist to me in 2003: "you are never going to solve this problem."

Naïve Voxel-Level Classifier

- We could treat classifying a voxel as supervised learning:
 - Standard representation of image: each pixel gets "intensity" between 0 and 255.

- We can formulate predicting y_i given x_i as supervised learning.
- But it does not work at all with these features.

Need to Summarize Local Context

- The individual pixel intensity values are almost meaningless:
 - The same x_i could lead to different y_i .

- Intensities not standardized.
- Non-trivial overlap in signal for different tissue types.
- "Partial volume" effects at boundaries of tissue types.

Need to Summarize Local Context

• We need to represent the "context" of the pixel (what is around it).

- Include all the values of neighbouring pixels as extra features?
 - Run into coupon collection problems: requires lots of data to find patterns.
- Measure neighbourhood summary statistics (mean, variance, histogram)?
 - Variation on bag of words problem: loses spatial information present in voxels.
- Standard approach uses convolutions to represent neighbourhood.

Example: Measuring "brightness" of an Area

- This pixel is in a "bright" area of the image, which reflects "bleeding" of tumour.
 But the actual numeric intensity value of the pixel is the same as in darker
 "gray matter" areas.
 - I want a feature saying "this pixel is in a bright area of the image".
 This will us help identify that it's a tumour pixel.

Obvious way to measure brightness in area: take average pixel intensity in "neighbourhood".

Z= 1 S X & S new feature is average Ineil & K & Value in neighbourhood.

- Applying this "averaging" to every pixel gives a new image:
- We can use "pixel value in new image" as a new feature.
 - New feature helps identify if pixel is in a "bright" area.

The annoying thing about squares

• "Take the average of a square window" loses spatial information.

Fixing the "square" issues

- Consider instead "blurring" the image.
 - Gets rid of "local" noise, but better preserves spatial information.

- How do you "blur"?
 - Take weighted average of window, putting more "weight" on "close" pixels:

Fixing the "square" issues

- Another neat thing we can do: use negative weights.
 - These features can describe "differences" across space.

These "weighted averages of neighbours" are called "convolutions".
 I think of convolutions as the "words" that make up image regions.

Convolutions: Big Picture

- How do you use convolutions to get features?
 - Apply several different convolutions to your image.
 - Each convolution gives a different "image" value at each location.
 - Use theses different image values to give features at each location.

Convolutions: Big Picture

- What can features coming from convolutions represent?
 - Some filters give you an average value of the neighbourhood.
 - Some filters approximate the "first derivative" in the neighbourhood.
 - "Is there a change from low to dark to bright?"
 - "If so, from which direction in space?"
 - Some filters approximate the "second derivative" in the neighbourhood.
 - "Is there a spike or is the change speeding up?"
- Hope: we can characterize "what happens in a neighbourhood", with just a few numbers.

1D Convolution Example

- Consider a 1D "signal" (maybe from sound):
 - We will come back to images later.

- For each "time":
 - Compute dot-product of signal at surrounding times with a "filter" of weights.

W= (-01416 -01781 - 02746 01640 08607 01640 -02746 -01781 -0141)

- This gives a new "signal":
 - Measures a property of "neighbourhood".
 - This particular filter shows a local "how spiky" value.

1D Convolution (notation is specific to this lecture)

- 1D convolution input:
 - Signal 'x' which is a vector length 'n'.
 - Indexed by i=1,2,...,n.
 - Filter 'w' which is a vector of length '2m+1':
 - Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m

$$x = [0 | 1 | 2 | 3 | 5 | 8 | 3]$$

$$w = \begin{bmatrix} 0 & -1 & 2 & -1 & 0 \end{bmatrix}$$

 $w_{2} & w_{1} & w_{0} & w_{1} & w_{2}$

• Output is a vector of length 'n' with elements:

$$Z_{j} = \sum_{j=-m}^{m} w_{j} x_{i+j}$$

- You can think of this as centering w at position 'i',

and taking a dot product of 'w' with that "part" x_i .

- 1D convolution example:
 - Signal 'x':

– Filter 'w':

- Convolution 'z':

• 1D convolution example:

- 1D convolution example:
 - Signal 'x':

- 1D convolution example:
 - Signal 'x':

- 1D convolution example:
 - Signal 'x':

1D Convolution Examples

1D Convolution Examples

• Examples: - "Identity" = W = [0 | 0]- "Local Average" = W = [1/3 | 1/3] = U = [2 | 0] = U = [2 | 1/3] = U = [2 | 1/3]=

Boundary Issue

• What can we do about the "?" at the edges?

If x = [0 | | 2 3 5 8 | 3] and $w = [\frac{1}{3}\frac{1}{3}\frac{1}{3}]$ then $z = [\frac{7}{3}\frac{3}{3}\frac{1}{3}\frac{2}{3}\frac{5}{3}\frac{8}{3}\frac{7}{3}]$

- Can assign values past the boundaries:
 - "Zero": x = 000[011235813]000

 - "Mirror": x = 2 | [0 | 1 | 2 | 3 | 5 | 8 | 3] | 8 | 5 | 3
- Or just ignore the "?" values and return a shorter vector:

$$z=[\frac{2}{3} | \frac{1}{3} | \frac{2}{3} | \frac{3}{3} | \frac{5}{3} | \frac{8}{3}]$$

Formal Convolution Definition

• We've defined the convolution as:

$$Z_{i} = \sum_{j=-m}^{m} w_{j} x_{i+j}$$

• In other classes you may see it defined as:

$$Z_{i} = \sum_{j=-m}^{m} w_{j} x_{i-j}$$
(reverses 'w')

N5

- For simplicity we use "+" instead of "-", and assume 'w' and 'x' are sampled at discrete points (not functions).
- But keep this mind if you read about convolutions elsewhere.

1D Convolution Examples

- Translation convolution shift signal:
 - "What is my neighbour's value?"

1D Convolution Examples

• Averaging convolution ("is signal generally high in this region?"

- Less sensitive to noise (or spikes) than raw signal.

- Gaussian convolution ("blurring"): $W_i \propto e_x \rho(-\frac{1}{2\sigma^2})$
 - Compared to averaging it's more smooth and maintains peaks better.

- Sharpen convolution enhances peaks.
 - An "average" that places negative weights on the surrounding pixels.

$$w = [-1 3 -1]$$

- Centered difference convolution approximates first derivative:
 - Positive means change from low to high (negative means high to low).

Digression: Derivatives and Integrals

- Numerical derivative approximations can be viewed as filters:
 - Centered difference: [-1, 0, 1] (derivativeCheck in findMin).

Numerical integration approximations can be viewed as filters:
 – "Simpson's" rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).

• Derivative filters add to 0, integration filters add to 1,

– For constant function, derivative should be 0 and average = constant.

• Laplacian convolution approximates second derivative:

- "Sum to zero" filters "respond" if input vector looks like the filter

$$w = [-1 2 -1]$$

Laplacian of Gaussian Filter

- Laplacian of Gaussian is a smoothed 2nd-derivative approximation:
- $W_{i} = \left(1 \frac{1^{2}}{2\sigma^{2}}\right) c_{xp}\left(-\frac{1^{2}}{2\sigma^{2}}\right) \qquad W^{2}\left(-\frac{1}{2\sigma^{2}}\right) \qquad W^{2}\left(-\frac{1}{2\sigma^{2}}\right) = \left(-\frac{1}{2\sigma^{2}}\right) = \left(-\frac{1}{2\sigma^$

Images and Higher-Order Convolution

- 2D convolution:
 - Signal 'x' is the pixel intensities in an 'n' by 'n' image.
 - Filter 'w' is the pixel intensities in a '2m+1' by '2m+1' image
- The 2D convolution is given by:

$$Z[i_{1,j_{2}}] = \sum_{j_{i}=-m}^{m} \sum_{j_{2}=-m}^{m} w[j_{1,j_{2}}]x[i_{1}+j_{1,j_{2}}+j_{2}]$$

• 3D and higher-order convolutions are defined similarly.

$$Z[i_{1},i_{2},i_{3}] = \sum_{j_{1}=-m}^{m} \sum_{j_{2}=-m}^{m} \sum_{j_{3}=-m}^{m} w[j_{1},j_{2},j_{3}] x[i_{1}+j_{1},i_{2}+j_{2},i_{3}+j_{3}]$$

 $Z(i_{1})$

Z

Translation Convolution:

Boundary: "zero"

Translation Convolution:

Boundary: "replicate"

Translation Convolution:

Boundary "ignore"

Summary

- Text features (beyond bag of words): trigrams, lexical, stem, shape.
 Try to capture important invariances in text data.
- Global vs. local features allow "personalized" predictions.
- Convolutions are flexible class of signal/image transformations.
 - Can approximate directional derivatives and integrals at different scales.
 - Max(convolutions) can yield features invariant to some transformations.

- Next time:
 - A trick that lets you find gold and use the polynomial basis with d > 1.

Cyclic Features

• Cyclic features arise in many settings, especially with times:

Time	Day	Date	Month	Year
12:05pm	Wed	29	Jul	15
10:20am	Sun	24	Apr	16
9:10am	Tue	3	May	16
11:20am	Sun	15	Jun	18
10:15pm	Thu	8	Aug	19

- Could use ordinal: "Jan"->1, "Feb"->2, "Mar"->3, and so on.
 - Reflects ordering of months
 - But this says that "Jan" and "Dec" are far.
 - We might want to incorporate the "cycle" that "1" comes after "12".

Cyclic Features

- One way to model cyclic features is as coordinates on unit circle.
 - Dividing circumference evenly across the cyclic values.

- Replace "Day" with the x-coordinate and y-coordinate (2 features).
 - Reflects that "Mon" is same distance from "Tue" as it is from "Sun".

https://www.abcteach.com/documents/clip-art-circle07-77-bw-i-abcteachcom-17022

Linear Models with Binary Features

		Feature 1	Feature 2	
	Γ	0.5	Х	
		3	0	
(=		5	0	
		2.5	Δ	/
		1.5	Х	
		3	Δ	
L	-			

Linear Models with Binary Features

Linear Models with Binary Features

Linear Models with Binary Features $W_0 + W_1 X_{i1}$ We + We Xil Feature 2 Feature 1 0.5 Х Model 1: only bies 0 3 5 0 Wo yi= wo $\chi =$ 2.5 Δ Model 2: bias + feature! 1.5 Х $y_i = w_o + w_i x_{ii}$ 3 Δ Ø Model 3: "local" bias Model 4: "local" bias \mathcal{O} - feature (and "local" slope Wtwx $\gamma_i = W_i + W_i x_i I$ $y_i = w_i + w_{ij} x_{ij}$ Could also share information across *Ushape* Lslope categories with global bias slope bias for for shape Shape $y_i = w_0 + w_1 x_{i1} + w_2 + w_{e1} x_{i2}$

Global and Local Features for Domain Adaptation

- Suppose you want to solve a classification task, where you have very little labeled data from your domain.
- But you have access to a huge dataset with the same labels, from a different domain.
- Example:
 - You want to label POS tags in medical articles, and pay a few \$\$\$ to label some.
 - You have access the thousands of examples of Wall Street Journal POS labels.
- **Domain adaptation**: using data from different domain to help.

Global and Local Features for Domain Adaptation

- "Frustratingly easy domain adaptation":
 - Use "global" features across the domains, and "local" features for each domain.
 - "Global" features let you learn patterns that occur across domains.
 - Leads to sensible predictions for new domains without any data.
 - "Local" features let you learn patterns specific to each domain.
 - Improves accuracy on particular domains where you have more data.
 - For linear classifiers this would look like:

$$\hat{Y}_i = sign(w_g x_{ig} + w_d x_{id})$$
 features/weights specific
to domain
features/weights across domains

FFT implementation of convolution

- Convolutions can be implemented using fast Fourier transform:
 Take FFT of image and filter, multiply elementwise, and take inverse FFT.
- It has faster asymptotic running time but there are some catches:
 - You need to be using periodic boundary conditions for the convolution.
 - Constants matter: it may not be faster in practice.
 - Especially compared to using GPUs to do the convolution in hardware.
 - The gains are largest for larger filters (compared to the image size).