CPSC 340:
Machine Learning and Data Mining

Regularization
Fall 2022
Last Time: Feature Selection

• Last time we discussed feature selection:
 – Choosing set of “relevant” features.

\[
X = \begin{bmatrix}
\text{relevant}
\end{bmatrix}
\quad y = \begin{bmatrix}
\end{bmatrix}
\]

• Most common approach is search and score:
 – Define “score” and “search” for features with best score.

• But it’s hard to define the “score” and it’s hard to “search”.
 – So we often use greedy methods like forward selection.

• Methods work ok on “toy” data, but are frustrating on real data.
 – Different methods may return very different results.
 – Defining whether a feature is “relevant” is complicated and ambiguous.
Last Time: Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

<table>
<thead>
<tr>
<th>gender</th>
<th>mom</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• True model:
 – (SNP = mom) with very high probability.
 – (SNP != mom) with some very low probability.

• What about (maternal) “grandma”?
 – Irrelevant since provides no extra information beyond “mom”.
 – But relevant if you do not have the “mom” feature.

https://en.wikipedia.org/wiki/Human_mitochondrial_genetics
Is “Relevance” Clearly Defined?

- What if we don’t know “mom” or “grandma”?
- Now there are no relevant variables, right?
 - But “dad” and “mom” must have some common maternal ancestor.
 - “Mitochondrial Eve” estimated to be ~200,000 years ago.
- A “relevant” feature may have a tiny effect.

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we don’t know “mom” or “grandma”?

• Now there are no relevant variables, right?
 – What if “mom” likes “dad” because he has the same SNP as her?

• Confounding factors can change “relevance” of variables.

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we add “sibling”?

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
<th>sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Sibling is “relevant” for predicting SNP, but it is not the cause.

• “Relevance” for prediction does **not imply a causal relationship**.
 – Causality can even be reversed...
Is “Relevance” Clearly Defined?

• What if don’t have “mom” but we have “baby”?
 – “Baby” is relevant when (gender == F).
 – “Baby” is relevant (though causality is reversed).
 – Is “gender” relevant?
 • If we want to find relevant causal factors, “gender” is not relevant.
 • If we want to predict SNP, “gender” is relevant.

• “Relevance” may depend on values of certain features.
 – “Context-specific” relevance.
Is “Relevance” Clearly Defined?

- **Warnings about feature selection:**
 - If features can be predicted from features, you can’t know which to pick.
 - A feature is only “relevant” in the context of available features.
 - A “relevant” feature may have a tiny effect.
 - Confounding factors can change whether features are relevant.
 - “Relevance” for prediction does not imply a causal relationship.
 - “Relevance” may be conditional on values of certain features.
Is this hopeless?

• We often want to do feature selection we so have to try!

• Different methods are affected by problems in different ways.

• These “problems” don’t have right answers but have wrong answers:
 – Variable dependence (“mom” and “mom2” have same information).
 • But should take at least one.
 – Conditional independence (all “grandma” information is captured by “mom”).
 • Should take “grandma” only if “mom” missing.

• These “problems” have application-specific answers:
 – Tiny effects.
 – Context-specific relevance (is “gender” relevant if given “baby”?).

• See bonus slides for discussion of causality and confounding issues.
 – Unless you control data collection, standard feature selection methods cannot address those issues.
My advice if you want the “relevant” variables.

• Try the association approach.
• Try forward selection with different values of λ.
• Try out a few other feature selection methods too.

• Discuss the results with the domain expert.
 – They probably have an idea of why some variables might be relevant.

• Do not be overconfident:
 – These methods are probably not discovering how the world truly works.
 – “The algorithm has found that these variables are helpful in predicting y_i.”
 • Then a warning that these models are not perfect at finding relevant variables.
Related: Survivorship Bias

• Plotting location of bullet holes on planes returning from WW2:

 ![Bullet Holes on Plane](https://en.wikipedia.org/wiki/Survivorship_bias)

• Where are the “relevant” parts of the plane to protect?
 – “Relevant” parts are actually where there are no bullets.
 – Planes shot in other places did not come back (armor was needed).

https://en.wikipedia.org/wiki/Survivorship_bias
Related: Survivorship Bias

• Plotting location of bullet holes on planes returning from WW2:

• This is an example of “survivorship bias”:
 – Data is not IID because you only sample the “survivors”.
 – Causes havoc for feature selection, and ML methods in general.

https://en.wikipedia.org/wiki/Survivorship_bias
Related: Survivorship Bias

• Plotting location of bullet holes on planes returning from WW2:

![Image of bullet holes on a plane](https://en.wikipedia.org/wiki/Survivorship_bias)

• People come to **wrong conclusions due to survivor bias** all the time.
 - Article on “secrets of success”, focusing on traits of successful people.
 • But ignoring the number of non-super-successful people with the same traits.
 - **Article** hypothesizing about various topics (allergies, mental illness, etc.).
Next Topic: Regularization
Recall: Polynomial Degree and Training vs. Testing

- We’ve said that complicated models tend to overfit more.

- But what if we need a complicated model?

Controlling Complexity

• Usually “true” mapping from \(x_i \) to \(y_i \) is complex.
 – Might need high-degree polynomial.
 – Might need to combine many features, and do not know “relevant” ones.

• But complex models can overfit.

• So what do we do???

• Our main tools:
 – Model averaging: average over multiple models to decrease variance.
 – Regularization: add a penalty on the complexity of the model.
Would you rather?

• Consider the following dataset and 3 linear regression models:

• Which line should we choose?
Would you rather?

• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?
 – And assume they have the same training error.

• You should pick green.
 – Since slope is smaller, small change in x_i has a smaller change in prediction y_i.
 • Green line’s predictions are less sensitive to having ‘w’ exactly right.
 – Since green ‘w’ is less sensitive to data, test error might be lower.
Size of Regression Weights and Overfitting

- The regression weights w_j with degree-7 are huge in this example.
- The degree-7 polynomial would be less sensitive to the data, if we “regularized” the w_j so that they are small.

$\hat{y}_i = 0.0001(x_i)^7 + 0.03(x_i)^3 + 3 \quad \text{vs.} \quad \hat{y}_i = 1000(x_i)^7 - 500(x_i)^6 + 890x_i$
L2-Regularization

- Standard regularization strategy is L2-regularization:

\[
\tilde{f}(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} w_j^2 \quad \text{or} \quad \tilde{f}(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2
\]

- For some regularization parameter \(\lambda > 0 \).

- Intuition: large slopes \(w_j \) tend to lead to overfitting.

- Objective balances getting low error vs. having small slopes ‘\(w_j \)’.
 - “You can increase the training error if it makes ‘\(w \)’ much smaller.”
 - Nearly-always reduces overfitting.

- In terms of fundamental trade-off:
 - Regularization increases training error.
 - Regularization decreases approximation error.
L2-Regularization

- Visualizing squared error as a function of parameters (d=2):
L2-regularization

- **L2-regularized least squares:**
 \[
 f(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2
 \]

 - Regularization parameter \(\lambda > 0 \) controls “strength” of regularization.
 - Large \(\lambda \) puts large penalty on slopes (worse training error, better approximation).

- **How should you choose \(\lambda \)?**
 - Theory: as ‘n’ grows \(\lambda \) should be in the range \(O(1) \) to \((\sqrt{n}) \).
 - Practice: optimize validation set or cross-validation error.
 - This almost always decreases the test error.
L2-Regularization “Shrinking” Example

- Solution to a “least squares with L2-regularization” for different λ:

| λ | w_1 | w_2 | w_3 | w_4 | w_5 | $||Xw-y||^2$ | $||w||^2$ |
|---|---|---|---|---|---|---|---|
| 0 | -1.88 | 1.29 | -2.63 | 1.78 | -0.63 | 285.64 | 15.68 |
| 1 | -1.88 | 1.28 | -2.62 | 1.78 | -0.64 | 285.64 | 15.62 |
| 4 | -1.87 | 1.28 | -2.59 | 1.77 | -0.66 | 285.64 | 15.43 |
| 16 | -1.84 | 1.27 | -2.50 | 1.73 | -0.73 | 285.71 | 14.76 |
| 64 | -1.74 | 1.23 | -2.22 | 1.59 | -0.90 | 286.47 | 12.77 |
| 256| -1.43 | 1.08 | -1.70 | 1.18 | -1.05 | 292.60 | 8.60 |
| 1024| -0.87 | 0.73 | -1.03 | 0.57 | -0.81 | 321.29 | 3.33 |
| 4096| -0.35 | 0.31 | -0.42 | 0.18 | -0.36 | 374.27 | 0.56 |

- We get least squares with $\lambda = 0$.
 - But we can achieve similar training error with smaller $||w||$.
- $||Xw - y||$ increases with λ, and $||w||$ decreases with λ.
 - Though individual w_j can increase or decrease with lambda.
 - Because we use the L2-norm, the large ones decrease the most.
Regularization Path

- Regularization path is a plot of the optimal weights w_j as λ varies:
- Starts with least squares with $\lambda = 0$, and w_j converge to 0 as λ grows.
Solving L2-Regularized Least Squares Problem

• Solving for $\nabla f(w)=0$ to compute L2-regularized least squares:

 – Objective:
 \[
 f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2
 = \frac{1}{2} w^T X^T X w - w^T X^T y + \frac{1}{2} y^T y + \frac{\lambda}{2} w^T w \quad \text{(expand)}
 \]

 – Gradient:
 \[
 \nabla f(w) = X^T X w - X^T y + \lambda w
 \]

 – Setting gradient equal to zero vector:
 \[
 X^T X w - X^T y + \lambda w = 0
 \]

 \[
 X^T X w + \lambda w = X^T y
 \]

 \[
 \text{(move terms with no 'w' to right)}
 \]

 – Factorize ‘w’ on the left side (identity matrix makes dimensions match):
 \[
 (X^T X + \lambda I)w = X^T y
 \]

 \[
 w = (X^T X + \lambda I)^{-1} X^T y
 \]

 \[
 \text{you can show that this matrix is always invertible.}
 \]
Gradient Descent for L2-Regularized Least Squares

• The L2-regularized least squares objective and gradient:

\[
\ell(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \quad \nabla \ell(w) = X^T (Xw - y) + \lambda w
\]

• Gradient descent iterations for L2-regularized least squares:

\[
w^{t+1} = w^t - \alpha^t \left[X^T (Xw^t - y) + \lambda w^t \right]
\]

• Cost of gradient descent iteration is still \(O(\text{nd})\).
 – Can show number of iterations decrease as \(\lambda\) increases (not obvious).
Why use L2-Regularization?

• It’s a weird thing to do, but Mark says “always use regularization”.
 – “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:
 1. Solution ‘w’ is unique.
 2. X^TX does not need to be invertible (no collinearity issues).
 3. Less sensitive to changes in X or y.
 4. Gradient descent converges faster (bigger λ means fewer iterations).
 5. Stein’s paradox: if $d \geq 3$, ‘shrinking’ moves us closer to ‘true’ w.
 6. Worst case: just set λ small and get the same performance.
Next Topic: Standardizing Features
Features with Different Scales

• Consider continuous features with different scales:

<table>
<thead>
<tr>
<th>Egg (#)</th>
<th>Milk (mL)</th>
<th>Fish (g)</th>
<th>Pasta (cups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

• Should we convert to some standard ‘unit’?
 – It doesn’t matter for decision trees or naïve Bayes.
 • They only look at one feature at a time.
 – It does not matter for least squares:
 • \(w_j \cdot (100 \text{ mL}) \) gives the same model as \(w_j \cdot (0.1 \text{ L}) \) with a different \(w_j \).
Features with Different Scales

• Consider continuous features with different scales:

<table>
<thead>
<tr>
<th>Egg (#)</th>
<th>Milk (mL)</th>
<th>Fish (g)</th>
<th>Pasta (cups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

• Should we convert to some standard ‘unit’?
 – It matters for k-nearest neighbours:
 • “Distance” will be affected more by large features than small features.
 – It matters for regularized least squares:
 • Penalizing $(w_j)^2$ means different things if features ‘j’ are on different scales.
Standardizing Features

• It is common to **standardize continuous features**:
 – For each feature:
 1. Compute mean and standard deviation:

 \[
 \mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij} \quad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)^2}
 \]
 2. Subtract mean and divide by standard deviation ("z-score")

 Replace \(x_{ij} \) with \(\frac{x_{ij} - \mu_j}{\sigma_j} \)

 – Now measures “standard deviations from mean”.
 • And changes in ‘\(w_j \)’ have similar effect for any feature ‘\(j \)’

• **How should we standardize test data?**
 – **Wrong approach**: use mean and standard deviation of test data.
 • Training and test mean and standard deviation might be very different.
 – **Right approach**: use mean and standard deviation of training data.
Standardizing Features

• It is common to standardize continuous features:
 – For each feature:
 1. Compute mean and standard deviation:
 \[\mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}, \quad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)^2} \]
 2. Subtract mean and divide by standard deviation (“z-score”)
 \[\text{Replace } x_{ij} \text{ with } \frac{x_{ij} - \mu_j}{\sigma_j} \]
 – Now measures “standard deviations from mean”.
 • And changes in ‘\(w_j \)’ have similar effect for any feature ‘\(j \)’

• If we’re doing 10-fold cross-validation:
 – Compute \(\mu_j \) and \(\sigma_j \) based on the 9 training folds (e.g., average over 9/10s of data).
 • Standardize the remaining (“validation”) fold with this “training” \(\mu_j \) and \(\sigma_j \).
 – Re-standardize for different folds (violate golden rule if standardize before split).
Standardizing Target

• In regression, we sometimes standardize the targets y_i.
 – Puts targets on the same standard scale as standardized features:

$$\text{Replace } y_i \text{ with } \frac{y_i - \mu_y}{\sigma_y}$$

• With standardized target, setting $w = 0$ predicts average y_i:
 – High regularization makes us predict closer to the average value.

• Again, make sure you standardize test data with the training stats.
 – And do not forget to “un-standardize” predictions to get back to original space.

• Other common transformations of y_i are logarithm/exponent:

$$\text{Use } \log(y_i) \text{ or } \exp(\gamma y_i)$$

 – Makes sense for geometric/exponential processes.
Regularizing the y-Intercept?

• Should we regularize the y-intercept?

• No! Why encourage it to be closer to zero? (It could be anywhere.)
 – You should be allowed to shift function up/down globally.

• Yes! It makes the solution unique and it easier to compute ‘w’.

• Compromise: regularize by a smaller amount than other variables.

\[
f(w, w_0) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i + w_0 - y_i)^2 + \frac{\lambda}{2} \| w \|^2 + \frac{\lambda_0}{2} w_0^2
\]
Summary

• “Relevance” is really hard to define.
 – Post-lecture bonus: “rough guide” to how different methods deal with this issue.

• Regularization:
 – Adding a penalty on model complexity.

• L2-regularization: penalty on L2-norm of regression weights ‘w’.
 – Trades training error against size of weights, almost always improves test error.

• Standardizing features:
 – For some models it makes sense to have features on the same scale.

• Next time: learning with an exponential number of irrelevant features.
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association</td>
<td>Ok</td>
<td>Bad</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>(e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>(takes “mom” and “mom2”)</td>
<td>(takes “grandma”, “great-grandma”, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Ok** (takes “mom” and “mom2”)
- **Bad** (takes “grandma”, “great-grandma”, etc.)
- Ignores
- **Bad** (misses features that must interact, “gender” irrelevant given “baby”)
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest</td>
<td>Bad (can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td>Ok (takes “mom” not “grandma”, if linear and ‘n’ large.</td>
<td>Ignores (unless collinear)</td>
<td>Ok (if linear, “gender” relevant give “baby”)</td>
</tr>
</tbody>
</table>
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method/Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest</td>
<td>Bad (can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td>Ok (takes “mom” not “grandma”, if linear and ‘n’ large.</td>
<td>Ignores (unless collinear)</td>
<td>Ok (if linear, “gender” relevant given “baby”)</td>
</tr>
<tr>
<td>Search and Score w/ Validation Error</td>
<td>Ok (takes at least one of “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Allows</td>
<td>Ok (”gender” relevant given “baby”)</td>
</tr>
</tbody>
</table>
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest $</td>
<td>w_j</td>
<td>$)</td>
<td>Bad (can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td>Ok (takes “mom” not “grandma”, if linear and ‘n’ large.)</td>
</tr>
<tr>
<td>Search and Score w/ Validation Error</td>
<td>Ok (takes at least one of “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Allows (many false positives)</td>
<td>Ok (“gender” relevant given “baby”)</td>
</tr>
<tr>
<td>Search and Score w/ L0-norm</td>
<td>Ok (takes exactly one of “mom” and “mom2”)</td>
<td>Ok (takes “mom” not grandma if linear-ish)</td>
<td>Ignores (even if collinear)</td>
<td>Ok (“gender” relevant given “baby”)</td>
</tr>
</tbody>
</table>
Alternative to Search and Score: good old p-values

• **Hypothesis testing** ("constraint-based") approach:
 – Generalization of the “association” approach to feature selection.
 – Performs a sequence of **conditional independence tests**.

 [Mathematical notation]

 – If they are independent (like “p < .05”), say that ‘j’ is “irrelevant”.

• **Common way to do the tests:**
 – “Partial” correlation (numerical data).
 – “Conditional” mutual information (discrete data).
Testing-Based Feature Selection

• **Hypothesis testing** ("constraint-based") approach:

• Two many possible tests, "greedy" method is for each ‘j’ do:

 First test if $X_{ij} \perp Y$;

 If still dependent test $X_{ij} \perp Y, I_{x_{i5}}$ where ‘s’ has one feature

 If still dependent test $X_{ij} \perp Y, I_{x_{i5}}$ where ‘s’ now has two features dependence.

 If still dependent when ‘s’ includes all other features, declare ‘j’ relevant.

• "Association approach" is the greedy method where you **only do the first test** (subsequent tests remove a lot of false positives).
Hypothesis-Based Feature Selection

• Advantages:
 – Deals with conditional independence.
 – Algorithm can explain why it thinks ‘j’ is irrelevant.
 – Doesn’t necessarily need linearity.

• Disadvantages:
 – Deals badly with exact dependence: doesn’t select “mom” or “mom2” if both present.
 – Usual warning about testing multiple hypotheses:
 • If you test $p < 0.05$ more than 20 times, you’re going to make errors.
 – Greedy approach may be sub-optimal.

• Neither good nor bad:
 – Allows tiny effects.
 – Says “gender” is irrelevant when you know “baby”.
 – This approach is sometimes better for finding relevant factors, not to select features for learning.
Causality

• None of these approaches address **causality or confounding**:
 – “Mom” is the **only relevant direct causal factor**.
 – “Dad” is really irrelevant.
 – “Grandma” is causal but is irrelevant if we know “mom”.

• Other factors can **help prediction but aren’t causal**:
 • “Sibling” is predictive due to **confounding** of effect of same “mom”.
 • “Baby” is predictive due to **reverse causality**.
 • “Gender” is predictive due to **common effect** on “baby”.

• We can sometimes address this using **interventional data**...
Interventional Data

• The difference between **observational** and **interventional** data:
 – If I **see** that my watch says 10:45, class is almost over (**observational**).
 – If I **set** my watch to say 10:45, it doesn’t help (**interventional**).

• The **intervention** can help discover causal effects:
 – “Watch” is only predictive of “time” in observational setting (so not causal).

• General idea for **identifying causal effects**:
 – “Force” the variable to take a certain value, then measure the effect.
 • If the dependency remains, there is a causal effect.
 • We “break” connections from reverse causality, common effects, or confounding.
Causality and Dataset Collection

• This has to do with the way you collect data:
 – You can’t “look” for variables taking the value “after the fact”.
 – You need to manipulate the value of the variable, then watch for changes.

• This is the basis for randomized control trial in medicine:
 – Randomly assigning pills “forces” value of “treatment” variable.
 • Randomization means they aren’t taking the pill due to confounding factors.
 • Differences between people who did and did not take pill should be caused by pill.
 – Include a “control” as a value to prevent placebo effect as confounding.

• See also Simpson’s Paradox:
 – https://www.youtube.com/watch?v=ebEkn-BiW5k
L2-Regularization

• Standard regularization strategy is L2-regularization:

\[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} w_j^2 \quad \text{or} \quad f(w) = \frac{1}{2} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2 \]

• Equivalent to minimizing squared error but keeping L2-norm small.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.

• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.

• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
 3. Move misses towards ‘0’, by small amount proportional to distance from 0.

• If small enough, darts will be closer to center on average.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.
• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
 3. Move misses towards ‘0’, by small amount proportional to distance from 0.
• If small enough, darts will be closer to center on average.

Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz