CPSC 340: Machine Learning and Data Mining

Feature Selection Fall 2022

Last Time: Finding the "True" Model

- What if y_i really is a polynomial function of x_i?
 - How can we find the "true" degree 'p' of the polynomial?
- Training error does not work:
 It goes down as 'p' goes up.
- Cross-validation may also not work:
 - Tends to overestimate 'p'.
 - Due to optimization bias.

For example, imagine that the true model is $y_i = 2x_i^2 - 5 + (noise)$ We might choose d=3 and a model like $\hat{y}_i = 0.001x_i^3 + 2x_i^2 - 5$, since it might get a slightly smaller validation error.

Last Time: Complexity Penalties

- We discussed putting a penalty on the model complexity.
 - Want to fit the data and have a simple model.

Find 'v' and 'p' minimizing:

$$S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$$

 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2 + \lambda K$
 $S(ore(p) = \frac{1}{2} || Z_p v - y ||^2$

- "To increase the degrees of freedom by one, need to decrease error by λ ".
- Prefers smaller degrees of freedom, if errors are similar.
 - Can't optimize this using gradient descent, since it's discontinuous in 'p'.
 - Need to search over values of 'p'.

Bayesian Information Criterion (BIC)

- A disadvantage of these methods:
 - Still prefers a larger 'p' as 'n' grows.
- Solution: make λ depend on 'n'.
- For example, the Bayesian information criterion (BIC) uses:

$$\lambda = \frac{1}{2} \log(n)$$

• BIC penalizes a bit more than AIC for large 'n'.

- As 'n' goes to ∞ , recovers "true" model ("consistent" for model selection).

- In practice, we usually just try a bunch of different λ values.
 - Picking λ is like picking 'k' in k-means.

Discussion of other Scores for Model Selection

- There are many other scores:
 - Elbow method (corresponds to specific choice of λ).
 - You could also use BIC for choosing 'k' in k-means.
 - Methods based on validation error.
 - "Take smallest 'p' within one standard error of minimum cross-validation error".
 - Minimum description length.
 - Risk inflation criterion.
 - False discovery rate.
 - Marginal likelihood (CPSC 440).
- These can adapted to use the L1-norm and other errors.

Next Topic: Feature Selection

Motivation: Discovering Food Allergies

• Recall the food allergy example:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	••••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1

- What I want to know which foods are making me sick?
 Rather than building a black box that tells me if I will be sick.
- Instead of prediction, we want to do feature selection:
 Which foods are "relevant" for predicting "sick".

Feature Selection

• General feature selection problem:

- Find the features (columns) of 'X' that are important for predicting 'y'.
 - "What are the relevant factors?"
 - "Which basis functions should I use among these choices?"
 - "What types of new data should I collect?"
 - "How can I speed up computation?"
- One of most important problems in ML/statistics, but very messy.
 - For now, we will say a feature is "relevant" if it helps predict y_i from x_i .

"Association" Approach

- A simple/common way to do feature selection:
 - For each feature 'j', compute correlation between feature values x^j and 'y'.
 - Say that 'j' is relevant if correlation is above 0.5 or below -0.5.
- Turns feature selection into hypothesis testing for each feature.
 - There are many other measures of "dependence" (<u>Wikipedia</u>).
- Usually gives unsatisfactory results as it ignores variable interactions:
 - Includes irrelevant variables: "Taco Tuesdays".
 - If tacos make you sick, and you often eat tacos on Tuesdays, it will say "Tuesday" is relevant.
 - Excludes relevant variables: "Diet Coke + Mentos Eruption".
 - Diet coke and Mentos don't make you sick on their own, but *together* they make you sick.

Genome-Wide Association Studies

- Genome-wide association studies:
 - Measure if there exists a dependency between each individual "singlenucleotide polymorphism" in the genome and a particular disease.

- Has identified thousands of genes "associated" with diseases.

• But by design this has a huge numbers of false positives (and many false negatives).

"Regression Weight" Approach

- Another simple/common approach to feature selection:
 - Fit regression weights 'w' based on all features (maybe with least squares).
 - Take all features 'j' where weight $|w_i|$ is greater than a threshold.
- For example: you fit a least squares model with 5 features and get: $w = \begin{bmatrix} 0.0/\\ -0.2\\ 10\\ -3 \end{bmatrix}$
 - Feature 3 looks the most relevant.
 - Feature 4 also looks relevant.
 - Feature 5 seems irrelevant.

"Regression Weight" Approach

- Another simple/common approach to feature selection:
 - Fit regression weights 'w' based on all features (maybe with least squares).
 - Take all features 'j' where weight $|w_i|$ is greater than a threshold.
- This could recognize that "Tuesday" is irrelevant.
 - It could assign a large weight to "tacos", and a small weight to "Tuesday".
 - Since the tacos would "explain" the correlation between "Tuesday" and "sick".
 - Assuming you get enough data, and you sometimes eat tacos on other days. (And the relationship is actually linear.)

"Regression Weight" Approach

- Another simple/common approach to feature selection:
 - Fit regression weights 'w' based on all features (maybe with least squares).
 - Take all features 'j' where weight $|w_i|$ is greater than a threshold.
- Has major problems with collinearity:
 - If the "Tuesday" variable always equals the "taco" variable, it could say that Tuesdays are relevant but tacos are not. $\hat{\gamma}_i = W_1 * f_{\alpha_i \cup j} + W_2 * T_{uesday} = 0 * f_{\alpha_i \cup j} + (w_1 + w_2) * T_{uesday}$
 - If you have two copies of an irrelevant feature,

it could take both irrelevant copies.

 $\hat{\gamma}_i = 0 * irrelevant + 0 * irrelevant = 10000 * irrelevant + (-10000) * irrelevant$

Digression: "Feature" vs. "Model" Selection?

- Model selection: "which model should I use?"
 - KNN vs. decision tree, depth of decision tree, degree of polynomial basis.
- Feature selection: "which features should I use?"

- Using feature 10 or not, using x_i^2 as part of basis.

- These two tasks are highly-related:
 - It is a different "model" if we add x_i^2 to linear regression.
 - But the x_i^2 term is just a "feature" that could be "selected" or not.
 - Usually, "feature selection" means choosing from some "original" features.
 - You could say that "feature" selection is a special case of "model" selection.

Model Selection Feature Selection

Next Topic: Search and Score Methods

Can it help prediction to throw features away?

- Yes, because linear regression can overfit with large 'd'.
 - Even though it's "just" a hyper-plane.
- Consider using d=n, with random features: X=randn(n,d).
 - With high probability, you will be able to get a training error of 0.
 - But the features were random, this is completely overfitting.
- You could view "number of features" as a hyper-parameter.
 - Model gets more complex as you add more features.

Search and Score Methods

- Most common feature selection framework is search and score:
 - 1. Define score function f(S) that measures quality of a set of features 'S'.
 - 2. Now search for the variables 'S' with the best score.
- Example with 3 features:
 - Compute "score" of selecting only feature 1.
 - Compute "score" of selecting only feature 2.
 - Compute "score" of selecting only feature 3.
 - Compute "score" of selecting only features {1,2}.
 - Compute "score" of selecting only features {1,3}.
 - Compute "score" of selecting only features {2,3}.
 - Compute "score" of selecting all features {1,2,3}.
 - Compute "score" of selecting no features {}.
 - Return the set of features 'S' with the best "score".

Which Score Function?

- The score cannot be the training error.
 - Training error goes down as you add features, so will select all features.
- A more logical score is the validation error.
 - "Find the set of features that gives the lowest validation error."
 - To minimize test error, this is what we want.
- But there are problems due to the large number of sets of variables:
 - If we have 'd' variables, there are 2^d sets of variables.
 - Optimization bias is high: we're optimizing over 2^d models (not 10).
 - So prone to false positives: irrelevant variables will sometimes help by chance.

"Number of Features" Penalties

• To reduce false positives, we can again use complexity penalties:

$$s_{core}(S) = \frac{1}{2} \sum_{i=1}^{n} (w_s^T x_{is} - y_i)^2 + \beta s_{ize}(S)$$

- We're using ' x_{is} ' as the features 'S' of example x_i .
- Above we minimize squared error plus a penalty on number of features.
 - "You can include an extra feature if it reduces training error by at least λ ."
- If two 'S' have similar error, this prefers the smaller set.
 It prefers removing feature 3 instead of having w₃ = 0.00001.
- We often this the "LO-norm" instead of writing "size(S)"...

"LO-Norm" and "Number of Features We Use"

• In linear models, setting w_j = 0 is the same as removing feature 'j':

$$y_{i} = w_{i} x_{ii} + w_{j} x_{ij} + w_{3} x_{i3} + \cdots + w_{d} x_{id}$$

$$\int s_{i1} w_{2} = 0$$

$$\hat{y}_{i} = w_{i} x_{ii} + 0 + w_{3} x_{i3} + \cdots + w_{d} x_{id}$$

$$ignore x_{i2}$$

• The LO "norm" is the number of non-zero values (||w||₀ = size(S)).

If
$$W = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 3 \end{bmatrix}$$
 then $\||w||_0 = 3$ If $w = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ then $\||w||_0 = 0$.

- Not actually a true norm.
- If 'w' has a small LO-norm, then it does not use many features.

L0-penalty: optimization

• L0-norm penalty for feature selection:

$$f(w) = \frac{1}{2} || X_w - y ||^2 + \frac{1}{2} || w|_0$$

$$\frac{d_{o}grees}{d_{o}grees} of$$

$$\frac{d_{o}grees}{freedom'k'}$$

- Suppose we want to use this to evaluate the features S = {1,2}:
 - First fit the 'w' just using features 1 and 2.
 - Now compute the training error with this 'w' and features 1 and 2.
 - Add λ^* 2 to the training error to get the score.
- We repeat this with other choices of 'S' to find the "best" features.

L0-penalty: interpretation

• L0-norm penalty for feature selection:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2 + \frac{1}{2} || w|_0$$

- Balances between training error and number of features we use.
 - For $\lambda=0$, we get least squares with all features (no penalty on non-zeroes).
 - For $\lambda = \infty$, we must set w=0 and not use any features (infinite penalty).
 - For other λ , balances between training error and number of non-zeroes.
 - Larger λ puts more emphasis on having zeroes in 'w' (more features removed).
 - Different values give AIC, BIC, and so on.

Forward Selection (Greedy Search Heuristic)

- In search and score, it's also just hard to search for the best 'S'.
 There are 2^d possible sets.
- A common greedy search procedure is forward selection:

Forward Selection (Greedy Search Heuristic)

- Forward selection algorithm for variable selection:
 - 1. Start with an empty set of features, S = [].
 - 2. For each possible feature 'j':
 - Compute scores of features in 'S' combined with feature 'j'.
 - 3. Find the 'j' that has the best score when added to 'S'.
 - 4. Check if $\{S \cup j\}$ improves on the best score found so far.
 - 5. Add 'j' to 'S' and go back to Step 2.
 - A variation is to stop if no 'j' improves the score over just using 'S'.
- Runtime of forward selection:
 - We fit $O(d^2)$ models, out of the 2^d possible models with different features
 - Each step requires fitting up to 'd' models, and there are up to 'd' steps.
 - Total cost will be O(d²) times the cost of fitting an individual model.
 - See bonus for the case of least squares, and how you fit "updated" model faster than re-fitting.
- Not guaranteed to find the best set, but fitting fewer models reduces many problems:
 - Cheaper, overfits less, has fewer false positives.

Backward Selection and RFE

- Forward selection often works better than naïve methods.
- A related method is backward selection:
 - Start with all features, compute score after removing each feature, remove the one that improves the score the most.
- If you consider adding or removing features, it's called stagewise selection.
- Stochastic local search is a class of fancier methods.
 - Simulated annealing, genetic algorithms, ant colony optimization, etc.
- Recursive feature elimination is another related method:
 - Fit parameters of a regression model, prune features with small regression weights, repeat.
- See bonus slide for discussion of feature selection in random forests.

Next Topic: Ambiguity of Feature Selection

• Consider a supervised classification task:

gender	mom	dad	SNP
F	1	0	1
Μ	0	1	0
F	0	0	0
F	1	1	1

- Predict whether someone has particular genetic variation (SNP).
 - Location of mutation is in "mitochondrial" DNA.
 - "You almost always have the same value as your mom".
 - For simplicity we'll assume 1950s-style gender and parentage.

• Consider a supervised classification task:

gender	mom	dad
F	1	0
Μ	0	1
F	0	0
F	1	1

- True model:
 - (SNP = mom) with very high probability.
 - (SNP != mom) with some very low probability.
- What are the "relevant" features for this problem?
 - Mom is relevant and {gender, dad} are not relevant.

• What if "mom" feature is repeated?

gender	mom	dad	mom2	
F	1	0	1	
Μ	0	1	0	
F	0	0	0	
F	1	1	1	

Neither of these is "correct", but not picking either

incorrect.

IS

- Are "mom" and "mom2" relevant?
 - Should we pick them both?
 - Should we pick one because it predicts the other?
- If features can be predicted from features, can't know which to pick.
 - Collinearity is a special case of "dependence" (which may be non-linear).

• What if we add (maternal) "grandma"?

gender	mom	dad	grandma	
F	1	0	1	
М	0	1	0	
F	0	0	0	
F	1	1	1	

- Is "grandma" relevant?
 - You can predict SNP very accurately from "grandma" alone.
 - But "grandma" is irrelevant if I know "mom".
 - There is no information gained from "grandma" if you already have "mom".

• What if we don't know "mom"?

gender	grandma	dad	
F	1	0	
Μ	0	1	
F	0	0	
F	1	1	

- Now is "grandma" is relevant?
 - Without "mom" variable, using "grandma" is the best you can do.
- A feature is only "relevant" in the context of available features.
 - Adding/removing features can make features relevant/irrelevant.

Summary

- Feature selection is task of choosing the "relevant" features.
 Obvious simple approaches have obvious simple problems.
- Search and score: find features that optimize some score.
 - L0-norm penalties are the most common scores.
 - Forward selection is a heuristic to search over a smaller set of features.
- "Relevance" depends on context.
 - Adding/removing features can make things relevant/irrelevant.
- Next time: getting a good test error even with irrelevant features.

Feature Selection in Random Forests

- Decision trees naturally do feature selection while learning:
 The features used for the splits are the ones that are "selected".
- There are a variety of ways to evaluate features in random forests:
 - Compute proportion of trees that use feature 'j'.
 - Compute average infogain increase when using feature 'j'.
 - Permute all values of feature 'j', and see how "out of bag" error increases.
- You could use any of above to select features from random forest.

Mallow's Cp

• Older than AIC and BIC is Mallow's Cp:

f(w) =
$$\frac{||\chi_{w}-y||^2}{\frac{1}{n}||\chi_{w}^{-}-y||^2}$$

least synames weights if we used all features

• Minimizing this score is equivalent to LO-regularization:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2 + \lambda || w ||_0$$

with $\lambda = \frac{||\chi_w^2 - \gamma||^2}{2}$

• So again, viewing λ as hyper-parameter, this score is special case.

Adjusted R²

• Older than AIC and BIC and Mallow's Cp is adjusted R²:

$$f(w) = \left[- (1 - R^2) \frac{n - 1}{n - 1} \right] \text{ where } R^2 = \left[- \frac{11 \times w - y}{11 \times w - y} \right]^2$$

• Maximizing this score is equivalent to LO-regularization:

$$= \frac{1}{2} || \chi_w - \gamma ||^2 + \lambda || w ||_0$$

with $\lambda = \frac{||\chi_w - \gamma ||^2}{Z(n-1)}$

• So again, viewing λ as hyper-parameter, this score is special case.

ANOVA

• Some people also like to compute this "ANOVA" quantity:

$$f(w) = \frac{||X_w - \overline{y}||^2}{||y - \overline{y}||^2}$$
mean of yivalnes repeated in times

• This is based on the decomposition of "total squared error" as:

$$\| y - y \|^2 = \| \chi_w - y \|^2 + \| \chi_w - y \|^2$$

"total" error "explained" error "residual" (usual) error.

- Notice that "explained error" goes up as our usual ("residual") error goes down.
- Trying to find the 'k' features that maximize 'f' ("explain the most variance") is equivalent to LO-regularization with a particular λ (so another special case).

Information Criteria with Noise Variance

• We defined AIC/BIC for feature selection in least squares as:

$$f(w) = \frac{1}{2} || X_w - y ||^2 + \frac{1}{2} || w|_0$$

- The first term comes from assuming $y_i = w^T x_i + \varepsilon$, where ε comes from a normal distribution with a variance of 1.
 - We'll discuss why when we discuss MLE and MAP estimation.
 - If you aren't doing least squares, replace first term by "log-likelihood".
- If you treat variance as a parameter, then after some manipulation:

$$f(w) = \frac{n}{2} \log (||Xw - y||^2) + \frac{1}{2} ||w||_0$$

• However, this is again equivalent to just changing λ .

Complexity Penalties for Other Models

- Scores like AIC and BIC can also be used in other contexts:
 - When fitting a decision tree, only split a node if it improves BIC.
 - This makes sense if we're looking for the "true tree", or maybe just a simple/interpretable tree that performs well.
- In these cases we replace "LO-norm" with "degrees of freedom".
 - In linear models fit with least squares, degrees of freedom is number of non-zeroes.
 - Unfortunately, it is not always easy to measure "degrees of freedom".

Cost of Forward Selection

- Each step of forward selection fits up to 'd' model.
- And we do 'd' steps of forward selection.
- So cost of forward selection is O(d²) times cost of fitting one model.
- For linear regression with squared error, cost is O(nd² + d³).
 - So total cost of forward selection would be O(nd⁴ + d⁵).

Faster Forward Selection for Least Squares

- Instead of fitting models from scratch, we can often speed up forward selection by re-using computation and/or updating models.
- For linear regression with the squared error:
 - Can reduce $O(nd^4)$ term from repeatedly compute $O(d^2)$ sub-matrices of X^TX :
 - Compute X^TX once for all, then grab relevant sub-matrix for each model.
 - Costs O(nd²) to compute X^TX, then O(d²) to grab each sub-matrix.
 - Reduces cost of this step to $O(nd^2 + d^4)$.
 - Can reduce $O(d^5)$ term from solving $O(d^2)$ linear systems involving sub-matrices of X^TX :
 - Each time you add or remove a feature, it is a rank-1 updated to the sub-matrix of X^TX.
 - By storing factorized X^TX sub-matrix, you could do a rank-1 update for O(d²).
 - And cost of solving a linear system for a factorized matrix is also O(d²).
 - Total cost is O(d⁴) to do this O(d²) times.
 - So by updating models, can reduce cost from $O(nd^4 + d^5)$ down to $O(nd^2 + d^4)$.
 - Which is similar to cost of solving one least squares problem, particularly if n>>d.

Structure Learning: Unsupervised Feature Selection

• "News" data: presence of 100 words in 16k newsgroup posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

- Which words are related to each other?
- Problem of structure learning: unsupervised feature selection.

Structure Learning: Unsupervised Feature Selection

Naïve Approach: Association Networks

- A naïve approach to structure learning ("association networks"):
 - For each pair of variables, compute a measure of similarity or dependence.
- Using these n² similarity values either:
 - Select all pairs whose similarity is above a threshold.
 - Select the "top k" most similar features to each feature 'j'.
- Main problems:
 - Usually, most variables are dependent (too many edges).
 - "Sick" is getting connected to "Tuesdays" even if "tacos" are a variable.
 - "True" neighbours may not have the highest dependence.
 - "Sick" might get connected to "Tuesdays" before it gets connected to "milk".
- (Variation: best tree can be found as minimum spanning tree problem.)

Example: Vancouver Rain Data

• Consider modeling the "Vancouver rain" dataset.

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	
Month 1	0	0	0	1	1	0	0	1	1	
Month 2	1	0	0	0	0	0	1	0	0	
Month 3	1	1	1	1	1	1	1	1	1	
Munilh 4	1	1	1	1	0	0	1	1	1	
MonthJ	0	0	0	0	1	1	0	0	0	
Month 6	0	1	1	0	0	0	0	1	1	

- The strongest signal in the data is the simple relationship:
 - If it rained yesterday, it's likely to rain today (> 50% chance that $x^{t-1} = x^t$).
 - But an "association network" might connect all days (all dependent).

Dependency Networks

- A better approach is dependency networks:
 - For each variable 'j', make it the target in a supervised learning problem.

- Now we can use any feature selection method to choose j's "neighbours".
 - Forward selection, L1-regularization, ensemble methods, etc.
- Can capture conditional independence:
 - Might connect "sick" to "tacos", and "tacos" to "Tuesdays".
 - Without connecting "sick" directly to "Tuesdays".
 - Might connect "grandma" to "mom", and "mom" to "SNP".
 - Without connection "grandma" directly to "SNP".

Dependency Networks

• Dependency network fit to Vancouver rain data (different λ values):

Dependency Networks

• Variation on dependency networks on digit image pixels:

Another popular structure learning method is the "PC" algorithm.