
CPSC 340:
Machine Learning and Data Mining

Feature Selection

Fall 2022

Last Time: Finding the “True” Model

• What if yi really is a polynomial function of xi?

– How can we find the “true” degree ‘p’ of the polynomial?

• Training error does not work:

– It goes down as ‘p’ goes up.

• Cross-validation may also not work:

– Tends to overestimate ‘p’.

– Due to optimization bias.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Last Time: Complexity Penalties

• We discussed putting a penalty on the model complexity.

– Want to fit the data and have a simple model.

– “To increase the degrees of freedom by one, need to decrease error by λ”.

• Prefers smaller degrees of freedom, if errors are similar.

– Can’t optimize this using gradient descent, since it’s discontinuous in ‘p’.

• Need to search over values of ‘p’.

Bayesian Information Criterion (BIC)

• A disadvantage of these methods:

– Still prefers a larger ‘p’ as ‘n’ grows.

• Solution: make λ depend on ‘n’.

• For example, the Bayesian information criterion (BIC) uses:

• BIC penalizes a bit more than AIC for large ‘n’.

– As ‘n’ goes to ∞, recovers “true” model (“consistent” for model selection).

• In practice, we usually just try a bunch of different λ values.

– Picking λ is like picking ‘k’ in k-means.

Discussion of other Scores for Model Selection

• There are many other scores:

– Elbow method (corresponds to specific choice of λ).

• You could also use BIC for choosing ‘k’ in k-means.

– Methods based on validation error.

• “Take smallest ‘p’ within one standard error of minimum cross-validation error”.

– Minimum description length.

– Risk inflation criterion.

– False discovery rate.

– Marginal likelihood (CPSC 440).

• These can adapted to use the L1-norm and other errors.

Next Topic: Feature Selection

Motivation: Discovering Food Allergies

• Recall the food allergy example:

• What I want to know which foods are making me sick?
– Rather than building a black box that tells me if I will be sick.

• Instead of prediction, we want to do feature selection:
– Which foods are “relevant” for predicting “sick”.

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

Sick?

1

1

0

1

Feature Selection

• General feature selection problem:

– Find the features (columns) of ‘X’ that are important for predicting ‘y’.
• “What are the relevant factors?”
• “Which basis functions should I use among these choices?”
• “What types of new data should I collect?”
• “How can I speed up computation?”

• One of most important problems in ML/statistics, but very messy.
– For now, we will say a feature is “relevant” if it helps predict yi from xi.

“Association” Approach

• A simple/common way to do feature selection:

– For each feature ‘j’, compute correlation between feature values xj and ‘y’.
• Say that ‘j’ is relevant if correlation is above 0.5 or below -0.5.

• Turns feature selection into hypothesis testing for each feature.
• There are many other measures of “dependence” (Wikipedia).

• Usually gives unsatisfactory results as it ignores variable interactions:

– Includes irrelevant variables: “Taco Tuesdays”.
• If tacos make you sick, and you often eat tacos on Tuesdays, it will say “Tuesday” is relevant.

– Excludes relevant variables: “Diet Coke + Mentos Eruption”.
• Diet coke and Mentos don’t make you sick on their own, but together they make you sick.

https://en.wikipedia.org/wiki/Correlation_and_dependence

Genome-Wide Association Studies

• Genome-wide association studies:

– Measure if there exists a dependency between each individual “single-
nucleotide polymorphism” in the genome and a particular disease.

– Has identified thousands of genes “associated” with diseases.

• But by design this has a huge numbers of false positives (and many false negatives).

https://en.wikipedia.org/wiki/Genome-wide_association_study

“Regression Weight” Approach

• Another simple/common approach to feature selection:
– Fit regression weights ‘w’ based on all features (maybe with least squares).

– Take all features ‘j’ where weight |wj| is greater than a threshold.

• For example: you fit a least squares model with 5 features and get:

– Feature 3 looks the most relevant.

– Feature 4 also looks relevant.

– Feature 5 seems irrelevant.

“Regression Weight” Approach

• Another simple/common approach to feature selection:

– Fit regression weights ‘w’ based on all features (maybe with least squares).

– Take all features ‘j’ where weight |wj| is greater than a threshold.

• This could recognize that “Tuesday” is irrelevant.

– It could assign a large weight to “tacos”, and a small weight to “Tuesday”.

• Since the tacos would “explain” the correlation between “Tuesday” and “sick”.

• Assuming you get enough data, and you sometimes eat tacos on other days.
(And the relationship is actually linear.)

“Regression Weight” Approach

• Another simple/common approach to feature selection:

– Fit regression weights ‘w’ based on all features (maybe with least squares).

– Take all features ‘j’ where weight |wj| is greater than a threshold.

• Has major problems with collinearity:

– If the “Tuesday” variable always equals the “taco” variable,
it could say that Tuesdays are relevant but tacos are not.

– If you have two copies of an irrelevant feature,
it could take both irrelevant copies.

Digression: “Feature” vs. “Model” Selection?

• Model selection: “which model should I use?”

– KNN vs. decision tree, depth of decision tree, degree of polynomial basis.

• Feature selection: “which features should I use?”

– Using feature 10 or not, using xi
2 as part of basis.

• These two tasks are highly-related:

– It is a different “model” if we add xi
2 to linear regression.

– But the xi
2 term is just a “feature” that could be “selected” or not.

– Usually, “feature selection” means choosing from some “original” features.

• You could say that “feature” selection is a special case of “model” selection.

Model Selection

Feature
Selection

Next Topic: Search and Score Methods

Can it help prediction to throw features away?

• Yes, because linear regression can overfit with large ‘d’.

– Even though it’s “just” a hyper-plane.

• Consider using d=n, with random features: X=randn(n,d).

– With high probability, you will be able to get a training error of 0.

– But the features were random, this is completely overfitting.

• You could view “number of features” as a hyper-parameter.

– Model gets more complex as you add more features.

Search and Score Methods

• Most common feature selection framework is search and score:
1. Define score function f(S) that measures quality of a set of features ‘S’.
2. Now search for the variables ‘S’ with the best score.

• Example with 3 features:
– Compute “score” of selecting only feature 1.
– Compute “score” of selecting only feature 2.
– Compute “score” of selecting only feature 3.
– Compute “score” of selecting only features {1,2}.
– Compute “score” of selecting only features {1,3}.
– Compute “score” of selecting only features {2,3}.
– Compute “score” of selecting all features {1,2,3}.
– Compute “score” of selecting no features {}.
– Return the set of features ‘S’ with the best “score”.

Which Score Function?

• The score cannot be the training error.

– Training error goes down as you add features, so will select all features.

• A more logical score is the validation error.

– “Find the set of features that gives the lowest validation error.”

– To minimize test error, this is what we want.

• But there are problems due to the large number of sets of variables:

– If we have ‘d’ variables, there are 2d sets of variables.

– Optimization bias is high: we’re optimizing over 2d models (not 10).
• So prone to false positives: irrelevant variables will sometimes help by chance.

“Number of Features” Penalties

• To reduce false positives, we can again use complexity penalties:

– We’re using ‘xiS’ as the features ‘S’ of example xi.

– Above we minimize squared error plus a penalty on number of features.
• “You can include an extra feature if it reduces training error by at least 𝜆.”

• If two ‘S’ have similar error, this prefers the smaller set.
– It prefers removing feature 3 instead of having w3 = 0.00001.

• We often this the “L0-norm” instead of writing “size(S)”…

“L0-Norm” and “Number of Features We Use”

• In linear models, setting wj = 0 is the same as removing feature ‘j’:

• The L0 “norm” is the number of non-zero values (||w||0 = size(S)).

– Not actually a true norm.

– If ‘w’ has a small L0-norm, then it does not use many features.

L0-penalty: optimization

• L0-norm penalty for feature selection:

• Suppose we want to use this to evaluate the features S = {1,2}:

– First fit the ‘w’ just using features 1 and 2.

– Now compute the training error with this ‘w’ and features 1 and 2.

– Add λ*2 to the training error to get the score.

• We repeat this with other choices of ‘S’ to find the “best” features.
21

L0-penalty: interpretation

• L0-norm penalty for feature selection:

• Balances between training error and number of features we use.

– For λ=0, we get least squares with all features (no penalty on non-zeroes).

– For λ=∞, we must set w=0 and not use any features (infinite penalty).

– For other λ, balances between training error and number of non-zeroes.

• Larger λ puts more emphasis on having zeroes in ‘w’ (more features removed).

• Different values give AIC, BIC, and so on.

22

Forward Selection (Greedy Search Heuristic)

• In search and score, it’s also just hard to search for the best ‘S’.

– There are 2d possible sets.

• A common greedy search procedure is forward selection:

Forward Selection (Greedy Search Heuristic)
• Forward selection algorithm for variable selection:

1. Start with an empty set of features, S = [].
2. For each possible feature ‘j’:

• Compute scores of features in ‘S’ combined with feature ‘j’.

3. Find the ‘j’ that has the best score when added to ‘S’.
4. Check if {S ∪ j} improves on the best score found so far.
5. Add ‘j’ to ‘S’ and go back to Step 2.

• A variation is to stop if no ‘j’ improves the score over just using ‘S’.

• Runtime of forward selection:
– We fit O(d2) models, out of the 2d possible models with different features

• Each step requires fitting up to ‘d’ models, and there are up to ‘d’ steps.

– Total cost will be O(d2) times the cost of fitting an individual model.
• See bonus for the case of least squares, and how you fit “updated” model faster than re-fitting.

• Not guaranteed to find the best set, but fitting fewer models reduces many problems:
– Cheaper, overfits less, has fewer false positives.

Backward Selection and RFE
• Forward selection often works better than naïve methods.

• A related method is backward selection:
– Start with all features, compute score after removing each feature,

remove the one that improves the score the most.

• If you consider adding or removing features, it’s called stagewise selection.

• Stochastic local search is a class of fancier methods.
– Simulated annealing, genetic algorithms, ant colony optimization, etc.

• Recursive feature elimination is another related method:
– Fit parameters of a regression model, prune features with small regression weights, repeat.

• See bonus slide for discussion of feature selection in random forests.

Next Topic: Ambiguity of Feature Selection

Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

• Predict whether someone has particular genetic variation (SNP).

– Location of mutation is in “mitochondrial” DNA.

• “You almost always have the same value as your mom”.

– For simplicity we’ll assume 1950s-style gender and parentage.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1

Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

• True model:

– (SNP = mom) with very high probability.

– (SNP != mom) with some very low probability.

• What are the “relevant” features for this problem?

– Mom is relevant and {gender, dad} are not relevant.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1

https://en.wikipedia.org/wiki/Human_mitochondrial_genetics

Is “Relevance” Clearly Defined?

• What if “mom” feature is repeated?

• Are “mom” and “mom2” relevant?

– Should we pick them both?

– Should we pick one because it predicts the other?

• If features can be predicted from features, can’t know which to pick.

– Collinearity is a special case of “dependence” (which may be non-linear).

gender mom dad mom2

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1

Is “Relevance” Clearly Defined?

• What if we add (maternal) “grandma”?

• Is “grandma” relevant?

– You can predict SNP very accurately from “grandma” alone.

– But “grandma” is irrelevant if I know “mom”.

• There is no information gained from “grandma” if you already have “mom”.

gender mom dad grandma

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1

Is “Relevance” Clearly Defined?

• What if we don’t know “mom”?

• Now is “grandma” is relevant?

– Without “mom” variable, using “grandma” is the best you can do.

• A feature is only “relevant” in the context of available features.

– Adding/removing features can make features relevant/irrelevant.

SNP

1

0

0

1

gender grandma dad

F 1 0

M 0 1

F 0 0

F 1 1

Summary

• Feature selection is task of choosing the “relevant” features.

– Obvious simple approaches have obvious simple problems.

• Search and score: find features that optimize some score.

– L0-norm penalties are the most common scores.

– Forward selection is a heuristic to search over a smaller set of features.

• “Relevance” depends on context.

– Adding/removing features can make things relevant/irrelevant.

• Next time: getting a good test error even with irrelevant features.

Feature Selection in Random Forests

• Decision trees naturally do feature selection while learning:

– The features used for the splits are the ones that are “selected”.

• There are a variety of ways to evaluate features in random forests:

– Compute proportion of trees that use feature ‘j’.

– Compute average infogain increase when using feature ‘j’.

– Permute all values of feature ‘j’, and see how “out of bag” error increases.

• You could use any of above to select features from random forest.

Mallow’s Cp

• Older than AIC and BIC is Mallow’s Cp:

• Minimizing this score is equivalent to L0-regularization:

• So again, viewing λ as hyper-parameter, this score is special case.

Adjusted R2

• Older than AIC and BIC and Mallow’s Cp is adjusted R2:

• Maximizing this score is equivalent to L0-regularization:

• So again, viewing λ as hyper-parameter, this score is special case.

ANOVA
• Some people also like to compute this “ANOVA” quantity:

• This is based on the decomposition of “total squared error” as:

• Notice that “explained error” goes up as our usual (“residual”) error goes down.
• Trying to find the ‘k’ features that maximize ‘f’ (“explain the most variance”) is

equivalent to L0-regularization with a particular λ (so another special case).

Information Criteria with Noise Variance

• We defined AIC/BIC for feature selection in least squares as:

• The first term comes from assuming yi = wTxi + ε,
where ε comes from a normal distribution with a variance of 1.
– We’ll discuss why when we discuss MLE and MAP estimation.

– If you aren’t doing least squares, replace first term by “log-likelihood”.

• If you treat variance as a parameter, then after some manipulation:

• However, this is again equivalent to just changing λ.

Complexity Penalties for Other Models

• Scores like AIC and BIC can also be used in other contexts:

– When fitting a decision tree, only split a node if it improves BIC.

– This makes sense if we’re looking for the “true tree”, or maybe just a
simple/interpretable tree that performs well.

• In these cases we replace “L0-norm” with “degrees of freedom”.

– In linear models fit with least squares, degrees of freedom is number of
non-zeroes.

– Unfortunately, it is not always easy to measure “degrees of freedom”.

Cost of Forward Selection

• Each step of forward selection fits up to ‘d’ model.

• And we do ‘d’ steps of forward selection.

• So cost of forward selection is O(d2) times cost of fitting one model.

• For linear regression with squared error, cost is O(nd2 + d3).

– So total cost of forward selection would be O(nd4 + d5).

Faster Forward Selection for Least Squares

• Instead of fitting models from scratch, we can often speed up forward
selection by re-using computation and/or updating models.

• For linear regression with the squared error:
– Can reduce O(nd4) term from repeatedly compute O(d2) sub-matrices of XTX:

• Compute XTX once for all, then grab relevant sub-matrix for each model.

• Costs O(nd2) to compute XTX, then O(d2) to grab each sub-matrix.

• Reduces cost of this step to O(nd2 + d4).

– Can reduce O(d5) term from solving O(d2) linear systems involving sub-matrices of XTX:
• Each time you add or remove a feature, it is a rank-1 updated to the sub-matrix of XTX.

• By storing factorized XTX sub-matrix, you could do a rank-1 update for O(d2).
– And cost of solving a linear system for a factorized matrix is also O(d2).

• Total cost is O(d4) to do this O(d2) times.

– So by updating models, can reduce cost from O(nd4 + d5) down to O(nd2 + d4).
• Which is similar to cost of solving one least squares problem, particularly if n>>d.

Structure Learning: Unsupervised Feature Selection

• “News” data: presence of 100 words in 16k newsgroup posts:

• Which words are related to each other?

• Problem of structure learning: unsupervised feature selection.

Structure Learning: Unsupervised Feature Selection

• Optimal tree structure:
(ignore arrows)

Naïve Approach: Association Networks

• A naïve approach to structure learning (“association networks”):
– For each pair of variables, compute a measure of similarity or dependence.

• Using these n2 similarity values either:
– Select all pairs whose similarity is above a threshold.
– Select the “top k” most similar features to each feature ‘j’.

• Main problems:
– Usually, most variables are dependent (too many edges).

• “Sick” is getting connected to “Tuesdays” even if “tacos” are a variable.

– “True” neighbours may not have the highest dependence.
• “Sick” might get connected to “Tuesdays” before it gets connected to “milk”.

• (Variation: best tree can be found as minimum spanning tree problem.)

Example: Vancouver Rain Data

• Consider modeling the “Vancouver rain” dataset.

• The strongest signal in the data is the simple relationship:
– If it rained yesterday, it’s likely to rain today (> 50% chance that xt-1 = xt).

– But an “association network” might connect all days (all dependent).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 …

0 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 0 0

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1

0 0 0 0 1 1 0 0 0

0 1 1 0 0 0 0 1 1

Dependency Networks
• A better approach is dependency networks:

– For each variable ‘j’, make it the target in a supervised learning problem.

– Now we can use any feature selection method to choose j’s “neighbours”.
• Forward selection, L1-regularization, ensemble methods, etc.

• Can capture conditional independence:
– Might connect “sick” to “tacos”, and “tacos” to “Tuesdays”.

• Without connecting “sick” directly to “Tuesdays”.

– Might connect “grandma” to “mom”, and “mom” to “SNP”.
• Without connection “grandma” directly to “SNP”.

Dependency Networks

• Dependency network fit to Vancouver rain data (different λ values):

Dependency Networks

• Variation on dependency networks on digit image pixels:

