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Last Time: Change of Basis

e Last time we discussed change of basis:

— E.g., polynomial basis:
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— You can fit non-linear models with linear regression.
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— Just treat Z’ as your data, then fit linear model.
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Next Topic: Gradient Descent



Optimization Terminology

* When we minimize or maximize a function we call it “optimization”.
— In least squares, we want to solve the “optimization problem”:
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— The function being optimized is caIIed the “objective”.
* Also sometimes called “loss” or “cost”, but these have different meanings in ML.

— The set over which we search for an optimum is called the domain.

— Often, instead of the minimum objective value, you want a minimizer.
* A set of parameters ‘w’ that achieves the minimum value.



Discrete vs. Continuous Optimization

* We have seen examples of continuous optimization:

— Least squares:
 Domain is the real-valued set of parameters ‘w’.
* Objective is the sum of the squared training errors.

* We have seen examples of discrete optimization:
— Fitting decision stumps:
 Domain is the finite set of unique rules.
* Objective is the number of classification errors (or infogain).

e \We have also seen a mixture of discrete and continuous:
— K-means: clusters are discrete and means are continuous.



Stationary/Critical Points

 A‘w with V f(w) =0 is called a stationary point or critical point.

— The slope is zero so the tangent plane is “flat”.
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Stationary/Critical Points

 A‘w with V f(w) =0 is called a stationary point or critical point.

— The slope is zero so the tangent plane is “flat”.
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— If we’re minimizing, we would ideally like to find a global minimum.

e But for some problems the best we can do is find a stationary point where V f(w)=0.



Motivation: Large-Scale Least Squares

* Normal equations find ‘w’ with V f(w) = 0 in O(nd? + d3) time.
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— Very slow if ‘d’ is large.

* Alternative when ‘d’ is large is gradient descent methods.
— Probably the most important class of algorithms in machine learning.



Gradient Descent for Finding a Local Minimum

* Gradient descent is an iterative optimization algorithm:

— It starts with a “guess” w®.
— It uses the gradient V f(w®) to generate a better guess w.
— It uses the gradient V f(w') to generate a better guess w-?.

— It uses the gradient V f(w?) to generate a better guess w3.

— The limit of w' as ‘t’ goes to o= has V f(w!) = 0.

* |t converges to a global optimum if f” is “convex”.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

(Wl{nim;z er 7

SL:fe IS m)‘am We t Lme wiﬂ\ S,O(Je V‘F(W')

So maKe 'w more f:osm\/e.



Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

e Gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Gradient Descent for Finding a Local Minimum

— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w = w’ = LYW

* This decreases ‘f’ if the “step size” a® is small enough.
« Usually, we decrease a? if it increases ‘f’ (see “findMin”).

— Repeat to successively refine the guess:
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Data Space vs. Parameter Space

e Usual regression plot is in the “x vs. y” data space (left):
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 On therightis plot of the “intecerpt vs. slope” parameter space.
— Points in parameter space correspond to models (* is least squares parameters).



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



Gradient Descent in Data Space vs. Parameter Space

* Gradient descent starts with an initial guess in parameter space:
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— And each iteration tries to move guess closer to solution.



W, Gradient Descent in 2D
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* Under weak conditions, algorithm converges to a ‘w’ with V f(w) = 0.

— ‘f” is bounded below, V f can’t change arbitrarily fast, small-enough constant a'.
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Gradient Descent for Least Squares

* The least squares objective and gradient:
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* Gradient descent iterations for least squares:
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Normal Equations vs. Gradient Descent

e Least squares via normal equations vs. gradient descent:

— Normal equations cost O(nd? + d3).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.

e Each of the ‘t’ iterations costs O(nd).

— Gradient descent can be faster when ‘d’ is very large:
* If solution is “good enough” for a ‘t’ less than minimum(d,d?/n).
e CPSC 5XX: ‘t’ proportional to “condition number” of X™X (no direct ‘d’ dependence).

— Normal equations only solve linear least squares problems.

* Gradient descent solves many other problems.



Step Size Considerations

 The step size a' must be set carefully for gradient descent to work.

— If at is too large gradient descent may not converge.
— If at is too small gradient descent may be too slow.
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Beyond Gradient Descent

* There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient descent (later in course).

* This course focuses on gradient descent and stochastic gradient:
— They’re simple and give reasonable solutions to most ML problemes.
— But the above can be faster for some applications.



Next Topic: Convex Functions
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Convex Functions //// ///
e |sfinding a ‘w’ with Vf(w) = 0 good enough? //

— Yes, for convex functions.
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e A function is convex if the area above the function is a convex set.
— All values between any two points above function stay above function.



Convex Functions

* All ‘w” with V f(w) = 0 for convex functions are global minima.
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— Normal equations find a global minimum because least squares is convex.



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.

— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.

— The sum of convex functions is a convex function.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:

— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.{

— A convex function multiplied by non-negative constant is convex.

— Norms and squared norms are convex.

— The sum of convex functions is a convex functiop. \ \/:2\«
— The max of convex functions is a convex function.

)

‘F(w)z Ma{zllgz}p}/g iS convex,

¥4

(owvey




How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.
— Composition of a convex function and a linear function is convex.
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How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.

— Composition of a convex function and a linear function is convex.

e But: not true that multiplication of convex functions is convex:

— If f(x)=x (convex) and g(x)=x? (convex), f(x)g(x) = x> (not convex).



How do we know if a function is convex?

* Some useful tricks for showing a function is convex:
— 1-variable, twice-differentiable function is convex iff f”’(w) = 0 for all ‘w’.
— A convex function multiplied by non-negative constant is convex.
— Norms and squared norms are convex.
— The sum of convex functions is a convex function.
— The max of convex functions is a convex function.

— Composition of a convex function and a linear function is convex.

Also not true that composition of convex with convex is convex:
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Example: Convexity of Linear Regression (Easy Way)

* Consider linear regression objective with squared error:
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* We can use that this is a convex function composed with linear:
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Convexity in Higher Dimensions

e Twice-differentiable ‘d’-variable function is convex iff:

— Eigenvalues of Hessian V2 f(w) are non-negative for all ‘w’.

* True for least squares where V2 f(w) = XX for all ‘w’.

— See bonus slides for why X™X has non-negative eigenvalues.

* Unfortunately, sometimes it is hard to show convexity this way.

— Usually easier to just use some of the rules as we did on the last slide.



Summary

* Gradient descent finds critical point of differentiable function.

— Can be faster than normal equations for large ‘d’ values.
— Finds global optimum if function is convex.

e Convex functions:

— Set of functions with property that V f(w) = 0 implies ‘W’ is a global min.
— Can (usually) be identified using a few simple rules.

e Nexttime:

— Linear regression without the outlier sensitivity...



g question stop following [ 3 IRVIT=0 )

Norms Norms Norms: Getting from Sums to Norms
| was going over the solutions for A3 and | am still a bit confused on how to get from a sum to a norm in some situations. | know the basic ones that
give me || Xw — y”2 and stuff, but when other things are thrown in the mix | get a bit confused. For example, :.f_l v,-(wT z; — y,-)2

gives ||V/2(Xw — y)||>. From my understanding v is a vector and vi is the number at position | in that vector. How does the summation of these
indices result in the diagonal matrix V and not just the vector v?

Furthermore, when we have a summation like Z‘;zl Ajlw;), itis simplified to || Aw||,. How does the lambda end up inside the L1 norm? | thought that

a summation could be simplified to a L1 norm if its terms are wrapped around the absolute value symbol. In this case the lambda is not, so how is it
able to appear inside the norm like that?

hw3  midterm_exam

the instructors' answer, where instructors collectively construct a single answer

| know that this notation seems intimidating if this is the first time you see it. Fortunately, there are really only a few "rules” you need to figure out, and
you'll find that these are use all over the place.

For those particular questions you'll want to memorize the way that the three common norms appear:
Yialrl = el i r? = ||r||2, maX;c(12,...a}{|7i|} = ||7||o0- So when you see max, sum of non-negative values, or sum of squared values
you should think of these norms.

Next, notice what multiplying by a diagonal matrix does: if you multiply a vector w (for example) by a diagonal matrix then you multiply each element w;
by the corresponding diagonal element. If you multiply matrix X (for example) by a diagonal matrix then you multiply each row of X by the
corresponding diagonal element.

The V'/2 shows up because we're multiplying the square.

The other really useful ones to know are Y & | v;r; = v'rif the elements aren't necessarily non-negative, p P Z;-':l Qi T;T; = z' Az, and
S Er=XTr

(All of the above follow from definitions, but it takes some practice to recognize these common forms. That's why we made you get some practice on
the assignments, and why we covered this notation before the midterm so that you study it before we start using it a lot. It is incredibly common the ML

world.)

m good answer | 2 Updated 8 months ago by Mark Schmidt



Constraints, Continuity, Smoothness

 Sometimes we need to optimize with constraints:

— Later we’ll see “non-negative least squares”.
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— A vector ‘w’ satisfying w > 0 (element-wise) is said to be “feasible”.

* Two factors affecting difficulty are continuity and smoothness.
— Continuous functions tend to be easier than discontinuous functions.
— Smooth/differentiable functions tend to be easier than non-smooth.
— See the calculus review here if you haven’t heard these words in a while.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf

Convexity, min, and argmin

 |If a function is convex, then all critical points are global optima.

 However, convex functions don’t necessarily have critical points:

— For example, f(x) = a*x, f(x) = exp(x), etc.

* Also, more than one ‘x’ can achieve the global optimum:

— For example, f(x) = c is minimized by any X’.



Why use the negative gradient direction?

* For a twice-differentiable ‘t/, multivariable Taylor expansion gives:
PP = Flud) 4 T CE =08 +4 (O ()

'ﬁ’f Some V! belween
Wt+, alﬂl Wt.

* If gradient can’t change arbitrarily quickly, Hessian is bounded and:

L= FLE) * VWO T(E w8 + 0UILE -t
-

lot’(ome) ne9;9ié/g oS W

o
— But which choice of wt*! decreases ‘f’ the most? 9<% close wt

o As | |wti-wt| | gets close to zero, the value of wt*! minimizing f(w'*!) in this formula
converges to (wt! —wt) = - at V f(wt) for some scalar at
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Optimizer “findMin” Details
g question stop following

The minimizer function
Hi all,

I'm just curious how the minimizers given to us works. Are there any resources can give us more details about it?

the instructors' answer, where instructors collectively construct a single answer

It's just a basic gradient descent implementation with some clever guesses for the step-size.

The step-size on each iteration is initialized using the method from this classic paper (which works surprisingly well but we don't really know why except
in two dimensions):
http://pages.cs.wisc.edu/~swright/726/handouts/barzilai-borwein._pdf

That step-size is evaluated using a standard condition ("Armijo condition”) and then it fits a polynomial regression model based on the function and
directional derivative values and tries the step-size minimizing this polynomial. Both these tricks are described in Nocedal and Wright's "Numerical
Optimization” book.

m good answer Updated 7 months ago by Mark Schmidt



question @76 e stop following [K: i I

3.3.8

Probably a stupid question, but when we do the gradient descent, is it required to calculate the loss value at each step? Are we allowed to save some middle results and reused them if we calculate both
gradient and the loss? Thank you!

/

hw1

~ An instructor (Mark Schmidt) endorsed this question ~

undo good question | 1 Updated 8 months ago by (Anon. Scale to class

the instructors' answer, where instructors collectively construct a single answer

This is an important practical detail when you implement gradient descent, although there are few ways to interpret the question.
1. Technically, gradient descent never needs to compute the loss value. But you often compute it because it can help in checking whether you have a good step size.

2. Usually, some of the calculations involved in computing the gradient are also need to compute the function value. For example, a function of the form f(Xw) has a gradient of the form XTf’(Xw),
so if you evaluate the function and its gradient at the same 'w' you only want to compute Xw once. The function findMin asks for the function and gradient together so you can do things like this.

k+1

3. When you do a line-search, you often compute f(@) and possibly V f() for some values % that may later become w"™". You can use these quantities in the next iteration, instead of re-computing

them. In findMin, it assumes that the line-search from the previous iteration gives you the current function and gradient value, so these do not need to be computed.

4. For many problems, there are tricks available where you only compute the loss/gradient with respect to a subset of the examples on each iteration, but then you still do the full update:
https://arxiv.org/pdf/1309.2388v2.pdf



