CPSC 340:
 Machine Learning and Data Mining

Nonlinear Regression
Fall 2022

Last Time: Linear Regression

- We discussed linear models:

$$
\begin{aligned}
\hat{y}_{i} & =w_{1} x_{i 1}+w_{2} x_{i 2}+\cdots+w_{d} x_{i d} \\
& =\sum_{j=1}^{d} w_{j} x_{i j}
\end{aligned}
$$

- "Multiply feature x_{ij} by weight w_{j}, add them to get $y_{i}^{\prime \prime \prime}$.
- We discussed squared error function:

$$
\begin{aligned}
& f(w)=\frac{1}{2} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2} \\
& \quad \text { Predicted value }
\end{aligned}
$$

- Minimize ' f ' by equating gradient of ' f ' with zero.
- Interactive demo:
- http://setosa.io/ev/ordinary-least-squares-regression

The Social Cortex

DATA: THE SOCIAL BRAIN HYPOTHESIS, DUNBAR 1998
To predict on test case \tilde{x}. use $\hat{y}_{i}=w^{\top} \tilde{x}_{i}$

Matrix/Norm Notation (MEMORIZE/STUDY THIS)

- We typically assume that vectors are column-vectors.
- We use ' w ' as a "d times 1 " vector containing weight ' w ' in position ' j '.
- We use ' y ' as an " n times 1 " vector containing target ' y_{i} ' in position ' i '.
- We use ' $x x_{i}^{\prime}$ as a "d times 1 " vector containing features ' j ' of example ' i '.
- We're now going to be careful to make sure these are column vectors.
- So ' X ' is a matrix with x_{i}^{\top} in row ' i '.
$w=\left[\begin{array}{c}w_{1} \\ w_{22} \\ \vdots \\ w_{d}\end{array}\right] \quad y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right] \quad x_{i}=\left[\begin{array}{c}x_{11} \\ x_{i 2} \\ \vdots \\ x_{1 d}\end{array}\right] \quad x=\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 d} \\ x_{21} & x_{22} & \cdots & x_{2 d} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n d}\end{array}\right]=\left[\begin{array}{l}x_{1}^{\top}- \\ x_{2}^{\top} \\ \vdots \\ \vdots\end{array}\right]$

Matrix/Norm Notation (MEMORIZE/STUDY THIS)

- We showed how to express various quantities in matrix notation:
- Linear regression prediction for one example: $\hat{y}_{i}=w^{\top} x_{i}$
- Linear regression prediction for all ' n ' examples: $\hat{y}=X_{w}$
- Linear regression residual vector: $r=X_{w}-y$
- Sum of residuals squared in linear regression model:

$$
f(w)=\sum_{i=1}^{n}\left(\sum_{j=1}^{d} w_{j} x_{i j}-y_{i}\right)^{2}=\left\|x_{w}-y\right\|^{2}
$$

- Today: derive gradient and least squares solution in matrix notation.

Digression: Matrix Algebra Review

- Quick review of linear algebra operations we'll use:
- If ' a ' and ' b ' be vectors, and ' A ' and ' B ' be matrices then:

$$
\begin{aligned}
& a^{\top} b=b^{\top} a \\
& \|a\|^{2}=a^{\top} a \\
& (A+B)^{\top}=A^{\top}+B^{\top} \\
& (A B)^{\top}=B^{\top} A^{\top} \\
& (A+B)(A+B)=A A+B A+A B+B B \\
& a^{\top} \underbrace{A b}_{\text {vector }}=\underbrace{b^{\top} A^{\top}}_{\text {vector }} a
\end{aligned}
$$

Sanity check.
ALWAYS CHECK THAT DIMENSIONS MATCH (if not, you did something wrong)

Linear and Quadratic Gradients

- From these rules we have (see post-lecture slide for steps):

$$
\begin{aligned}
& f(n)=\frac{1}{2} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=\frac{1}{2}\left\|x_{w}-y\right\|^{2}=\frac{1}{2} w^{\top} \underbrace{\top}_{\text {matrix }} \underbrace{\top} x_{w}^{\prime} A^{\prime}-w^{\top} \underbrace{}_{\text {vector }} x^{\top} b^{\prime} y+\underbrace{\frac{1}{2} y^{\top} y}_{\text {scalar ' 'c }} \\
& \left.=\frac{1}{2} w^{\top} A w-w^{\top} b+c\right\} \rightarrow \begin{array}{c}
\text { These are scalars } \\
\text { so dimensions match. }
\end{array}
\end{aligned}
$$

- How do we compute gradient?

Let's first do it with $d=1$:

$$
\begin{aligned}
f(w) & =\frac{1}{2} w a w+w b+c \\
& =\frac{1}{2} a w^{2}+w b+c \\
f^{\prime}(w) & =a w+b+0
\end{aligned}
$$

Here are the generalizations to ' d ' dimensions: $\nabla[c]=0$ (zero vector) $\nabla\left[w^{\top} b\right]=b$ $\nabla\left[\frac{1}{2} w^{\top} A w\right]=A_{w}$ (if A is symmetric) $\begin{aligned} & \text { linear and } \\ & \begin{array}{l}\text { quadratic } \\ \text { gradients }\end{array}\end{aligned}$

Linear and Quadratic Gradients

- From these rules we have (see post-lecture slide for steps):

$$
\begin{aligned}
f(w)=\frac{1}{2} \sum_{i=1}^{n}\left(w^{\top} x_{1}-y_{i}\right)^{2}=\frac{1}{2}\left\|x_{w}-y\right\|^{2} & =\frac{1}{2} w^{\top} \underbrace{X^{\top} x_{w}}_{\text {matrix' } A^{\prime}}-w^{\top} \underbrace{x^{\top}}_{\text {vector ' }^{\prime} b^{\top} y}+\underbrace{\frac{1}{2} y^{\top} y}_{\text {scalar- ' } c^{\prime}} \\
& =\frac{1}{2} w^{\top} A w-w^{\top} b+c
\end{aligned}
$$

- Gradient is given by:

$$
\nabla f(w)=A w-b+0
$$

- Using definitions of ' A ' and ' b ': $=X^{\top} X_{w}-X^{\top} y$

Normal Equations for Least Squares Solution

- Set gradient equal to zero to find the "critical" points:

$$
X^{\top} X_{u}-X^{\top} y=0
$$

- We now move terms not involving ' w ' to the other side:

$$
x^{\top} x_{w}=x^{\top} y
$$

- This is a set of 'd' linear equations called the normal equations.
- This a linear system like "Ax = b" from Math 152.
- You can use Gaussian elimination to solve for ' w '.
- In Julia, the " \backslash " command can be used to solve linear systems:

$$
\text { Train: } w=\left(X^{\prime} X\right) \backslash\left(X_{y}^{\prime}\right) \quad \text { Predict: shat }=X_{\text {test }} * w
$$

Incorrect Solutions to Least Squares Problem
The least squares objective is $f(w)=\frac{1}{2}\left\|x_{n}-y\right\|^{2}$
The minimizes of this objective are solutions to the linear system:

$$
X^{\top} X_{w}=X^{\top} y
$$

The following are not the solutions to the least squares problem:

$$
w=\left(x^{\top} x\right)^{-1}\left(x^{\top} y\right) \quad \text { (only true if } x^{\top} x \text { is invertible) }
$$

$w X^{\top} X=X^{\top} y \quad$ (matrix multiplication is not commutative, dimensions don't

$$
w=\frac{x^{\top} y}{x^{\top} x} \quad \text { (you cannot divide by a matrix) }
$$

Least Squares Cost

- Cost of solving "normal equations" $X^{\top} X w=X^{\top} y$?
- Forming $X^{\top} y$ vector costs $O(n d)$.
- It has ' d ' elements, and each is an inner product between ' n ' numbers.
- Forming matrix $X^{\top} X$ costs $O\left(n d^{2}\right)$.
- It has d^{2} elements, and each is an inner product between ' n ' numbers.
- Solving a $\mathrm{d} x \mathrm{~d}$ system of equations costs $\mathrm{O}\left(\mathrm{d}^{3}\right)$.
- Cost of Gaussian elimination on a d-variable linear system.
- Other standard methods have the same cost.
- Overall cost is $O\left(n d^{2}+d^{3}\right)$.
- Which term dominates depends on ' n ' and ' d '.

Least Squares Issues

- Issues with least squares model:
- Solution might not be unique.
- It is sensitive to outliers.
- It always uses all features.

- Data might so big we cannot store $X^{\top} X$.
- If you have 10 million features, this requires $\mathrm{O}\left(\mathrm{d}^{2}\right)$.
- Or you cannot afford the $O\left(n d^{2}+d^{3}\right)$ cost.
- It might predict outside range of y_{i} values.
- For some applications, only positive y_{i} values are valid.
- It assumes a linear relationship between x_{i} and y_{i}.

Non-Uniqueness of Least Squares Solution

- Why is the solution vector ' w ' not unique?
- Imagine having two features that are identical for all examples.
- I can increase weight on one feature, and decrease it on the other, without changing predictions.

$$
\hat{y}_{i}=w_{1} x_{i 1}+w_{2} \underbrace{x_{i 1}}_{\text {opy }}=\left(w_{1}+w_{2}\right)_{x_{i 1}}+0 x_{i 1}
$$

- In this setting, if $\left(w_{1}, w_{2}\right)$ is a solution then $\left(w_{1}+w_{2}, 0\right)$ is another solution.
- This is special case of features being "collinear":
- One feature is a linear function of the others.
- But, any ' w ' where $\nabla f(w)=0$ is a global minimizer of ' f '.
- This is due to convexity of ' f ', which we will discuss later.

Next Topic: Non-Linear Regression

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear.

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear.

Slope could slowly change or reach asymptote.

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear.

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear.
"Piecewise linear": different pieces follow different linear functions.
(or be linear up to asymptote or phase transition)

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear. "Periodic" signals.

Motivation: Non-Linear Regression

- Many relationships are approximated well by linear function.
- But many are also highly non-linear. "Spike then recover"

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.
- Probabilistic models: fit $p\left(x_{i} \mid y_{i}\right)$ and $p\left(y_{i}\right)$ with Gaussian or other model.
- Take CPSC 440.

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.
- Probabilistic models: fit $p\left(x_{i} \mid y_{i}\right)$ and $p\left(y_{i}\right)$ with Gaussian or other model.
- Non-parametric models:
- KNN regression:
- Find ' k ' nearest neighbours of \widetilde{x}_{i}.
- Return the mean of the corresponding y_{i}.

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.
- Probabilistic models: fit $p\left(x_{i} \mid y_{i}\right)$ and $p\left(y_{i}\right)$ with Gaussian or other model.
- Non-parametric models:
- KNN regression.
- Could be weighted by distance.
- Close points ' j ' get more "weight" w_{ij}.

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.
- Probabilistic models: fit $p\left(x_{i} \mid y_{i}\right)$ and $p\left(y_{i}\right)$ with Gaussian or other model.
- Non-parametric models:
- KNN regression.
- Could be weighted by distance.
- 'Nadaraya-Watson': weight all y_{i} by distance to x_{i}.

$$
\hat{y}_{i}=\frac{\sum_{j=1}^{n} v_{i j} y_{j}}{\sum_{j=1}^{n} v_{i}}
$$

Adapting Counting/

- Can adapt classification meth
- Regression tree: tree with mea >
- Probabilistic models: fit $p\left(x_{i} \mid y\right.$
- Non-parametric models:
- KNN regression.
- Could be weighted by distance.
- 'Nadaraya-Watson': weight all y_{i}

- 'Locally linear regression': for each x_{i}, fit a linear model weighted by distance. (Better than KNN and NW at boundaries.)

Adapting Counting/Distance-Based Methods

- Can adapt classification methods to perform non-linear regression:
- Regression tree: tree with mean value or linear regression at leaves.
- Probabilistic models: fit $p\left(x_{i} \mid y_{i}\right)$ and $p\left(y_{i}\right)$ with Gaussian or other model.
- Non-parametric models:
- KNN regression.
- Could be weighted by distance.
- 'Nadaraya-Watson': weight all y_{i} by distance to x_{i}.
- 'Locally linear regression': for each x_{i}, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)
- Ensemble methods:
- Can improve performance by averaging predictions across regression models.

Adapting Counting/Distance-Based Methods

- Applications of non-linear regression (we will see many more):
- Regression forests for fluid simulation:
- KNN for image completion:
- Combined with "graph cuts" and "Poisson blending".
- See also "PatchMatch".
- KNN regression for "voice photoshop":
- Combined with "dynamic time warping" and "Poisson blending".
- We will first focus on linear models with non-linear transforms.
- These are the building blocks for more advanced methods.

Why don't we have a y-intercept?

- Linear model is $\hat{y}_{i}=w x_{i}$ instead of $\hat{y}_{i}=w x_{i}+w_{0}$ with y-intercept w_{0}.
- Without an intercept, if $x_{i}=0$ then we must predict $\hat{y}_{i}=0$.

Why don't we have a y-intercept?

- Linear model is $\hat{y}_{i}=w x_{i}$ instead of $\hat{y}_{i}=w x_{i}+w_{0}$ with y-intercept w_{0}.
- Without an intercept, if $x_{i}=0$ then we must predict $\hat{y}_{\mathrm{i}}=0$.

Adding a Y-Intercept ("Bias") Variable

- Simple trick to add a y-intercept ("bias") variable:
- Make a new matrix " Z " with an extra feature that is always " 1 ".

$$
X=\left[\begin{array}{c}
-0.1 \\
0.3 \\
0.2
\end{array}\right]
$$

$$
Z=\left[\begin{array}{cc}
1 & -0.1 \\
1 & 0.3 \\
1 & 0.2
\end{array}\right]
$$

- Now use " Z " as your features in linear regression.
- We will use ' v ' instead of ' w ' as regression weights when we use features ' Z '.

$$
\hat{y}_{i}=\underset{v_{1}}{v_{1}} z_{i 1}+\underset{w_{1}}{v_{2}} z_{i 2}=w_{0}+w_{1} x_{i 1}
$$

- So we can have a non-zero y-intercept by changing features.
- This means we can ignore the y-intercept to make cleaner derivations/code.

Motivation: Limitations of Linear Models

- On many datasets, y_{i} is not a linear function of x_{i}.

- A quadratic function would be a better fit for this dataset.

Non-Linear Feature Transforms

- Can we use linear least squares to fit a quadratic model?

$$
\hat{y}_{i}=w_{0}+w_{1} x_{i}+w_{2} x_{i}^{2}
$$

- Notice that this is a non-linear function of x_{i} but a linear function of ' w '.
- So you can implement this by changing the features:

$$
X=\left[\begin{array}{c}
0.2 \\
-0.5 \\
1 \\
4
\end{array}\right] \quad Z=\left[\begin{array}{ccc}
1 & 0.2 & (0.2)^{2} \\
1 & -0.5 & (-0.5)^{2} \\
1 & 4 & (1.2)^{2} \\
1-\text {-int } & x & x^{2}
\end{array}\right]
$$

- Fit new parameters ' v ' under "change of basis": solve $Z^{\top} Z v=Z^{\top} y$.
- It's a linear function_of w, but a quadratic function of x_{i}.

Non-Linear Feature Transforms

To predict on new data \tilde{X}, form \tilde{Z} from \tilde{X} and take $y=\tilde{Z} v$

General Polynomial Features (d=1)

- We can have a polynomial of degree ' p ' by using these features:

$$
Z=\left[\begin{array}{ccccc}
1 & x_{1} & \left(x_{1}\right)^{2} & \cdots & \left(x_{1}\right)^{p} \\
1 & x_{2} & \left(x_{2}\right)^{2} & \cdots & \left(x_{2}\right)^{p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \left(x_{n}\right)^{2} & \cdots & \left(x_{n}\right)^{p}
\end{array}\right]
$$

- There are polynomial basis functions that are numerically nicer: - Such as Lagrange polynomials (see CPSC 303).

General Polynomial Features
 Degree 7

- If you have more than one feature, you can include interactions:
- With $\mathrm{p}=2$, in addition to $\left(\mathrm{x}_{\mathrm{i} 1}\right)^{2}$ and $\left(\mathrm{x}_{\mathrm{i} 2}\right)^{2}$ you could include $\mathrm{x}_{\mathrm{i} 1} \mathrm{x}_{\mathrm{i} 2}$.

"Change of Basis" Terminology

- Instead of "nonlinear feature transform", in machine learning it is common to use the expression "change of basis".
- The z_{i} are the "coordinates in the new basis" of the training example.
- "Change of basis" means something different in math:
- Math: basis vectors must be linearly independent (in ML we don't care).
- Math: change of basis must span the same space (in ML we change space).
- Unfortunately, saying "change of basis" in ML is common.
- When I say "change of basis", just think "nonlinear feature transform".

Linear Basis vs. Nonlinear Basis

Usual linear Regression
Train:

- Use ' X^{\prime} and ' y ' to find ' w '

Test:

Linear regression with change of bess
Train:

- Use 'x' to find '2'
- Use ' 2 ' and ' y ' to find ' v '

Test

- Use ' \tilde{x} ' to find ' \tilde{z} '
- Use \tilde{Z} and 'v' to find \hat{y}

Change of Basis Notation (MEMORIZE)

- Linear regression with original features:
- We use ' X ' as our " n by d" data matrix, and ' w ' as our parameters.
- We can find d-dimensional ' w ' by minimizing the squared error:

$$
f(w)=\frac{1}{2}\left\|x_{w}-y\right\|^{2}
$$

- Linear regression with nonlinear feature transforms:
- We use ' Z ' as our " n by k" data matrix, and ' v ' as our parameters.
- We can find k-dimensional ' v ' by minimizing the squared error:

$$
f(v)=\frac{1}{2}\|2 v-y\|^{2}
$$

- Notice that in both cases the target is still ' y '.

Degree of Polynomial and Fundamental Trade-Off

- As the polynomial degree increases, the training error goes down.

- But approximation error goes up: we start overfitting with large ' p '.
- Usual approach to selecting degree: validation or cross-validation.

Beyond Polynomial Transformations

- Polynomials are not the only possible transformation:
- Exponentials, logarithms, trigonometric functions, and so on.
- The right non-linear transform will vastly improve performance.
- Later we will see "deep learning" where you try to learn a transformation. For periodic data

Summary

- Matrix notation for expressing least squares problem.
- Normal equations: solution of least squares as a linear system.
- Solve ($\left.X^{\top} \mathrm{X}\right) w=\left(X^{\top} y\right)$.
- Solution might not be unique because of collinearity.
- But any solution is optimal because of "convexity".
- Tree/probabilistic/non-parametric/ensemble regression methods.
- Non-linear transforms:
- Allow us to model non-linear relationships with linear models.
- Next time: how to do least squares with a million features.

Linear Least Squares: Expansion Step

Want ' w ' that minimizes

$$
\begin{aligned}
& f(w)=\frac{1}{2} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=\frac{1}{2}\left\|x_{w}-y\right\|_{2}^{2}=\frac{1}{2}\left(x_{w}-y\right)^{\top}\left(x_{w}-y\right) \\
& \underbrace{}_{\text {Let's expand }}=\frac{1}{2}\left(\left(x_{w}\right)^{\top}-y^{\top}\right)\left(x_{w}-y\right) \\
& \left(A+B^{\top}\right)=\left(A^{\top}+B^{\top}\right) \\
& \begin{array}{l}
\text { then compute } \\
\text { gradient }
\end{array}=\frac{1}{2}\left(w^{\top} x^{\top}-y^{\top}\right)\left(X_{w}-y\right) \\
& \text { gradient. } \\
& =\frac{1}{2}\left(w^{\top} x^{\top}\left(x_{w}-y\right)-y^{\top}\left(x_{w}-y\right)\right)(A+B) C=A C+B C \\
& =\frac{1}{2}\left(w^{\top} x^{\top} x_{w}-w^{\top} x^{\top} y-y^{\top} x_{w}+y^{\top} y\right) \quad A(B+C)=A B+B C \\
& =\underbrace{\frac{1}{2} w^{\top} x^{\top} x_{w}-w^{\top} x^{\top} y+\frac{1}{2} y^{\top} y} \quad a^{\top} \underbrace{A b}_{\text {vector }}=\underbrace{b^{\top} A^{\top} a}_{\text {vector }}
\end{aligned}
$$

Sanity check: all of these are scalars.

Vector View of Least Squares

- We showed that least squares minimizes:

$$
f(w)=\frac{1}{2}\left\|x_{w}-y\right\|^{2}
$$

- The $1 / 2$ and the squaring don't change solution, so equivalent to:

$$
f(w)=\left\|x_{w}-y\right\|
$$

- From this viewpoint, least square minimizes Euclidean distance between vector of labels ' y ' and vector of predictions Xw.

Bonus Slide: Householder(-ish) Notation

- Househoulder notation: set of (fairly-logical) conventions for math.

Use greek letters for scalars: $\alpha=1, \beta=35, \lambda=\pi$
Use firstllast lowercase letters for vectors: $w=\left[\begin{array}{l}0.1 \\ 0.2\end{array}\right], x=\left[\begin{array}{l}0 \\ 1\end{array}\right], y=\left[\begin{array}{c}2 \\ -1\end{array}\right], a=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$
\longrightarrow Assumed to be column-vectors.
Use first/last uppercase letters for matrices: X, Y, W, A, B
Indices use i, j, k
Sizes use m, n d, \Leftarrow hopefully meaning of ' k '
Sizes use m, n, d, p, and $k e \begin{aligned} & \text { hope fully meaning of } k \\ & \text { is obvious from context }\end{aligned}$
Sets use S, T, U, V
functions use f, g, and h.
When I write $x_{i} I$ mean "grab row'i of X and make a column-vector with its values."

Bonus Slide: Householder(-ish) Notation

- Househoulder notation: set of (fairly-logical) conventions for math:

Our ultimate least squares notation:

$$
f(w)=\frac{1}{2}\left\|x_{w}-y\right\|^{2}
$$

But if we agree on notation we can quickly understand:

$$
g(x)=\frac{1}{2}\|A x-b\|^{2}
$$

If we use random notation we get things lire:

$$
H(\beta)=\frac{1}{2}\left\|R \beta-P_{n}\right\|^{2}
$$

Is this the same model?

When does least squares have a unique solution?

- We said that least squares solution is not unique if we have repeated columns.
- But there are other ways it could be non-unique:
- One column is a scaled version of another column.
- One column could be the sum of 2 other columns.
- One column could be three times one column minus four times another.
- Least squares solution is unique if and only if all columns of X are "linearly independent".
- No column can be written as a "linear combination" of the others.
- Many equivalent conditions (see Strang's linear algebra book):
- X has "full column rank", $X^{\top} X$ is invertible, $X^{\top} X$ has non-zero eigenvalues, $\operatorname{det}\left(X^{\top} X\right)>0$.
- Note that we cannot have independent columns if $d>n$.

