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Last Time: Linear Regression

We disg\ussed linear models:
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“Multiply feature X; by weight w;,
add them to get y.”.

We discussed squared error function:
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— Minimize ‘t’ by equating gradient of ‘f* with zero.

Interactive demo:
— http://setosa.io/ev/ordinary-least-squares-regression
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http://setosa.io/ev/ordinary-least-squares-regression

Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* We typically assume that vectors are column-vectors.

— We use ‘w’ as a “d times 1” vector containing weight ‘w;" in position ‘j'.

— We use ‘y’ as an “n times 1” vector containing target ‘y.” in position ‘V’.

— We use ‘x.” as a “d times 1" vector containing features ‘j’ of example .

* We’re now going to be careful to make sure these are column vectors.

— So ‘X’ is a matrix with x." in row V.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

 We showed how to express various quantities in matrix notation:
: : —_ 4 T
— Linear regression prediction for one example: \/, = w X

. . . A
— Linear regression prediction for all ‘n” examples: \/ - XW

— Linear regression residual vector: ~ = Xw ~y

— Sum of residuals squared in linear regression model:

'r(‘“) - 2(%"‘6’@_/)2: HXW ')’”2

)= )</

— Today: derive gradient and least squares solution in matrix notation.



Digression: Matrix Algebra Review

* Quick review of linear algebra operations we’ll use:
— If ‘@’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:
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Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):
= A ~ -— T 3 — T ‘T‘ ’ -
[ 260 = 5 =yl = WX A =W Xy oy Ty

V"'\a'/“'cx’/" \/(('Iof /Ll

Scalar 'c
_ T — ]
- —',-{ w AW w L —l- ¢ 547 These are 5-(_'2/L/5
50 dimensions mifch.
* How do we compute gradient?
L(',‘S ‘Flks'f (‘0 I'f Wlﬂ'\ C(:I: H-(’/é ave TLe 9Pﬁ‘P/¢,i2o,1£UV‘J , '
{'\(w) = lwaw + WL: +c To ‘I dimansions: F"‘” A“ﬂ‘/“ﬂ""j
2| 1401+ VECj = O (2er0 Védo/) Gre on \4/(10[’73176’ n
= —10\W w ¢ -'L _ E ho{-o on
VLW j - lmeur avd

I - + + |
wr (‘w) O w L’ 0 VL%WTAW]:AW Gf Ais s\fmmdm) qugl;:illf{ds,



Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):
- n - - T /7 - T ‘T\ ’ -
[ 260 = 5 =yl = WX A =W Xy oy Ty

V\'\ﬂ'/\'tx '/|‘ V:('Ior L' Scalar '
:—'!iWTAW —w'b+c
 Gradient is given by: Vi = Aw - b t D

e Using definitions of ‘A" and ‘b’: = XTXW = XT\/
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Normal Equations for Least Squares Solution

* Set gradient equal to zero to find the “critical” points:
X ’Xw - Y V4 = 0

 We now move terms not involving ‘w’ to the other side:
1 VA
X Yo =X Y

* Thisis a set of ‘d’ linear equations called the normal equations.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Julia, the “\” command can be used to solve linear systems:

Train’ Wt()(lX)\()('y) Preo(td-‘ ykaf = Ytﬂ,/*w



Incorrect Solutions to Least Squares Problem
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Least Squares Cost

Cost of solving “normal equations” X™Xw = X'y?

Forming X'y vector costs O(nd).

— It has ‘d’ elements, and each is an inner product between ‘n” numbers.
Forming matrix X"™X costs O(nd?).

— It has d? elements, and each is an inner product between ‘n’ numbers.

Solving a d x d system of equations costs O(d3).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd? + d3).
— Which term dominates depends on ‘n” and ‘d’.



Least Squares Issues

* |ssues with least squares model: |
: : : X IS N KJ
— Solution might not be unique. .
: . : ' X
— |t is sensitive to outliers. S dxn
'1 .
— |t always uses all features. and XX s dxd

— Data might so big we cannot store X'X.
* |f you have 10 million features, this requires O(d?).
* Or you cannot afford the O(nd? + d3) cost.

— It might predict outside range of y, values.

* For some applications, only positive y, values are valid.

— It assumes a linear relationship between x, and y..



Non-Uniqueness of Least Squares Solution

 Why is the solution vector ‘w’ not unique?
— Imagine having two features that are identical for all examples.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _
M‘ - Wl X,/ _I-W.Z\):Lf :(W,AWZ)X,, -+ 0)(,"

(Ofy
— In this setting, if (w,,w,) is a solution then (w;+w,, 0) is another solution.

— This is special case of features being “collinear”:
* One feature is a linear function of the others.

* But, any ‘W’ where V f(w) = 0 is a global minimizer of ‘.
— This is due to convexity of ‘f/, which we will discuss later.



Next Topic: Non-Linear Regression



Motivation: Non-Linear Regression
Many relationships are approximated well by linear function.
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Motivation: Non-Linear Regression

Many relationships are approximated well by linear function.
— But many are also highly non-linear.

| For example, you could have a “u-shape” when
too much/little is not good.
(effect of hyper-parameters usually looks like this)
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear.
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear.
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear.

“Piecewise linear”: different pieces follow different linear functions.
(or be linear up to asymptote or phase transition)
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear. “Periodic” signals.
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Voltage [mv]

Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.
— But many are also highly non-linear.
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:



Adapting Counting/Distance-Based Methods

Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y.) with Gaussian or other model.
e Take CPSC 440.




Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y,) and p(y.) with Gaussian or other model.

— Non-parametric models:

* KNN regression:
— Find ‘K’ nearest neighbours of X.
— Return the mean of the corresponding vy..
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KNeighborsRegressor (k = 5, weights = 'uniform’)
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— prediction
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y,) and p(y.) with Gaussian or other model.
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— N On-pa ra metrlc mOdels: KNeighborsRegressor (k = 5, weights = 'uniform’)

— prediction
see data

* KNN regression.
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e Could be weighted by distance. ool *
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y,) and p(y.) with Gaussian or other model.
— Non-parametric models:

* KNN regression.

* Could be weighted by distance. |
* ‘Nadaraya-Watson’: weight all y, by distance to x.. =
A i | T
)= = i)
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Adapting Counting/

* Can adapt classification meth

150 200 250

— Regression tree: tree with mea >

100

— Probabilistic models: fit p(x; | ¥
— Non-parametric models:

KNN regression.

&0

X

Could be weighted by distance.
‘Nadaraya-Watson’: weight all y.

‘Locally linear regression’: for each x, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y,) and p(y.) with Gaussian or other model.

— Non-parametric models:
* KNN regression.
* Could be weighted by distance.
* ‘Nadaraya-Watson’: weight all y, by distance to x.
* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)
— Ensemble methods:

e Can improve performance by averaging predictions across regression models.



Adapting Counting/Distance-Based Methods

e Applications of non-linear regression (we will see many more):
— Regression forests for fluid simulation:

— KNN for image completion:
 Combined with “graph cuts” and “Poisson blending”.
e See also “PatchMatch”.

— KNN regression for “voice photoshop”:

 Combined with “dynamic time warping” and “Poisson blending”.

e We will first focus on linear models with non-linear transforms.
— These are the building blocks for more advanced methods.


https://www.youtube-nocookie.com/embed/kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube-nocookie.com/embed/I3l4XLZ59iw

Why don’t we have a y-intercept?

— Linear model is y; = wx, instead of y. = wx, + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y. = 0.
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Why don’t we have a y-intercept?

— Linear model is y; = wx, instead of y. = wx, + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y. = 0.
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Adding a Y-Intercept (“Bias”) Variable

* Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.

-0 Z F = 0 !
X-[ 0] [ 4 ]
0.2
ﬂvw/s/ X
* Now use “Z” as your features in linear regression.

— We will use ‘v’ instead of ‘w’ as regression weights when we use features Z’.

y,:\/z,, 12’W0+lel
B A i l
w, ! w, Xjl
* So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept to make cleaner derivations/code.



Motivation: Limitations of Linear Models

* On many datasets, y, is not a linear function of x..

O 0
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* A quadratic function would be a better fit for this dataset.



Non-Linear Feature Transforms

 Can we use linear least squares to fit a quadratic model?
N
_ 2
\/.‘ = Wo b wX; T W, X

— Notice that this is a non-linear function of x, but a linear function of ‘w’

* So you can implement this by changing the features:
0,27 "1 02 (02)1“
X: -05 2= =05 (035’
I ' l (i)*2
L4 N I
y ml X )t:l

— Fit new parameters ‘v’ under “change of basis”: solve Z'2v =Z'y.

* It's alinear function. of w, but a quadratic function of x.
/ v Z = \/Z + V Z + V;ZB

VV\V \~v\-\, \/V\/\N
Wo ) W, X, W, ;(’.



Non-Linear Feature Transforms
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General Polynomial Features (d=1)

 We can have a polynomial of degree ‘p” by using these features:

~ p
T O (%)
Z = l Xl (Y))z '''' (Y‘I)P
‘ ’, N 8 ‘1’
T\
A e (O

* There are polynomial basis functions that are numerically nicer:
— Such as Lagrange polynomials (see CPSC 303).



General Polynomial Features
Degree 7

* If you have more than one feature, you can include interactions:

— With p=2, in addition to (x;;)? and (x.,)? you could include x;,x.,.



“Change of Basis” Terminology

Instead of “nonlinear feature transform”, in machine learning
it is common to use the expression “change of basis”.

— The z, are the “coordinates in the new basis” of the training example.

“Change of basis” means something different in math:
— Math: basis vectors must be linearly independent (in ML we don’t care).
— Math: change of basis must span the same space (in ML we change space).

Unfortunately, saying “change of basis” in ML is common.
— When | say “change of basis”, just think “nonlinear feature transform”.



Linear Basis vs. Nonlinear Basis
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Change of Basis Notation (MEMORIZE)

* Linear regression with original features:
— We use X’ as our “n by d” data matrix, and ‘w’ as our parameters.
— We can find d-dimensional ‘w’ by minimizing the squared error:

{= 21y

* Linear regression with nonlinear feature transforms:
— We use 7’ as our “n by k” data matrix, and ‘v’ as our parameters.
— We can find k-dimensional ‘v’ by minimizing the squared error:

‘F(v - i{,l2v‘yﬂz

* Notice that in both cases the target is still ‘y’.



Degree of Polynomial and Fundamental Trade-Off

As the polynomial degree increases, the training error goes down.

M=0 M= 1 M=2 M=3

40

20

—-20

40

20

(8]

—20

But approximation error goes up: we start overfitting with large ‘p’.
Usual approach to selecting degree: validation or cross-validation.
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Beyond Polynomial Transformations

* Polynomials are not the only possible transformation:
— Exponentials, logarithms, trigonometric functions, and so on.

— The right non-linear transform will vastly improve performance.
* Later we will see “deep learning” where you try to learn a transformation. "_0/ peﬂ!x/'C data
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https://m.xkcd.com/2048/

Summary

Matrix notation for expressing least squares problem.

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

— But any solution is optimal because of “convexity”.

Tree/probabilistic/non-parametric/ensemble regression methods.

Non-linear transforms:

— Allow us to model non-linear relationships with linear models.

Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step
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Rule:
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Vector View of Least Squares
* We showed that least squares minimizes:
Flw)= 4 “Xw“)/llﬁ
* The Y2 and the squaring don’t change solution, so equivalent to:

) = "Xw“y“

* From this viewpoint, least square minimizes Euclidean distance
between vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
* X has “full column rank”, X™X is invertible, X"™X has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



