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Last Time: Linear Regression

• We discussed linear models:

• “Multiply feature xij by weight wj, 
add them to get yi”.

• We discussed squared error function:

– Minimize ‘f’ by equating gradient of ‘f’ with zero.

• Interactive demo: 
– http://setosa.io/ev/ordinary-least-squares-regression

http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-of-social-networks

http://setosa.io/ev/ordinary-least-squares-regression


Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• We typically assume that vectors are column-vectors.

– We use ‘w’ as a “d times 1” vector containing weight ‘wj’ in position ‘j’.

– We use ‘y’ as an “n times 1” vector containing target ‘yi’ in position ‘i’.

– We use ‘xi’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.

– So ‘X’ is a matrix with xi
T in row ‘i’.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• We showed how to express various quantities in matrix notation:

– Linear regression prediction for one example:

– Linear regression prediction for all ‘n’ examples:

– Linear regression residual vector:

– Sum of residuals squared in linear regression model:

– Today: derive gradient and least squares solution in matrix notation.



Digression: Matrix Algebra Review

• Quick review of linear algebra operations we’ll use:

– If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:



Linear and Quadratic Gradients

• From these rules we have (see post-lecture slide for steps):

• How do we compute gradient?



Linear and Quadratic Gradients

• From these rules we have (see post-lecture slide for steps):

• Gradient is given by:

• Using definitions of ‘A’ and ‘b’:



Normal Equations for Least Squares Solution

• Set gradient equal to zero to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the normal equations.

– This a linear system like “Ax = b” from Math 152.

• You can use Gaussian elimination to solve for ‘w’.

– In Julia, the “\” command can be used to solve linear systems:



Incorrect Solutions to Least Squares Problem



Least Squares Cost

• Cost of solving “normal equations” XTXw = XTy?

• Forming XTy vector costs O(nd).

– It has ‘d’ elements, and each is an inner product between ‘n’ numbers.

• Forming matrix XTX costs O(nd2).

– It has d2 elements, and each is an inner product between ‘n’ numbers.

• Solving a d x d system of equations costs O(d3).

– Cost of Gaussian elimination on a d-variable linear system.

– Other standard methods have the same cost.

• Overall cost is O(nd2 + d3).

– Which term dominates depends on ‘n’ and ‘d’.



Least Squares Issues

• Issues with least squares model:

– Solution might not be unique.

– It is sensitive to outliers.

– It always uses all features.

– Data might so big we cannot store XTX.

• If you have 10 million features, this requires O(d2).

• Or you cannot afford the O(nd2 + d3) cost.

– It might predict outside range of yi values.

• For some applications, only positive yi values are valid.

– It assumes a linear relationship between xi and yi.



Non-Uniqueness of Least Squares Solution

• Why is the solution vector ‘w’ not unique?
– Imagine having two features that are identical for all examples.

– I can increase weight on one feature, and decrease it on the other,
without changing predictions.

– In this setting, if (w1,w2) is a solution then (w1+w2, 0) is another solution.

– This is special case of features being “collinear”:
• One feature is a linear function of the others.

• But, any ‘w’ where ∇ f(w) = 0 is a global minimizer of ‘f’.
– This is due to convexity of ‘f’, which we will discuss later.



Next Topic: Non-Linear Regression



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

https://www.nature.com/articles/srep21480.pdf

“the shorter your sleep,
the shorter your lifespan”



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.

https://www.nature.com/articles/srep21480.pdf

For example, you could have a “u-shape” when
too much/little is not good.
(effect of hyper-parameters usually looks like this)



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.

https://commons.wikimedia.org/wiki/File:CDC_growth_chart_boys_birth_to_36_mths_cj41c017.pdf

Slope could slowly change
or reach asymptote.



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.

“sigmoidal growth”.

http://www.biology.arizona.edu/biomath/tutorials/Applications/Carbon.html
https://www.nytimes.com/2021/05/14/learning/the-math-of-ending-the-pandemic-exponential-growth-and-decay.html
https://stackoverflow.com/questions/69535905/how-to-dynamically-fit-sigmoid-growth-curve-for-crop-plants

“geometric decay” “exponential growth”



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.
“Piecewise linear”: different pieces follow different linear functions. 

(or be linear up to asymptote or phase transition)

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner

100 meter times will not go negative!



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.

https://en.wikipedia.org/wiki/Electrocardiography#/media/File:Normal_12_lead_EKG.jpg

“Periodic” signals.

Electrocardiogram (ECG) Electroencephalography 
(EEG)



Motivation: Non-Linear Regression

• Many relationships are approximated well by linear function.

– But many are also highly non-linear.

https://en.wikipedia.org/wiki/Biological_neuron_model
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2011.217919

Neuron action potential

Response of 
organs to exercise

“Spike then recover”



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• Take CPSC 440.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.

– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.
– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Watson’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Watson’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Adapting Counting/Distance-Based Methods

• Can adapt classification methods to perform non-linear regression:

– Regression tree: tree with mean value or linear regression at leaves.

– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

– Non-parametric models: 

• KNN regression.

• Could be weighted by distance.

• ‘Nadaraya-Watson’: weight all yi by distance to xi.

• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

– Ensemble methods:

• Can improve performance by averaging predictions across regression models.



Adapting Counting/Distance-Based Methods

• Applications of non-linear regression (we will see many more):

– Regression forests for fluid simulation:

– KNN for image completion:

• Combined with “graph cuts” and “Poisson blending”.

• See also “PatchMatch”.

– KNN regression for “voice photoshop”:

• Combined with “dynamic time warping” and “Poisson blending”.

• We will first focus on linear models with non-linear transforms.

– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm

https://www.youtube-nocookie.com/embed/kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube-nocookie.com/embed/I3l4XLZ59iw


Why don’t we have a y-intercept?

– Linear model is ො𝑦i = wxi instead of ො𝑦i = wxi + w0 with y-intercept w0.

– Without an intercept, if xi = 0 then we must predict ො𝑦i = 0.



Why don’t we have a y-intercept?

– Linear model is ො𝑦i = wxi instead of ො𝑦i = wxi + w0 with y-intercept w0.

– Without an intercept, if xi = 0 then we must predict ො𝑦i = 0.



Adding a Y-Intercept (“Bias”) Variable

• Simple trick to add a y-intercept (“bias”) variable:
– Make a new matrix “Z” with an extra feature that is always “1”.

• Now use “Z” as your features in linear regression.
– We will use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

• So we can have a non-zero y-intercept by changing features.
– This means we can ignore the y-intercept to make cleaner derivations/code.



Motivation: Limitations of Linear Models

• On many datasets, yi is not a linear function of xi.

• A quadratic function would be a better fit for this dataset.



Non-Linear Feature Transforms

• Can we use linear least squares to fit a quadratic model?

– Notice that this is a non-linear function of xi but a linear function of ‘w’.

• So you can implement this by changing the features:

– Fit new parameters ‘v’ under “change of basis”: solve ZTZv = ZTy.

• It’s a linear function of w, but a quadratic function of xi.



Non-Linear Feature Transforms



General Polynomial Features (d=1)

• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– Such as Lagrange polynomials (see CPSC 303).



General Polynomial Features

• If you have more than one feature, you can include interactions:

– With p=2, in addition to (xi1)2 and (xi2)2 you could include xi1xi2.



“Change of Basis” Terminology

• Instead of “nonlinear feature transform”, in machine learning
it is common to use the expression “change of basis”.

– The zi are the “coordinates in the new basis” of the training example.

• “Change of basis” means something different in math:

– Math: basis vectors must be linearly independent (in ML we don’t care).

– Math: change of basis must span the same space (in ML we change space).

• Unfortunately, saying “change of basis” in ML is common.

– When I say “change of basis”, just think “nonlinear feature transform”.



Linear Basis vs. Nonlinear Basis



Change of Basis Notation (MEMORIZE)

• Linear regression with original features:
– We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.

– We can find d-dimensional ‘w’ by minimizing the squared error:

• Linear regression with nonlinear feature transforms:
– We use ‘Z’ as our “n by k” data matrix, and ‘v’ as our parameters.

– We can find k-dimensional ‘v’ by minimizing the squared error:

• Notice that in both cases the target is still ‘y’.



Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

• But approximation error goes up: we start overfitting with large ‘p’.

• Usual approach to selecting degree: validation or cross-validation.
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Beyond Polynomial Transformations

• Polynomials are not the only possible transformation:
– Exponentials, logarithms, trigonometric functions, and so on.
– The right non-linear transform will vastly improve performance.

• Later we will see “deep learning” where you try to learn a transformation.

– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.
– As ‘n’ increases, you can estimate the model more accurately.
– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.
– Model gets more complicated as you get more data.
– You can model very complicated functions where you don’t know the right basis.

xkcd

https://m.xkcd.com/2048/


Summary

• Matrix notation for expressing least squares problem.

• Normal equations: solution of least squares as a linear system.

– Solve (XTX)w = (XTy).

• Solution might not be unique because of collinearity.

– But any solution is optimal because of “convexity”.

• Tree/probabilistic/non-parametric/ensemble regression methods.

• Non-linear transforms:

– Allow us to model non-linear relationships with linear models.

• Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step



Vector View of Least Squares

• We showed that least squares minimizes:

• The ½ and the squaring don’t change solution, so equivalent to:

• From this viewpoint, least square minimizes Euclidean distance 
between vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math.



Bonus Slide: Householder(-ish) Notation

• Househoulder notation: set of (fairly-logical) conventions for math:



When does least squares have a unique solution?

• We said that least squares solution is not unique if we have repeated 
columns.

• But there are other ways it could be non-unique:
– One column is a scaled version of another column.

– One column could be the sum of 2 other columns.

– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are 
“linearly independent”.
– No column can be written as a “linear combination” of the others.

– Many equivalent conditions (see Strang’s linear algebra book):
• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.

– Note that we cannot have independent columns if d > n.


