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Admin

• Assignment 2:
– 1 late day to hand in tonight, 2 for Friday.

• Assignment 3 is up:
– Due October 17th (minor updates since Monday, see Piazza thread).

– Start early, this is usually the longest assignment.

• We’re going to start using calculus and linear algebra a lot.
– You should start reviewing these ASAP if you are rusty.

– A review of relevant calculus concepts is here.

– A review of relevant linear algebra concepts is here.

https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf


Supervised Learning Round 2: Regression

• We’re going to revisit supervised learning:

• Previously, we considered classification: 

– We assumed yi was categorical: yi = ‘spam’ or yi = ‘not spam’.

• Now we are going to consider regression:

– We allow yi to be numerical: yi = 10.34cm.



Example: Dependent vs. Explanatory Variables

• We want to predict a numerical value given features:

– Does number of lung cancer deaths change with number of cigarettes?

– Does number of skin cancer deaths change with latitude?

http://www.cvgs.k12.va.us:81/digstats/main/inferant/d_regrs.html
https://onlinecourses.science.psu.edu/stat501/node/11



Example: Dependent vs. Explanatory Variables

• We want to predict a numerical value given features:

– Do people in big cities walk faster?

– Is the universe expanding or shrinking or staying the same size?

http://hosting.astro.cornell.edu/academics/courses/astro201/hubbles_law.htm
https://www.nature.com/articles/259557a0.pdf



Example: Dependent vs. Explanatory Variables

• We want to predict a numerical value given features:

– Does number of gun deaths change with gun ownership?

– Does number violent crimes change with violent video games?

http://www.vox.com/2015/10/3/9444417/gun-violence-united-states-america
https://www.soundandvision.com/content/violence-and-video-games



Example: Dependent vs. Explanatory Variables

• We want to predict a numerical value given features:
– Does higher gender equality index lead to more women STEM grads?

• Note that we are doing supervised learning:
– Trying to predict value of 1 variable (the ‘yi’ values).

(instead of measuring correlation between 2).

• Supervised learning does not give causality:
– OK: “Higher index is correlated with lower grad %”.

– OK: “Higher index helps predict lower grad %”.

– BAD: “Higher index leads to lower grads %”.
• People/media get these confused all the time, be careful!

• There are lots of potential reasons for this correlation.
https://www.weforum.org/agenda/2018/02/does-gender-equality-result-in-fewer-female-stem-grads/



Handling Numerical Labels

• One way to handle numerical yi: discretize.

– E.g., for ‘age’ could we use {‘age ≤ 20’, ‘20 < age ≤ 30’, ‘age > 30’}.

– Now we can apply methods for classification to do regression.

– But coarse discretization loses resolution.

– And fine discretization requires lots of data (“coupon collecting”).

• There exist regression versions of classification methods:

– Regression trees, neighbour-based methods, and so on.

• Today: one of oldest, but still most popular/important methods:

– Linear regression based on squared error.

– Interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

• Assume we only have 1 feature (d = 1):

– E.g., xi is number of cigarettes and yi is number of lung cancer deaths.

• Linear regression makes predictions ො𝑦i using a linear function of xi:

• The parameter ‘w’ is the weight or regression coefficient of xi.

– We are temporarily ignoring the y-intercept.

• As xi changes, slope ‘w’ affects the rate that ො𝑦i increases/decreases:

– Positive ‘w’: ො𝑦i increase as xi increases.

– Negative ‘w’: ො𝑦i decreases as xi increases.



Linear Regression in 1 Dimension



Aside: terminology woes

• Different fields use different terminology and symbols.

– Data points ‘i’ = objects = examples = rows = observations.

– Inputs xi = predictors = features = explanatory variables= regressors = 
independent variables = covariates = columns.

– Outputs yi = outcomes = targets = response variables = dependent 
variables (also called a “label” if it’s categorical).

– Regression coefficients ‘w’ = weights = parameters = betas.

• With linear regression, the symbols are inconsistent too:

– In ML, the data is X and y, and the weights are w.

– In statistics, the data is X and y, and the weights are β.

– In optimization, the data is A and b, and the weights are x.



Linear Regression Training Challenges

• Linear regression makes predictions by using:

• To train a linear regression model, we need to find weight/slope ‘w’.

• Challenges in finding ‘w’ compared to fitting a decision stump:

– Cannot enumerate all possible values of ‘w’ (could be any real number).
• Instead, we will use calculus to find the best ‘w’.

– It is unlikely that a line will go exactly through many data points.
• Due to noise, relationship not being quite linear or just floating-point issues.

• So it does not make sense to find the ‘w’ minimizing how many times ො𝑦𝑖 ≠ 𝑦𝑖.



Residuals and Sum of Squared Residuals

• The residual is the difference between our prediction and true value:

– This can be positive or negative.

– If this is close to zero, then our prediction is close to the true value.

• We typically look for a ‘w’ that makes residuals close to zero.
– For example, many models minimize the sum of the squared residuals:

• The smaller we make this, the smaller the distance between our predictions and targets.

– Plugging in ො𝑦𝑖 = 𝑤𝑥𝑖 for the case of linear regression, we get:

• The linear least squares model minimizes this function to choose the slope ‘w’.



Linear Least Squares Objective Function

• Linear least squares sets ‘w’ is to minimize sum of squared residuals:

• If this is zero, we exactly fit data. If this small, line is “close” to data.

• There are some justifications for choosing this function ‘f’.

– A probabilistic interpretation is coming later in the course.

• But usually, we choose this ‘f’ because it is easy to minimize.



Linear Least Squares Objective Function

• Linear least squares sets ‘w’ is to minimize sum of squared residuals:



Linear Least Squares Objective Function

• Linear least squares sets ‘w’ is to minimize sum of squared residuals:



Minimizing a Differential Function

• Math 101 approach to minimizing a differentiable function ‘f’:

1. Take the derivative of ‘f’.

2. Find points ‘w’ where the derivative f’(w) is equal to 0.

3. Choose the smallest one (and check that f’’(w) is positive). 



Digression: Multiplying by a Positive Constant

• Note that this problem:

• Has the same set of minimizers as this problem:

• And these also have the same minimizers:

• I can multiply ‘f’ by any positive constant and not change solution.
– Derivative will still be zero at the same locations.
– We will use this trick a lot!

(Quora trolling on ethics of this)

https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/


Deriving Least Squares Solution



Finding Least Squares Solution

• Finding ‘w’ that minimizes sum of squared errors:

• Let’s check that this is a minimizer by checking second derivative:

– Since (anything)2 is non-negative, we have f’’(w) ≥ 0.

– If at least one feature is not zero, then f’’(w) > 0 and ‘w’ is a minimizer.



Next Topic: Least Squares in d-Dimensions



Motivation: Combining Explanatory Variables

• Smoking is not the only contributor to lung cancer.

– For example, there environmental factors like exposure to asbestos.

• How can we model the combined effect of smoking and asbestos?

• A simple way is with a 2-dimensional linear function:

• We have a weight w1 for feature ‘1’ and w2 for feature ‘2’:



Linear Regression in 2-Dimensions

• Linear model:

• This defines a
two-dimensional
plane.



Linear Regression in 2-Dimensions

• Linear model:

• This defines a
two-dimensional
plane.

• Not just a line!



Linear Regression in d-Dimensions
• If we have ‘d’ features, the d-dimensional linear model is:

– In words, prediction is a weighted sum of the features.

• We can re-write this using summation notation as:

• We can again choose ‘w’ to minimize the sum of squared residuals:

– Dates back to 1801: Gauss used it to predict location of the asteroid Ceres.
– We can use multi-variable calculus to minimize ‘f’ with respect to the parameters w1, w2,…, wd.



Minimizing Multi-Variable Differentiable Function

• With one variable, we “find ‘w’ where the derivative is equal to 0”.

• The generalization of this idea to when we have ‘d’ variables:

– “Find ‘w’ where the gradient vector is equal to the zero vector”.

• Gradient is a vector with partial derivative ‘j’ in position ‘j’.



Review: Partial Derivative

• Partial derivative with respect to wj (written 
𝜕𝑓

𝜕𝑤𝑗
).

– Derivative with respect to wj, keeping all others variables fixed.

https://en.wikipedia.org/wiki/Partial_derivative



Partial Derivative for Least Squares

• Partial derivative with respect to w1 for least squares with n=1:



Partial Derivative for Least Squares

• Partial derivative with respect to wj for least squares with n=1:

• Partial derivative with respect to wj for least squares for general ‘n’:



Gradient Vector for Least Squares

• The gradient vector is the concatenation of all partial derivatives:

– At ‘w’, 𝛻𝑓(𝑤) is in the direction with most-positive slope.

– At minimizers we have 𝛻𝑓 𝑤 = 0 (slope is 0 every direction).

https://en.wikipedia.org/wiki/Gradient



Gradient Vector for Least Squares

• The gradient vector is the concatenation of all partial derivatives:

– At ‘w’, 𝛻𝑓(𝑤) is in the direction with most-positive slope.

– At minimizers we have 𝛻𝑓 𝑤 = 0 (slope is 0 every direction).

• For linear least squares we have:

– So to train a least squares model, we need this to equal the zero vector.



Fitting a Linear Least Squares Model

• Setting gradient to equal 0 vector for linear least squares gives:

– This is a set of ‘d’ linear equations, with ‘d’ unknowns (w1, w2,…, wd).

• You can solve these equations using Gaussian elimination (linear algebra).

– Claim: all ‘w’ with 𝛻𝑓 𝑤 = 0 are minimizers (we will discuss why later).

• There may be more than ‘w’ satisfying this, but all have the same minimum error.



Next Topic: Matrix Notation



Matrix Notation: Motivation

• We have expressed linear least squares with summation notation:

• But you often see it equivalently expressed using matrix notation:

• Why do people use matrix notation?
– Can be easier to understand and lead to “nicer” code (once you are used to it).
– Makes it easier to see some properties (like the connection to norms above).

• Or derive properties, like showing that all ‘w’ with 𝛻𝑓 𝑤 = 0 are minimizers.

– Can lead to code with fewer bugs.
• Since you can use existing implementations of standard operations.

– Can lead to faster code.
• If we are using packages that implement fast matrix operations.



Matrix Notation (MEMORIZE/STUDY THIS)

• In this course, all vectors are assumed to be column-vectors:

• So rows of ‘X’ are actually transposes of the column-vectors xi:



Matrix Notation (MEMORIZE/STUDY THIS)

• Linear regression prediction for one example in matrix notation:

• Why?

• Using ො𝑦𝑖 = 𝑤𝑇𝑥𝑖, we can re-write sum of squared residuals as:



Matrix Notation (MEMORIZE/STUDY THIS)

• Linear regression prediction for all ‘n’ example in matrix notation:

• Why?



Matrix Notation (MEMORIZE/STUDY THIS)

• Linear regression residual vector in matrix notation:

• Why?



Matrix Notation (MEMORIZE/STUDY THIS)

• Different ways to write sum of residuals squared in linear regression model:

• So least squares minimizes L2-norm between target and predictions.



• Regression considers the case of a numerical yi.

• Least squares is a classic method for fitting linear models.

– Minimizes sum of squared residuals (prediction and true value difference).

– With 1 feature, it has a simple closed-form solution.

– Can be generalized to ‘d’ features, taking linear weighting of features.

• Gradient is vector containing partial derivatives of all variables.

• Matrix notation for expressing least squares problem: ||Xw – y||2.

• Next time:

Summary



• In Smithsonian National Air and Space Museum (Washington, DC):



Causality, Interventions, and RCTs

• What if you want to assess causality?

• You can sometimes do this by collecting data in specific ways.
– You need to set the values of the features “by intervention”.

• You do not passively observe, you *set* them and then watch the effect.

– Most common way this is done is with a randomized control trial.
• Say you want to evaluate the effectiveness of a pill for a certain disease.

• You get a bunch of people with the disease for training data.

• You randomly decide which of the people will take the pill, and which won’t.

• If the people who got the pill did better/worse on average, it was caused by the pill.
– The randomness takes away the possibility that certain groups are more/less likely to take the pill.

– Group not taking the pill often given placebo, removing effect of “feel like you are being treated”.

– Often the researchers do not even get to know who took the pills until after the study is over.

» “Double blind”, to avoid the researchers giving hints about who got the pill.

https://en.wikipedia.org/wiki/Randomized_controlled_trial


Converting Partial Derivative to Matrix Notation

• Re-writing linear least squares partial derivative in matrix notation:



Converting Gradient to Matrix Notation

• Re-writing linear least squares gradient in matrix notation:


