CPSC 340:
Machine Learning and Data Mining

Linear Regression
Fall 2022



Admin

* Assignment 2:
— 1 late day to hand in tonight, 2 for Friday.

* Assignment 3 is up:
— Due October 17t (minor updates since Monday, see Piazza thread).
— Start early, this is usually the longest assignment.

* We're going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Supervised Learning Round 2: Regression

 We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y, was categorical: y. = ‘spam’ or y, = ‘not spam’.
* Now we are going to consider regression:

— We allow y; to be numerical: y;, = 10.34cm.



Example: Dependent vs. Explanatory Variables

* We want to predict a numerical value given features:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:
— Do people in big cities walk faster?

— |s the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:
— Does number of gun deaths change with gun ownership?

— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:
— Does higher gender equality index lead to more women STEM grads?

* Note that we are doing supervised learning:

— Trying to predict value of 1 variable (the ‘y. values).

(instead of measuring correlation between 2).

e Supervised learning does not give causality:
— OK: “Higher index is correlated with lower grad %”.
— OK: “Higher index helps predict lower grad %”.

— BAD: “Higher index leads to lower grads %”.
* People/media get these confused all the time, be careful!
* There are lots of potential reasons for this correlation.
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Handling Numerical Labels

* One way to handle numerical y.: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.
— And fine discretization requires lots of data (“coupon collecting”).

* There exist regression versions of classification methods:
— Regression trees, neighbour-based methods, and so on.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):
— E.g., x. is number of cigarettes and y, is number of lung cancer deaths.

Linear regression makes predictions ¥ using a linear function of x::
N
Y, = wx,

The parameter ‘w’ is the weight or regression coefficient of x..
— We are temporarily ignoring the y-intercept.

As x. changes, slope ‘w’ affects the rate that y. increases/decreases:
— Positive ‘w’: J. increase as x; increases.
— Negative ‘w’: J. decreases as x; increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

e Different fields use different terminology and symbols.
— Data points ‘i’ = objects = examples = rows = observations.

— Inputs x; = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs y, = outcomes = targets = response variables = dependent
variables (also called a “label” if it’s categorical).

— Regression coefficients ‘w’ = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and y, and the weights are w.

— In statistics, the data is X and y, and the weights are f.
— In optimization, the data is A and b, and the weights are x.



Linear Regression Training Challenges

* Linear regression makes predictions by using:

A ~
>/|' = w X,

x,
e To train a linear regression model, we need to find weight/slop‘e ‘W’
* Challenges in finding ‘W’ compared to fitting a decision stump:

— Cannot enumerate all possible values of ‘w’ (could be any real number).

* |Instead, we will use calculus to find the best ‘w’.

— Itis unlikely that a line will go exactly through many data points.
* Due to noise, relationship not being quite linear or just floating-point issues.

* So it does not make sense to find the ‘W’ minimizing how many times y; #+ y;.



Residuals and Sum of Squared Residuals

* The residual is the difference between our prediction and true value:
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— This can be positive or negative.
— If this is close to zero, then our prediction is close to the true value.

* We typically look for a ‘w’ that makes residuals close to zero.

— For example, many models minimize the sum of the squared residuals:
(590" * o =g 4G =)
* The smaller we make this, the smaller the distance between our predictions and targets.
— Plugging in y; = wx; for the case of linear regression, we get:
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* The linear least squares model minimizes this function to choose the slope ‘w’.



Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:
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* If this is zero, we exactly fit data. If this small, line is “close” to data.

 There are some justifications for choosing this function ‘f’.
— A probabilistic interpretation is coming later in the course.

* But usually, we choose this ‘f” because it is easy to minimize.



Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:
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Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:

F(w> = é (WX‘. - )’n)z

o
S
N
h)

’ The Sgwn/((/ valnes of
qga “\cse vertical distances
between the line (wy;)

and  The ‘fo\rjefs (‘/t)

| J
TF 1hs error s larqe )

"her\ onr Pre J(cﬁonr e

X‘ {or 'Prom ‘h\e ‘}aff}e‘lf.




Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function f':
1. Take the derivative of .
2. Find points ‘w’ where the derivative f’'(w) is equal to O.
3. Choose the smallest one
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Digression: Multiplying by a Positive Constant

Note that this problem:
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Has the same set of minimizers as this problem:
N
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And these also have the same minimizers:
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| can multiply ‘f” by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We will use this trick a lot!

(Quora trolling on ethics of this)



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Deriving Least Squares Solution
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Finding Least Squares Solution

* Finding ‘W’ that minimizes sum of squared errors:
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* Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative, we have f"’(w) = 0.
— |If at least one feature is not zero, then f”’(w) > 0 and ‘w’ is a minimizer.



Next Topic: Least Squares in d-Dimensions



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, there environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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Linear Regression in 2-Dimensions

* Linear model:
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Linear Regression in 2-Dimensions

* Linear model:
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Yi= WXy T WaXig
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Linear Regression in d-Dimensions

* If we have ‘d’ features, the d-dimensional linear model is:
N

)/i = WX T ow, X t W Xi3 L "LVIQX»J
— In words, prediction is a weighted sum of the features.
* We can re-write this using summation notation as:

d

A—

Y= 2 wix,
5= |

 We can again choose ‘w’ to minimize the sum of squared residuals:

Pl #0525 (B, = Y

g A A
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Y
— Dates back to 1801: Gauss used it to predict location of the asteroid Ceres.
— We can use multi-variable calculus to minimize ‘f* with respect to the parameters w,, w,,..., w,.



Minimizing Multi-Variable Differentiable Function

 With one variable, we “find ‘w’ where the derivative is equal to 0”.

* The generalization of this idea to when we have ‘d’ variables:

— “Find ‘W’ where the gradient vector is equal to the zero vector”.

* Gradient is a vector with partial derivative ‘j" in position .
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Review: Partial Derivative

: C : : 0
* Partial derivative with respect to w; (written 6_\/{:- :
Jj

— Derivative with respect to w;, keeping all others variables fixed.
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Partial Derivative for Least Squares

 Partial derivative with respect to w, for least squares with n=1:
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Partial Derivative for Least Squares

* Partial derivative with respect to w; for least squares with n=1:
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Gradient Vector for Least Squares

* The gradient vector is the concatenation of all partial derivatives:
— At ‘W, Vf(w) is in the direction with most-positive slope.
— At minimizers we have Vf(w) = 0 (slope is 0 every direction).
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Gradient Vector for Least Squares

 The gradient vector is the concatenation of all partial derivatives:
— At ‘W, Vf(w) is in the direction with most-positive slope.
— At minimizers we have Vf(w) = 0 (slope is 0 every direction).

* For linear least squares we have:
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— So to train a least squares model, we need this to equal the zero vector.



Fitting a Linear Least Squares Model

e Setting gradient to equal O vector for linear least squares gives:
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— This is a set of ‘d’ linear equations, with ‘d” unknowns (w, w,,..., w,).

* You can solve these equations using Gaussian elimination (linear algebra).

— Claim: all ‘w” with Vf(w) = 0 are minimizers (we will discuss why later).

* There may be more than ‘w’ satisfying this, but all have the same minimum error.



Next Topic: Matrix Notation



Matrix Notation: Motivation

* We have expressed linear least squares with summation notation:
n o 4
Pl )7 Z(Eu, = 7
T Y A
* But you often see it equivalently expressed using matrix notation:

fu) = uxw—yuz

 Why do people use matrix notation?
— Can be easier to understand and lead to “nicer” code (once you are used to it).
— Makes it easier to see some properties (like the connection to norms above).
* Or derive properties, like showing that all ‘w’ with Vf(w) = 0 are minimizers.
— Can lead to code with fewer bugs.
* Since you can use existing implementations of standard operations.

— Can lead to faster code.
* |f we are using packages that implement fast matrix operations.



Matrix Notation (MEMORIZE/STUDY THIS)

* In this course, all vectors are assumed to be column-vectors:
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression prediction for one example in matrix notation:
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* Using ; = w!x;, we can re-write sum of squared residuals as:
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression prediction for all ‘n” example in matrix notation:
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression residual vector in matrix notation:
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Matrix Notation (MEMORIZE/STUDY THIS)

e Different ways to write sum of residuals squared in linear regression model:
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* So least squares minimizes L2-norm between target and predictions.



Summary

* Regression considers the case of a numerical y..

* Least squares is a classic method for fitting linear models.
— Minimizes sum of squared residuals (prediction and true value difference).
— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features, taking linear weighting of features.

* Gradient is vector containing partial derivatives of all variables.
* Matrix notation for expressing least squares problem: | | Xw —vy]| | 2.
* Next time:
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* |In Smithsonian National Air and Space Museum (Washington, DC):

£ ey ———————— Scientists found in the meteorite trapped gas whose
composition was nearly identical to the Martian
| / % || atmosphere as measured by the Viking Landers.
N, || This graph compares the concentration of gases
o o || in the Martian atmosphere (vertical axis) with their
concentration in the meteorite (horizontal axis). If
g | 11 they matched perfectly, the points would fall on the
diagonal line. The close match strongly suggests
that this meteorite came from Mars.
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Causality, Interventions, and RCTs

 What if you want to assess causality?

* You can sometimes do this by collecting data in specific ways.

— You need to set the values of the features “by intervention”.
* You do not passively observe, you *set* them and then watch the effect.

— Most common way this is done is with a randomized control trial.
e Say you want to evaluate the effectiveness of a pill for a certain disease.
* You get a bunch of people with the disease for training data.
* You randomly decide which of the people will take the pill, and which won’t.

* |f the people who got the pill did better/worse on average, it was caused by the pill.
— The randomness takes away the possibility that certain groups are more/less likely to take the pill.
— Group not taking the pill often given placebo, removing effect of “feel like you are being treated”.
— Often the researchers do not even get to know who took the pills until after the study is over.
» “Double blind”, to avoid the researchers giving hints about who got the pill.



https://en.wikipedia.org/wiki/Randomized_controlled_trial

Converting Partial Derivative to Matrix Notation

e Re-writing linear least squares partial derivative in matrix notation:
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Converting Gradient to Matrix Notation

e Re-writing linear least squares gradient in matrix notation:
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