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Motivation: Product Recommendation

* A customer comes to your website looking to buy at item:

Machine Learning: A Probabilistic Perspective

Hardcover — Aug 24 2012
by Kevin P. Murphy (Author)

WYy v 4 customer reviews

Look inside ¥

See all 3 formats and editions

Kindle Edition Hardcover
CDN$ 117.34 CDNS$ 123.52
Read with Our Free App 10 Used from CDN$ 110.00
15 New from CDN$ 99.86
Machine Learning
A Probabilistic Perspective Save up to 50%
Kovin P. Murphy on Dummies See more+

* You want to find similar items that they might also buy:

Customers Who Bought This Item Also Bought Page 1 of 20

Foundations of
Machine Learning
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< >
Pattern Recognition and Learning From Data The Elements of Statistical ~ Probabilistic Graphical Foundations of Machine
Machine Learning Yaser S. Abu-Mostafa Learning: Data Mining, Models: Principles and Learning (Adaptive
(Information Science and.. & fryiryr 88 Inference, and Prediction, Techniques (Adaptive.. Computation and..
Christopher Bishop Hardcover Trevor Hastie » Daphne Koller > Mehryar Mohri
Yo dkr i e v'e 115 fr i e e sy 50 okl i v 28 Wir sy 8

Hardcover Hardcover Hardcover Hardcover
$60.76 ~Prime $62.82 ~Prime $91.66 ~Prime $65.68 ~Prime
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Amazon Product Recommendation

* Amazon product recommendation method:
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e Return the KNNs across columns.

— Find ‘j’ values minimizing | |x' — x| |.

— Products that were bought by similar sets of users.

* But first divide each column by its norm, x'/| |x'| |.

— This is called normalization.

— Reflects whether product is bought by many people or few people.
. Normalized KNN is equivalent to maximizing “cosine similarity” (bonus).



Amazon Product Recommendation

 Consider this user-item matrix:
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* Product 1 is most similar to Product 3 (bought by lots of people).
* Product 2 is most similar to Product 4 (also bought by John and Yoko).

* Product 3 is equally similar to Products 1, 5, and 6.
— Does not take into account that Product 1 is more popular than 5 and 6.



Amazon Product Recommendation

Consider this user-item matrix (normalized):
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Product 1 is most similar to Product 3 (bought by lots of people).
Product 2 is most similar to Product 4 (also bought by John and Yoko).

Product 3 is most similar to Product 1.

— Normalization means it prefers the popular items.



Next Topic: Large-Scale
“Closest Point” Problems



Cost of Finding Nearest Neighbours

* With ‘n” users and ‘d’ products, finding KNNs costs O(nd).
— Not feasible if ‘n” and ‘d” are in the millions+.

e |t’s faster if the user-product matrix is sparse: O(z) for z non-zeroes.

— But ‘7" is still enormous in the Amazon example.



Closest-Point Problems

 We’'ve seen a lot of “closest point” problems:
— K-nearest neighbours classification.
— K-means clustering.
— Density-based clustering.
— Hierarchical clustering.
— KNN-based outlier detection.
— Outlierness ratio.
— Amazon product recommendation.

* How can we possibly apply these to Amazon-sized datasets?



But first the easy case: “Memorize the Answers”

* Easy case: you have a limited number of possible test examples.
— E.g., you will always choose an existing product (not arbitrary features).

* |n this case, just memorize the answers:
— For each test example, compute all KNNs and store pointers to answers.
— At test time, just return a set of pointers to the answers.

 The answers are called an inverted index, queries now cost O(k).
— Needs an extra O(nk) storage, which is fine for small ‘k’.



Grid-Based Pruning

* Assume we want to find examples within distance of ‘€” of point x.

Divide space = I
Into squares sl T T R

e 5
of length €. e

Hash examples based on
squares:

Hash[“64,76"] = {X5,X;}
(Dict in Python/Julia)




Grid-Based Pruning

* Which squares do we need to check to find examples within €?

--------------------------------------------------------------------------------------------------

 Only needto check pomts in same and adjacent squares



Grid-Based Pruning

* Why do we only need to check adjacent sgaures?

Points in same square can
have distance less than ‘€.




Grid-Based Pruning

* Why do we only need to check adjacent sgaures?

Points in adjacent
squares can have
distance less than
distance ‘€. d 1 Jtunce < §




Grid-Based Pruning

* Why do we only need to check adjacent sgaures?

diclance Z €

! ——

Points in non-adjacent
squares must have
distance more than ‘¢’




Grid-Based Pruning

e Worst case:

— All points in
adjacent squares.

— Still costs O(n?).




Grid-Based Pruning

e Worst case:

— All points in |
adjacent squares. I:Tn ANEE R o
— Still costs O(n?). T :

* |n practice:

— Most points may not

be in adjacent squres.

— Cost closer to O(n).




Grid-Based Pruning Discussion

* Similar ideas can be used for other “closest point” calculations.
— Can be used with any norm.
— |f you want KNN, can use grids of multiple sizes.

* But we have the “curse of dimensionality”:

— Number of adjacent regions increases exponentially:
e 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, 39-1 in d-dimension.

— [

]




Grid-Based Pruning Discussion

e Better choices of regions:

— Quad-trees. [P PR [ FREF HF
— Kd-trees. PERNREpEREp mamu |
1ol Mo PO e o ||
— R-trees. |-
— Ball-trees. )
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* Work better than squares, but worst case is still exponential.



Approximate Nearest Neighbours

* Approximate nearest neighbours:
— We can allow errors in the nearest neighbour calculation to gain speed.

* Asimple and very-fast approximate nearest neighbour method:
— Only check points within the same square.
— Works if neighbours are in the same square.
— But misses neighbours in adjacent squares.

* Asimple trick to improve the approximation quality:
— Use more than one grid.
— So “close” points have more “chances” to be in the same square.



Approximate Nearest Neighbours
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Approximate Nearest Neighbours

* Using multiple sets of regions improves accuracy.
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Approximate Nearest Neighbours

e Using multiple sets of regions improves accuracy.

1T




Locality-Sensitive Hashing

* Even with multiple regions, approximation can be poor for large ‘d".

e Common Solution (locality-sensitive hashing):

— Replace features x; with lower-dimensional features z..

* E.g., turns each 1000000-dimensional x; into a 10-dimensional z..

— Choose random z, to preserve high-dimensional distances (bonus slides).
H'Z,"" ZJ“ ~ “X, - Y) I

— Find points hashed to the same square in lower-dimensional ‘z” space.
— Repeat with different random z, values to increase chances of success.



Next Topic: Shingling



Shingling: Decomposing Examples into Parts

Detecting plagiarism (copying) is another “finding similar items” task.

— However, it’s unlikely that an entire document is plagiarized.
* So something like “Euclidean distance between documents” doesn’t seem right.

— Instead, you want to find if two documents have similar “parts”.
* Sequences of words that are copied.

This idea of finding similar “parts” is used in various places.
— We previously saw “bag of words” to divide text into parts/words.

Common: divide examples into “parts”, measure similarity of “parts”.
— “Shingling” is a word meaning “divide objects into parts”.

Given “shingles”, can search for similar parts instead of whole examples.



Shingling and Hashing

* As an example, n-grams are one way to shingle text data.
— Example input: “there are lots of applications of nearest neighbours”.
— Example trigram output (set of each three consecutive words):

/(] {4

* {“there are lots”, “are lots of”, “lots of applications”, “of applications of”,

/A {

“applications of nearest”, “of nearest neighbours”}.

— Test example: “nearest neighbours methods are found in lots of
applications.”

* Trigram shingles: {“nearest neighbours methods”, “neighbours methods are”,

n

“methods are found”, “are found in”, “in lots of”, “lots of applications”.}
* In this case the test example shares 2 shingles with the example above.



Shingling Example

* Fast Exact matching of individual shingles using hashing:
— Hash key would be the shingle.
— Hash value would be the training examples that include the shingle.
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* To detect plagiarism, you would shingle an entire document.
— And probably use longer n-grames.
— Hash function would let you quickly find exact matches.



Shingling Applications

* You could alternately measure similarity between sets of shingles.
— Say that objects are “similar” if they share a lot of shingles.
— Bonus: “minhash” randomized method for approximate Jaccard similarity.

* Without storing all the shingles (because there may too many to store).

 Example applications where finding similar shingles is useful:
— Detecting plagiarism (shared n-grams indicates copying).
— Entity resolution (finding whether two citations refer to the same document).
— BLAST gene search tool (shingle parts of a biological sequence for fast retrieval).
— Anti-virus software (virus “signature” is a byte sequence known to be malicious).
— Intrusion detection systems (often also based on “signatures”).
— Fingerprint recognition (shingles are “minutiae” in different regions of image).



Next Topic: Frequent ltemsets



Motivation: Product Recommendation

“Frequent itemsets”: sets of items frequently ‘bought’ together.

Customers Who Bought This Item Also Bought Page 1 of 20
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Machine Learning » Yaser S. Abu-Mostafa Learning: Data Mining, Models: Principles and Learning (Adaptive
(Information Science and... YWY yryr 88 Inference, and Prediction,...  Technigues (Adaptive.. Computation and...
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With this information, you could:
— Put them close to each other in the store.
— Make suggestions/bundles on a website.



Clustering vs. Frequent Itemsets

Sunglasses Sandals Sunscreen

* Clustering:
— Which examples are related? r 1 1 1 0
— Grouping rows together. ] o - .
1 0 1 0
I 0 1 1 1
—”\\’59 rows are
in cluster | 1 0 0 0
\ ( 1 1 )
0 0 0 0



Clustering vs. Frequent Itemsets

Sunglasses Sandals Sunscreen

* Clustering:
— Which examples are related? F 1 1 1 0
— Grouping rows together.

* Frequent Iltemsets: X

— Which features “are 1” together?

— Relating groups of columns.
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n traits occur together in animals?
nere do secondary cancers develop?

Mammals
There are many groups (classes) of animals. Mammals is just one group. There are
many different groups (orders) of mammals. All mammals share some traits.
1) Mammals have body hair that protects them from cold or sun.
2) Mammals have 3 middle ear bones that helps give them good hearing.
3) Females have milk to feed their young.
4) Mammals take care of their young.
5) Mammals are warm blooded.
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Atlanta Hawks

Minutes played together: 398
Combined net rating (per 48 minutes): 23.8
QOverall rank among two-man lineups: 1st

Reaction: Against all odds, the most efficient tandem
in the NBA is a pair of thirty-something wings. Kyle
Korver and Thabo Sefolosha complement each other
perfectly, with Korver providing the scoring punch and
Sefolosha taking on the toughest defensive
assignment for the Hawks.

With Sefolosha still getting back up to speed after a
calf injury sidelined him for two months, the Hawks
should probably just attach him to Korver until the two
can get their chemistry back to how it was. Because
any combination of players that can help a team
outscore its opponents by 23.8 points per game is
probably one worth exploring further.
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NBA Players

Thabo Sefolosha Kyle Korver

I

31

2014-15 Points Per Game
54 12.2
2014-15 Rebounds Per Game
43 41

See more details » 25, GRAPHIG



“Support” of an ltemset

e “Support” p(S =1)is the proportion of examples with all ‘'S” items.

e How do we compute p(S=1)?
— If S = {bread, milk}, we count proportion of times they are both “1”.
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Challenge in Learning Association Rule

* Frequent itemset goal (given a threshold ‘s’):
— Find all sets ‘'S’ with p(S=1) >s.

* Challenge: with ‘d’ features there are 29-1 possible sets.

Ford=H we hwe $1£ 120133 2482025 3§ 1h4¢ %2%{ fzq{gzq;
12,37, 3/,2745 7 3 45, zz 3§ aa,z,w;

* |t takes too long to even write all sets unless ‘d’ is tiny.

* Can we avoid testing all sets?

— Yes, using a basic property of probabilities...
(“downward-closure/anti-monotonicity”)



Upper Bound on Joint Probabilities

Suppose we know that p(S=1) > .
Can we say anything about p(S=1, A=1)?
— Probability of buying all items in ‘S, plus another item A
Yes, p(S=1, A=1) cannot be bigger than p(S = 1).
By e probect cube e have (521,717 p(A=1[570)p(S'51)
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E.g., probability of rolling 2 sixes on 2 dice (1/36) is less than 1 six on one di (1/6).




Support Set Pruning

* This property means that p(S=1) <simpliesp(S=1,A=1)<s.
— If p(sunglasses=1) < 0.1, then p(sunglasses=1, sandals=1) is less than 0.1.
— We never consider p(S=1, A=1) if p(S=1) has low support.
D

Given d items, there
are 29 possible
candidate itemsets



Support Set Pruning

This property means that p(S=1) <simpliesp(S=1,A=1)<s.
— If p(sunglasses=1) < 0.1, then p(sunglasses=1, sandals=1) is less than 0.1.
— We never consider p(S=1, A=1) if p(S=1) has low support.
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A Priori Algorithm

* A priori algorithm for finding all subsets with p(S=1) >s.
Generate list of all sets ‘S’ that have a size of 1.

Set k =1.
Prune candidates ‘S’ of size ‘k’ where p(S=1) <s.
Add all sets of size (k+1) that have all subsets of size k in current list.

Set k=k+ 1 and go to 3.

A S

Found to be
Infrequent




A Priori Algorithm

Bread | Coke M"yf/Be”r_Q’fﬁf’_
) O | 1 2) I

| : |

Let’s take minimum support as s = 0.30.
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A Priori Algorithm
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Let’s take minimum support as s = 0.30.
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A Priori Algorithm

Qr’f’o\d Cok’t MI'V(/ Beﬁf réfﬁf{. Egzlj First compute probabilities for sets of size k = 1:
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Let’s take minimum support as s = 0.30.
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A Priori Algorithm Discussion

e Some implementations prune the output:

— ‘Maximal frequent subsets’:
. Only return sets S with p(S = 1) > s where no superset S’ has p(S’' = 1) > s.
. E.g., don’t return {break,milk} if {bread, milk, diapers} also has high support.

 Number of rules we need to test is hard to quantify:
— Need to test more rules for small ‘s’
— Need to test more rules as average #items per example increase.

 Computing p(S=1)if S has ‘k’” elements costs O(nk).

— But there is some redundancy:
* Computing p({1,2,3}) and p({1,2,4}) can re-use some computation.

— Hashing can be used to speed up various computations.



Spurious Associations

For large ‘d’, high probability of returning spurious associations:
— With random data, one of the 29rules is likely to look strong.

Classical story:

— "In 1992, Thomas Blischok, manager of a retail consulting group at Teradata, and his staff
prepared an analysis of 1.2 million market baskets from about 25 Osco Drug stores. Database
queries were developed to identify affinities. The analysis "did discover that between 5:00 and
7:00 p.m. that consumers bought beer and diapers". Osco managers did NOT exploit the beer
and diapers relationship by moving the products closer together on the shelves.”

Modern story:
— Give a new vaccine to millions of people, and try to find a small correlation with anything bad.

Fun with spurious correlations here.
— Check whether rules make sense, and chance of finding spurious associations.


http://tylervigen.com/spurious-correlations

End of Part 2: Key Concepts

 We focused on 3 unsupervised learning tasks:
— Clustering.

* Partitioning (k-means) vs. density-based.
* “Flat” vs. hierarachial (agglomerative).

* Vector quantization.

* Label switching.

— Outlier Detection.

* Surveyed common approaches (and said that problem is ill-defined).
— Finding similar items.

* Amazon product recommendation.

* Region-based pruning for fast “closest point” calculations.

* Shingling divides objects into parts, matches individual parts of measures part set distance.
* Frequent itemsets: finding items often bought together (a prior is an efficient method).



Summary

Amazon product recommendation:
— Find similar items using (normalized) nearest neighbour search.

Fast nearest neighbour methods drastically reduce search time.
— Inverted indices, distance-based pruning.

Shingling: dividing objects into parts.
— Could just try to match individual parts.
— Could measure Jaccard score between sets of parts.

Support: measure of how often we see S.
Frequent itemsets: sets of items with sufficient support.
A priori algorithm: uses inequalities to prune search for sets.

Next week: how do we do supervised learning with a continuous y;?



Cosine Similarity vs. Normalized Nearest Neighbours

* The Amazon paper says they “maximize cosine similarity”.
e But this is equivalent to normalized nearest neighbours.

* |ntuition for this equivalence:
— When you normalize the features, they are all on the unit ball.
— Nearest neighbours on the unit ball maximize inner product (cosine sim.):
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Cosine Similarity vs. Normalized Nearest Neighbours

* The Amazon paper says they “maximize cosine similarity”.
e But this is equivalent to normalized nearest neighbours.

* Proof for k=1
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Locality-Sensitive Hashing

* How do we make distance-preserving low-dimensional features?

e Johnson-Lindenstrauss lemma (paraphrased):
— Define element c’ of the k-dimensional ‘z” by:
Zie T W Xo Tu,x, g xyg
— Where the scalars ‘w,’ are samples from a standard normal distribution.

* We can collect them into a ‘k” by ‘d” matrix “‘W’, which is the same for all ‘V’.

no
~

— If the dimension ‘k’ of the ‘z is large enough, then: Uzn"%’ I /’x, S I
» Specifically, we’ll require k = Q(log(d)).



Locality-Sensitive Hashing

* Locality-sensitive hashing:
1. Multiply X by a random Gaussian matrix ‘W’ to reduce dimensionality.
2. Hash dimension-reduced points into regions.
3. Test points in the same region as potential nearest neighbours.

* Now repeat with a different random matrix.
— To increase the chances that the closest points are hashed together.

e An accessible overview is here:
— http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf



http://www.slaney.org/malcolm/yahoo/Slaney2008-LSHTutorial.pdf

Non-Binary Frequent Itemsets

* We considered measuring things like p(sunglasses=1, sunscreen=1).

* You could consider more general probabilities,
like (milk > 0.5, egg > 1, lactase < 0).
— Just as easy to count from the data.
— The a priori algorithm can be modified to handle this.

* Though it’s more expensive.

* An application is “deny constraints” for outlier detection:
— Find the rules that have a really high probability (like 0.99 or 1).
— Mark the examples not satisfying these rules as outliers.



Association Rules

* Consider two sets of items ‘S” and ‘T":
— For example: S = {sunglasses, sandals} and T = {sunscreen}.

* We can also consider association rules (S =>T):
— |f you buy all items ‘S’, you are likely to also buy all items ‘T".
— E.g., if you buy sunglasses and sandals, you are likely to buy sunscreen.

MARKET BASKET ANALYSIS
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Clustering User-Product Matrix

 Normally think of clustering by rows (users):

go—
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* We also find outliers by rows.



Clustering User-Product Matrix

These pradudds o
* We could cluster bycolumns(prodM e P_*CL__Cffl “fc
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* Apply clustering to X'.



Frequent Itemsets

* Frequent itemsets: we frequently have all ‘1" values in cluster S.
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Association Rules

e Association rules (S=>T): all ‘1" in cluster S => all ‘1’ in cluster T.
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Association Rules

* |Interpretation in terms of conditional probability:
— Therule (S=>T) means thatp(T=1 | S=1) is ‘high’.

'musingp(T=1|S=1)forp(T,=1,T,=1,..,T,=1|S5,=1,S,=1,...,S.=1).
* Association rules are directed but not necessarily causal:
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e E.g., buying sunscreen doesn’t necessarily imply buying sunglasses/sandals:

— The correlation could be backwards or due to a common cause.

* E.g., the common cause is that you are going to the beach.



Support and Confidence

 We “score” rule (S=>T) by “support” and “confidence”.

— Running example: {sunglasses,sandals} => suncreen.

* Support:
— How often does ‘S” happen?

— How often were sunglasses and sandals bought together?

— Marginal probability: p(S = 1). -
: SneP VP <)/) ( g / S— g// /)
e Confidence: (fa
— When ‘S’ happens, how often does ‘T’ happen?
— When sunglasses+sandals were bought, how often was sunscreen bought?

— Conditional probability: p(T=1| S=1).



Support and Confidence

 We're going to look for rules that:
1. Happen often (high support), p(S=1) > ‘s’
2. Are reliable (high confidence), p(T=1| S=1) > C..

e Association rule learning problem:
— Given support ‘s’ and confidence ‘c’.
— QOutput all rules with support at least ‘s’ and confidence at least ‘c’.

A common variation is to restrict size of sets:
— Returns all rules with |S| < k and/or |T| < k.
— Often for computational reasons.



Generating Rules

* A priorialgorithm gives all ‘S” with p(S=1) >s.
* To generate the rules, we consider subsets of each high-support ‘S’:

— If S={1,2,3}, candidate rules are:
e {1}=>1{2,3}, {2} =>{1,3}, {3} => {1,2}, {1,2} => {3}, {1,3} => {2}, {2,3} => {1}.
— There is an exponential number of subsets.

* But we can again prune using rules of probability:

By defuifon of conciloral probability we have p(T=][s21) = p(S7), 71)
And since p(S =)< | owe hae p(T=115202 (571, T=1) p(f-v
By the same /ogic we  have P(/:IR—Ilg‘IO/>/P(”RIQ’I§')

* E.g., probability of rolling 2 sixes is higher if you know one di is a 6.




Confident Set Pruning
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Association Rule Mining Issues

* Spurious associations:

— Can it return rules by chance?
* Alternative scores:

— Support score seems reasonable.

— |s confidence score the right score?
e Faster algorithms than a priori:

— ECLAT/FP-Growth algorithms.

— Generate rules based on subsets of the data.
— Cluster features and only consider rules within clusters.



Problem with Confidence

* Consider the “Sunscreen Store”:
— Most customers go there to buy sunscreen.

 Now consider rule (sunglasses => sunscreen).
— If you buy sunglasses, it could mean you weren’t there for sunscreen:
e p(sunscreen = 1| sunglasses = 1) < p(sunscreen = 1).

— So (sunglasses => sunscreen) could be a misleading rule:

* You are less likely to buy sunscreen if you buy sunglasses.

— But the rule could have high confidence.



Customers who bought sunglasses

Customers who didn’t buy sunglasses




Customers who bought sunscreen
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e One alternative to confidence is “lift”:
— How much more likely does ‘S” make us to buy ‘T'?

Lift(s=77)= ¢




Sequential Pattern Analysis

Finding patterns in data organized according to a sequence:

— Customer purchases:
» ‘Star Wars’ followed by ‘Empire Strikes Back’ followed by ‘Return of the Jedi'.

— Stocks/bonds/markets:
 Stocks going up followed by bonds going down.

In data mining, called sequential pattern analysis:

— |f you buy product A, are you likely to buy product B at a later time?
Similar to association rules, but now order matters.

— Many issues stay the same.

Exist sequential versions of many association rule methods:
— Generalized sequential pattern (GSP) algorithm is like a priori algorithm.



Malware and Intrusion Detection Systems

* In antivirus software and software for network intrusion detection
systems, another method of outlier detection is common:

— “Signature-based” methods: keep a list of byte sequences that are known to be
malicious. Raise an alarm if you detect one.

— Typically looks for exact matches, so can be implemented very quickly.

— Can’t detect new types of outliers, but if you are good at keeping your list of
possible malicious sequences up to date then this is very effective.

— Here is an article discussing why ML is *not* common in these settings:
* http://www.icir.org/robin/papers/oakland10-ml.pdf

e But this is now changing and ML is starting to appear in anti-virus software:

— http://icitech.org/wp-content/uploads/2017/02/ICIT-Analysis-Sighature-Based-Malware-Detection-is-
Dead.pdf



http://www.icir.org/robin/papers/oakland10-ml.pdf
http://icitech.org/wp-content/uploads/2017/02/ICIT-Analysis-Signature-Based-Malware-Detection-is-Dead.pdf

Shingling Practical Issues

In practice, you can save memory by not storing the full shingles.

Instead, define a hash function mapping from shingles to bit-vectors,
and just store the bit-vectors.

— For sequences may also use “suffix trees” to speed up finding hash keys.

However, for some applications even storing the bit-vectors is too
costly:

— This led to randomized algorithms for computing Jaccard score between huge
sets even if you don’t store all the shingles.

Conceptually, it’s still useful to think of the “bag of shingles” matrix:
— X;is ‘1" if example ‘i’ has shingle 7.



Minhash and Jaccard Similarity

Let h(x;) be the smallest index ‘j” where x; is non-zero (“minhash”).

Consider a random permutation of the possible shingles ‘j’:
— In Julia: randperm(d).
— The value h(x;) will be different based on the permutation.

Neat fact:
— Probability that h(x;) = h(x;) is the Jaccard similarity between x; and x;.

Proof idea:

— Probability that you stop with h(x;) = h(x;) is given by probability that x; =x; =1 for
a random ‘k’, divided by probability that at least one of x, =1 or x, =1 is true for a
random ‘K.



Low-Memory Randomized Jaccard Approximation

The “neat fact” lets us approximate Jaccard similarity without
storing the shingles.

First we generate a bunch of random permutations.
— In practice, use a random hash function to randomly map 1:d to 1:d.

For each example, go through its shingles to compute h(x;) for each
permutation.

— No need to store the shingles.

Approximate Jaccard(x;,x;) as the fraction of permutations where
h(x;)=h(x;).



