
CPSC 340 Assignment 4 (due Friday November 1 at 11:55pm)

1 Gaussian RBFs and Regularization

Unfortunately, in practice we often don’t know what basis to use. However, if we have enough data then
we can make up for this by using a basis that is flexible enough to model any reasonable function. These
may perform poorly if we don’t have much data, but can perform almost as well as the optimal basis as the
size of the dataset grows. In this question you will explore using Gaussian radial basis functions (RBFs),
which have this property. These RBFs depend on a parameter σ, which (like p in the polynomial basis) can
be chosen using a validation set. In this question, you will also see how cross-validation allows you to tune
parameters of the model on a larger dataset than a strict training/validation split would allow.

1.1 Regularization

If you run the demo example RBF.jl, it will load a dataset and randomly split the training examples into a
“train” and a “validation” set (it does this randomly since the data is sorted). It will then search for the
best value of σ for the RBF basis. Once it has the “best” value of σ, it re-trains on the entire dataset and
reports the training error on the full training set as well as the error on the test set.

A strange behaviour appears: if you run the script more than once it might choose different values of σ.
Sometimes it chooses a large value of σ (like 32) that follows the general trend but misses the oscillations.
Other times it sets σ = 1 or σ = 2, which fits the oscillations better but overfits so achieves a similar test
error.1 Modify the leastSquaresRBF function so that it allows a regularization parameter λ and it fits the
model with L2-regularization. Hand in your code, and report and describe how the performance changes if
you use a regularized estimate with λ = 10−12 (a very small value).

Hint: to construct an identity matrix in Julia, use the linear algebra package (using LinearAlgebra) and then
use I to make an identity matrix of the appropriate size (Julia figures out the dimensions for you).

1.2 Cross-Validation

Even with regularization, the randomization of the training/validation sets has an effect on the value of σ
that we choose (on some runs it still chooses a large σ value). This variability would be reduced if we had
a larger “train” and “validation” set, and one way to simulate this is with cross-validation. Modify the
training/validation procedure to use 10-fold cross-validation to select σ, and hand in your code. How does
this change the performance when fixing λ = 10−12?2

1.3 Cost of Non-Parametric Bases

When dealing with larger datasets, an important issue is the dependence of the computational cost on the
number of training examples n and the number of features d.

1. What is the cost in big-O notation of training a linear regression model with Gaussian RBFs on n
training examples with d features (for fixed σ and λ)?

1This behaviour seems to be dependent on your exact setup. Because the ZTZ matrix with the RBF matrix is really-badly
behaved numerically, different floating-point and matrix-operation implementations will handle this in different ways: in some
settings it will actually regularizer for you!

2In practice, we typically use cross-validation to choose both σ and λ

1



2. What is the cost of classifying t new examples with this model?

3. When is it cheaper to train using Gaussian RBFs than using the original linear basis?

4. When is it cheaper to predict using Gaussian RBFs than using the original linear basis?

2 Logistic Regression with Sparse Regularization

If you run the function example logistic.jl, it will:

1. Load a binary classification dataset containing a training and a validation set.

2. “Standardize” the columns of X and add a bias variable.

3. Apply the same transformation to Xvalidate.

4. Fit a least squares model, using the sign of wTxi to make predictions.

5. Report the number of features selected by the model (number of non-zero regression weights).

6. Report the error on the training and validation sets.

Least squares does ok as a binary classifier on this dataset, but it uses all the features (even though only
the prime-numbered features are relevant) and the validation error is above the minimum achievable for this
model (which is 1 percent, if you have enough data and know which features are relevant). In this question,
you will modify this demo to use the logistic loss and to use different forms of regularization to improve on
these aspects.

2.1 Logistic Regression

Instead of least squares, modify the script to use logistic regression. You can use the logReg.jl file, which
implements the training and prediction function for a logistic regresion classifier (using a version of the
findMin function that does derivative checking for you and that uses more-clever choices of step-sizes).
When you switch to using logistic regression, report how the following quantities change: the training error,
validation error, and number of features.

2.2 L2-Regularization

Make a new function, logRegL2, that takes an input parameter λ and fits a logistic regression model with
L2-regularization. Specifically, while logReg computes w by minimizing

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)),

your new function logRegL2 should compute w by minimizing

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+
λ

2
‖w‖2.

Hand in the objective function that your updated code minimizes, and using λ = 1.0 report how the following
quantities change: the training error, the validation error, the number of features used, and the number of
gradient descent iterations.

2



2.3 L1-Regularization

Make a new function, logRegL1, that takes an input parameter λ and fits a logistic regression model with
L1-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖1.

Hand in your logRegL1 code. Using this new code and λ = 1, report the following quantities: the training
error, the validation error, and the number of features the model uses.

You should use the function findMinL1, which implements a proximal-gradient method to minimize the sum
of a differentiable function g and λ‖w‖1,

f(w) = g(w) + λ‖w‖1.

This function has a similar interface to findMin, except that you (a) only provide the code to compute the
function/gradient of the differentiable part g and (b) need to provide the value λ.

2.4 L0-Regularization

The function logRegL0 contains part of the code needed to implement the forward selection algorithm, which
approximates the solution with L0-regularization,

f(w) =

n∑
i=1

[
log(1 + exp(−yiwTxi))

]
+ λ‖w‖0.

The ‘for’ loop in this function is missing the part where we fit the model using the subset Sj, then compute the
score and updates the minScore/minS. Modify the ‘for’ loop in this code so that it fits the model using only
the features Sj, computes the score above using these features, and updates the minScore/minS variables
(if you want to turn off the diagonistics generated by findMin, you can use verbose = false).3 Hand in your
updated code. Using this new code, set λ = 1 and report: the training error, the validation error, and the
number of features used.

Note that the code differs a bit from what we discussed in class, since we assume that the first feature is the
bias variable and assume that the bias variable is always included. Also, note that for this particular case
using the L0-norm with λ = 1 is equivalent to what is known as the Akaike information criterion (BIC) for
variable selection.

3 Multi-Class Logistic

The function example multiClass loads a multi-class classification dataset with yi ∈ {1, 2, 3, 4, 5} and fits a
‘one-vs-all’ classification model using binary logistic regression, then reports the validation error and shows
a plot of the data/classifier. The performance on the validation set is ok, but could be much better. For
example, this classifier never predicts that examples will be in class 1 (the green class).

3.1 Softmax Classification

Linear classifiers make their decisions by finding the class label c maximizing the quantity wT
c xi, so we want

to train the model to make wT
yi
xi larger than wT

c′xi for all the classes c′ that are not the true label yi. Here,
c is a possible label and wc′ is row c′ of W . Similarly, yi is the training label, wyi

is row yi of W , and in this

3Note that Julia doesn’t like when you re-define functions, but if you change the variable Xs it will actually change the
behaviour of the funObj that is already defined.

3



setting we are assuming a discrete label yi ∈ {1, 2, . . . , k}. Before we move on to implementing the softmax
classifier to fix the issues raised in the introduction, let’s do a simple example:

Consider the dataset below, which has 10 training examples, 2 features, and 3 class labels:

X =



0 1
1 0
1 0
1 1
1 1
0 0
1 0
1 0
1 1
1 0


, y =



1
1
1
2
2
2
3
3
3
3


.

Suppose that you want to classify the following test example:

x̂ =

[
1
1

]
.

Suppose we fit a multi-class linear classifier using the softmax loss, and we obtain the following weight
matrix:

W =

+2 −1
+2 +2
+3 −1


1. Why are the weights of this model a 3× 2 matrix?

2. Under this model, what class label would we assign to the test example? (Show your work.)

3.2 Softmax Loss

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W . An alternative to this independent model is to use the
softmax loss probability,

p(yi |W,xi) =
exp(wT

yi
xi)∑k

c=1 exp(wT
c xi)

.

The loss function corresponding to the negative logarithm of the softmax probability for n training examples
is given by

f(W ) =

n∑
i=1

[
−wT

yi
xi + log

(
k∑

c′=1

exp(wT
c′xi)

)]
.

Derive the partial derivative of this loss function with respect to a particular element Wcj . Try to simplify
the derivative as much as possible (but you can express the result in summation notation).

Hint: for the gradient you can use xij to refer to element j of example i. For the first term you can use
an ‘indicator’ function, I(yi = c), which is 1 when yi = c and is 0 otherwise. Note that you can use the
definition of the softmax probability to simplify the derivative.

4



3.3 Softmax Classifier

Make a new function, softmaxClassifier, which fits W using the softmax loss from the previous section instead
of fitting k independent classifiers. Hand in the code and report the validation error.

Hint: you will want to use the derivativeCheck option in findMin.jl to check that your gradient code is
correct. Also, note that findMin.jl expects that the parameter vector and gradient are column vectors. The
easiest way to work around these issues is to use the reshape command: call findMin.jl with a dk× 1 vector
w and at the start of your objective function reshape w to be a k × d matrix W , then compute the k × d
matrix of partial derivatives and finally reshape this to be the dk × 1 gradient vector.

3.4 Cost of Multinomial Logistic Regression

Assuming that we have

• n training examples.

• d features.

• k classes.

• t testing examples.

• T iterations of gradient descent for training.

1. In O() notation, what is the cost of training the softmax classifier?

2. What is the cost of classifying the test examples?

4 Very-Short Answer Questions

1. Consider performing feature selection by measuring the “mutual information” between each column
of X and the target label y, and selecting the features whose mutual information is above a certain
threshold (meaning that the features provides a sufficient number of “bits” that help in predicting the
label values). Without delving into any details about mutual information, what is a potential problem
with this approach?

2. Why do we use forward selection instead of exhaustively search all subsets in search and score methods?

3. What is a setting where you would use the L1-loss, and what is a setting where you would use L1-
regularization?

4. Among L0-regularization, L1-regularization, and L2-regularization: which yield convex objectives?
Which yield unique solutions? Which yield sparse solutions?

5. What is the effect of λ in L1-regularization on the sparsity level of the solution? What is the effect of
λ on the two parts of the fundamental trade-off?

6. Suppose you have a feature selection method that tends not generate false positives but has many false
negatives (it misses relevant variables). Describe an ensemble method for feature selection that could
improve the performance of this method.

7. How does the hyper-parameter σ affect the shape of the Gaussian RBFs bumps? How does it affect
the fundamental tradeoff?

8. What is the main problem with using least squares to fit a linear model for binary classification?

9. Suppose a binary classification dataset has 3 features. If this dataset is “linearly separable”, what does
this precisely mean in three-dimensional space?

5



10. When searching for a good w for a linear classifier, why do we use the logistic loss instead of just
minimizing the number of classification errors?

11. For a linearly-separable binary classification problem, how does an SVM classifier differ from a classifier
found using the perceptron algorithm?

12. Which of the following methods produce linear classifiers? (a) binary least squares as in Question 3,
(b) the perceptron algorithm, (c) SVMs, (d) logistic regression, and (e) KNN with k = 1 and n = 2.

13. Why do we use the polynomial kernel to implement the polynomial basis when d and p (degree of
polynomial) are large?

14. Suppose we want to fit a multi-class logistic regression model, but the class labels do not form convex
regions. How could we modify multi-class logistic regression to fit non-convex regions?

6


