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Last Time: K-Means Clustering

• We want to cluster data:
– Assign examples to groups.

• K-means clustering:
– Define groups by “means”
– Assigns examples to nearest mean.

(And updates means during training.)

• Also used for vector quantization:
– Use means as “prototypes” of groups.
– “Pick clothing sizes or spaghetti sauces”.

• Issues with k-means:
– Fast but sensitive to initialization.
– Choosing ‘k’ is annoying.



Shape of K-Means Clusters

• K-means partitions the space based on the “closest mean”:

• Observe that the clusters are convex regions (proof in bonus).



Convex Sets

• A set is convex if line between two points in the set stays in the set.

Convex
Convex

Not Convex



Shape of K-Means Clusters

Animation

http://datagenetics.com/blog/may12017/index.html


K-Means with Non-Convex Clusters

https://corelifesciences.com/human-long-non-coding-rna-expression-microarray-service.html
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K-Means with Non-Convex Clusters

https://corelifesciences.com/human-long-non-coding-rna-expression-microarray-service.html

K-means cannot separate 
some non-convex clusters

Though over-clustering can help
(“hierarchical”)





John Snow and Cholera Epidemic

• John Snow’s 1854 spatial histogram of deaths from cholera:

• Found cluster of cholera deaths around a particular water pump.
– Went against airborne theory, but pump later found to be contaminated.

– “Father” of epidemiology.

https://en.wikipedia.org/wiki/John_Snow



Motivation for Density-Based Clustering

• Density-based clustering:
– Clusters are defined by “dense” regions.

– Examples in non-dense regions don’t get clustered.
• Not trying to “partition” the space.

• Clusters can be non-convex:
– Elephant clusters affected by vegetation, 

mountains, rivers, water access, etc.

• It’s a non-parametric clustering method:
– No fixed number of clusters ‘k’.

– Clusters can become more complicated with more data.
http://www.defenders.org/elephant/basic-facts



Other Potential Applications

• Where are high crime regions of a city?

• Where should taxis patrol?

• Where does Iguodala make/miss shots?

• Which products are similar to this one?

• Which pictures are in the same place?

• Where can proteins ‘dock’?

• Where are people tweeting?

https://en.wikipedia.org/wiki/Cluster_analysis
https://www.flickr.com/photos/dbarefoot/420194128/
http://letsgowarriors.com/replacing-jarrett-jack/2013/10/04/
http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/
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Density-Based Clustering

• Density-based clustering algorithm (DBSCAN) has two hyperparameters:

– Epsilon (ε): distance we use to decide if another point is a “neighbour”.

– MinNeighbours: number of neighbours needed to say a region is “dense”.
• If you have at least minNeighbours “neighbours”, you are called a “core” point.

• Main idea: merge all neighbouring core points to form clusters.



Density-Based Clustering
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Density-Based Clustering



• For each example xi:

– If xi is already assigned to a cluster, do nothing.

– Test whether xi is a ‘core’ point (≥ minNeighbours examples within ‘ε’).

• If xi is not core point, do nothing (this could be an outlier).

• If xi is a core point, make a new cluster and call the “expand cluster” function.

Density-Based Clustering Pseudo-Code
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Density-Based Clustering Pseudo-Code

• “Expand cluster” function:

– Assign to this cluster all xj within distance ‘ε’ of core point xi to this cluster.

– For each new “core” point found, call “expand cluster” (recursively).



Density-Based Clustering in Action

Interactive demo

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/


Density-Based Clustering Issues

• Some points are not assigned to a cluster.
– Good or bad, depending on the application.

• Ambiguity of “non-core” (boundary) points:      

• Sensitive to the choice of ε and minNeighbours.
– Original paper proposed an “elbow” method (see bonus slide).

– Otherwise, not sensitive to initialization (except for boundary points).

• If you get a new example, finding cluster is expensive.
– Need to compute distances to core points (or maybe all training points).

• In high-dimensions, need a lot of points to ‘fill’ the space.



Density-Based Clustering in Nature

• Quorum sensing:

– Bacteria continuously release a particular molecule.

– They have sensors for this molecule.

• If sensors become very active:

– It means cell density is high.

– Causes cascade of changes in cells.
(Some cells “stick together” to 
form a physical cluster via “biofilm”.)

https://en.wikipedia.org/wiki/Quorum_sensing



(pause)



Ensemble Clustering

• We can consider ensemble methods for clustering.

– “Consensus clustering”

• It’s a good/important idea:

– Bootstrapping is widely-used.

– “Do clusters change if the data was slightly different?”

• But we need to be careful about how we combine models.



Ensemble Clustering

• E.g., run k-means 20 times and then cluster using the mode of each ො𝑦i.

• Normally, averaging across models doing different things is good.

• But this is a bad ensemble method: worse than k-means on its own.



Label Switching Problem

• This doesn’t work because of “label switching” problem:

– The cluster labels ො𝑦i are meaningless.

– We could get same clustering with permuted labels (“exchangeable”):

– All ො𝑦i become equally likely as number of initializations increases.



Addressing Label Switching Problem

• Ensembles can’t depend on label “meaning”:

– Don’t ask “is point xi in red square cluster?”, which is meaningless.

– Ask “is point xi in the same cluster as xj?”, which is meaningful.

– Bonus slides give an example method (“UBClustering”).



(pause)



Differing Densities

• Consider density-based clustering on this data:



Differing Densities

• Increase epsilon and run it again:

• There may be no density-level that gives you 3 clusters.



Differing Densities

• Here is a worse situation:

• Now you need to choose between coarse/fine clusters.

• Instead of fixed clustering, we often want hierarchical clustering.



Hierarchical Clustering

• Hierarchical clustering produces a tree of clusterings.

– Each node in the tree splits the data into 2 or more clusters.

– Much more information than using a fixed clustering.

– Often have individual data points as leaves.



Application: Phylogenetics

• We sequence genomes of a set of organisms.

• Can we construct the “tree of life”?

• Comments on this application:
– On the right are individuals.

– As you go left, clusters merge.

– Merges are ‘common ancestors’.

• More useful information in the plot:
– Line lengths: chosen here to approximate time.

– Numbers: #clusterings across bootstrap samples.

– ‘Outgroups’ (walrus, panda) are a sanity check.
http://www.nature.com/nature/journal/v438/n7069/fig_tab/nature04338_F10.html



Application: Phylogenetics

• Comparative method in linguistics studies evolution of languages:

https://en.wikipedia.org/wiki/Comparative_method_(linguistics)



Application: Phylogenetics

• January 2016: evolution of fairy tales.

– Evidence that “Devil and the Smith”
goes back to bronze age.

– “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.

http://rsos.royalsocietypublishing.org/content/3/1/150645



Application: Phylogenetics

• January 2016: evolution of fairy tales.

– Evidence that “Devil and the Smith”
goes back to bronze age.

– “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.

• September 2016: evolution of myths.

– “Cosmic hunt” story:

• Person hunts animal that becomes constellation.
– Previously known to be at least 15,000 years old.

• May go back to paleololithic period.

http://www.nature.com/nature/journal/v438/n7069/fig_tab/nature04338_F10.html



Application: Fashion?

• Hierarchical clustering of clothing material words in Vogue:

http://dh.library.yale.edu/projects/vogue/fabricspace/



Agglomerative (Bottom-Up) Clustering

• Most common hierarchical method: agglomerative clustering.

1. Starts with each point in its own cluster.

https://en.wikipedia.org/wiki/Hierarchical_clustering
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Agglomerative (Bottom-Up) Clustering

• Most common hierarchical method: agglomerative clustering.

1. Starts with each point in its own cluster.

2. Each step merges the two “closest” clusters.

3. Stop with one big cluster that has all points.

https://en.wikipedia.org/wiki/Hierarchical_clustering
Animation

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


Agglomerative (Bottom-Up) Clustering

• Reinvented by different fields under different names (“UPGMA”).

• Needs a “distance” between two clusters.

• A standard choice: distance between means of the clusters.

– Not necessarily the best, many choices exist (bonus slide).

• Cost is O(n3d) for basic implementation.

– Each step costs O(n2d), and each step might only cluster 1 new point.



Summary

• Shape of K-means clusters: 
– Partitions space into convex sets.

• Density-based clustering: 
– “Expand” and “merge” dense regions of points to find clusters.
– Not sensitive to initialization or outliers.
– Useful for finding non-convex connected clusters.

• Ensemble clustering: combines multiple clusterings.
– Can work well but need to account for label switching.

• Hierarchical clustering: more informative than fixed clustering.
• Agglomerative clustering: standard hierarchical clustering method.

– Each point starts as a cluster, sequentially merge clusters.

• Next time:
• Discovering (and then ignoring) a hole in the ozone layer.



Why are k-means clusters convex?

• K-means clusters are formed by the intersection of half-spaces.

Half-space



Why are k-means clusters convex?

• K-means clusters are formed by the intersection of half-spaces.

Half-space

Intersection

Half-space



Why are k-means clusters convex?



Why are k-means clusters convex?

“Closer to red” half-space

“Closer to green” half-space



Why are k-means clusters convex?

“Closer to red” half-space
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Why are k-means clusters convex?

Blue over green half-space

Green over blue half-space



Why are k-means clusters convex?

Magenta over green half-space

Green over magenta half-space



Why are k-means clusters convex?



Why are k-means clusters convex?

• Half-spaces are convex sets.

• Intersection of convex sets is a convex set.

– Line segment between points in each set are still in each set.

• So intersection of half-spaces is convex.

Half-space

Intersection

Half-space



Voronoi Diagrams

• The k-means partition can be visualized as a Voronoi diagram:

• Can be a useful visualization of “nearest available” problems.

– E.g., nearest tube station in London.

http://datagenetics.com/blog/may12017/index.html

http://bl.ocks.org/nicola/10e25b18aca0bc05b192


Density-Based Clustering Runtime



“Elbow” Method for Density-Based Clustering

• From the original DBSCAN paper:

– Choose some ‘k’ (they suggest 4) and set minNeighbours=k.

– Compute distance of each points to its ‘k’ nearest neighbours.

– Sort the points based on these distances and plot the distances:

– Look for an “elbow” to choose 𝜖.
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf



OPTICS

• Related to the DBSCAN “elbow” is “OPTICS”.

– Sort the points so that neighbours are close to each other in the ordering.

– Plot the distance from each point to the next point.

– Clusters should correspond to sequencers with low distance.

https://en.wikipedia.org/wiki/OPTICS_algorithm



UBClustering Algorithm

• Let’s define a new ensemble clustering method: UBClustering.

1. Run k-means with ‘m’ different random initializations.

2. For each example i and j:

– Count the number of times xi and xj are in the same cluster.

– Define p(i,j) = count(xi in same cluster as xj)/m.

3. Put xi and xj in the same cluster if p(i,j) > 0.5.

• Like DBSCAN merge clusters in step 3 if i or j are already assigned.

– You can implement this with a DBSCAN code (just changes “distance”).

– Each xi has an xj in its cluster with p(i,j) > 0.5.

– Some points are not assigned to any cluster.



UBClustering Algorithm



Distances between Clusters

• Other choices of the distance between two clusters:

– “Single-link”: minimum distance between points in clusters.

– “Average-link”:  average distance between points in clusters.

– “Complete-link”: maximum distance between points in clusters.

– Ward’s method: minimize within-cluster variance.

– “Centroid-link”: distance between a representative point in the cluster.

• Useful for distance measures on non-Euclidean spaces (like Jaccard similarity).

• “Centroid” often defined as point in cluster minimizing average distance to other 
points.



Cost of Agglomerative Clustering

• One step of agglomerative clustering costs O(n2d):
– We need to do the O(d) distance calculation between up to O(n2) points.

– This is assuming the standard distance functions.

• We do at most O(n) steps:
– Starting with ‘n’ clusters and merging 2 clusters on each step, after O(n) steps 

we’ll only have 1 cluster left (though typically it will be much smaller).

• This gives a total cost of O(n3d).

• This can be reduced to O(n2d log n) with a priority queue:
– Store distances in a sorted order, only update the distances that change.

• For single- and complete-linkage, you can get it down to O(n2d).
– “SLINK” and “CLINK” algorithms.



Bonus Slide: Divisive (Top-Down) Clustering

• Start with all examples in one cluster, then start dividing.

• E.g., run k-means on a cluster, then run again on resulting clusters.

– A clustering analogue of decision tree learning.


