CPSC 340:
Machine Learning and Data Mining

K-Means Clustering
Fall 2019



Last Time: Random Forests

* Random forests are an ensemble method.
— Averages results of fitting deep random trees to boostrap samples of data.
— Randomization encourages errors of different trees to be independent.
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Last Time: Random Forests

* Random forests are an ensemble method.
— Averages results of fitting deep random trees to boostrap samples of data.

— Randomization encourages errors of different trees to be independent.
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Random Forest Ingredient 2: Random Trees

* For each split in a random tree model:

— Randomly sample a small number of possible features (typically \/d).
— Only consider these random features when searching for the optimal rule.
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Random Forest Ingredient 2: Random Trees

* For each split in a random tree model:

— Randomly sample a small number of possible features (typically \/d).
— Only consider these random features when searching for the optimal rule.
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Random Forest Ingredient 2: Random Trees

For each split in a random tree model:

— Randomly sample a small number of possible features (typically \/d).
— Only consider these random features when searching for the optimal rule.

Splits will tend to use different features in different trees.

— They will still overfit, but hopefully errors will be more independent.
So the average tends to have a much lower test error.
Empirically, random forests are one of the “best” classifiers.
Fernandez-Delgado et al. [2014]:

— Compared 179 classifiers on 121 datasets.
— Random forests are most likely to be the best classifier.



End of Part 1: Key Concepts

 Fundamental ideas:
— Training vs. test error (memorization vs. learning).
— |ID assumption (examples come independently from same distribution).
— Golden rule of ML (test set should not influence training).
— Fundamental trade-off (between training error vs. approximation error).
— Validation sets and cross-validation (can approximate test error)
— Optimization bias (we can overfit the training set and the validation set).
— Decision theory (we should consider costs of predictions).
— Parametric vs. non-parametric (whether model size depends on ‘n’).
— No free lunch theorem (there is no “best” model).



End of Part 1: Key Concepts

 We saw 3 ways of “learning”:

— Searching for rules.
* Decision trees (greedy recursive splitting using decision stumps).

— Counting frequencies.
* Naive Bayes (probabilistic classifier based on conditional independence).

— Measuring distances.

» K-nearest neigbbours (non-parametric classifier with universal consistency).

 We saw 2 generic ways of improving performance:
— Encouraging invariances with data augmentation.

— Ensemble methods (combine predictions of several models).
e Random forests (averaging plus randomization to reduce overfitting).



Application: Classifying Cancer Types

* “| collected gene expression data for 1000 different types of cancer
cells, can you tell me the different classes of cancer?”

 We are not given the class labels y, but want meaningful labels.
 An example of unsupervised learning.



Unsupervised Learning

e Supervised learning:
— We have features x, and class labels y..
— Write a program that produces y, from x.

 Unsupervised learning:

— We only have x; values, but no explicit target labels.
— You want to do “something” with them.

 Some unsupervised learning tasks:
— Outlier detection: Is this a ‘normal’ x;?
— Similarity search: Which examples look like this x.?
— Association rules: Which x! occur together?
— Latent-factors: What ‘parts’ are the x. made from?
— Data visualization: What does the high-dimensional X look like?
— Ranking: Which are the most important x.?
— Clustering: What types of x; are there?



Clustering

e Clustering:

— Input: set of examples described by features x..
— Output: an assignment of examples to ‘groups’.

* Unlike classification, we are not given the ‘groups’.

— Algorithm must discover groups.

Example of groups we might discover in e-mail spam:
— ‘Lucky winner’ group.

— ‘Weight loss’ group.

— ‘I need your help’ group.
— ‘Mail-order bride’ group.



Clustering Example
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Clustering Example
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Data Clustering

* General goal of clustering algorithms:
— Examples in the same group should be ‘similar’.
— Examples in different groups should be ‘different’.

e But the ‘best’ clustering is hard to define:
— We don’t have a test error.

— Generally, there is no ‘best” method in unsupervised learning.
* So there are lots of methods: we’ll focus on important/representative ones.

 Why cluster?
— You could want to know what the groups are.
— You could want to find the group for a new example x..
— You could want to find examples related to a new example x..
— You could want a ‘prototype’ example for each group.



Clustering of Epstein-Barr Virus

Expression
Profile
GROUP B-P-L  # Genes Genes of Interest

1 / 48  CCND2,CDC25C, CDKS,
E2F7, OAS3, XRCC4

AURKA/B, BRCA2, BUB1,
CCNA2, CCNB1/2, CCNET,
CD38, CDC2, CDC25A,
2 / 232 cDC45L, CENPA, DNMTT,
FEN1, HISTAH3A, IFI44L,
IFIT1, IFITM1, MKI67, NEIL3,
PLK1, RFC3, TOP2A

ASPM, BLMH, BRCA1,
CCNE2, CDC8, CENP (F/K),
CLSPN, E2F2, EXO1,
111 FANCA, KIF2C, MCM
(2,3,4,7,10), MYB, ORC1L,
POLE2, POLQ, SMC (2/4)

35 FOS, EGR1

ACTN1, AICDA, ATF3,
BCL2L10, EBI3, ICAMA,
144  1L10, MSC(ABF1), OPTN,
PLA1A, PLD1, RHOC,
TRAF1, VCAM1

BACH1, BCL6, BCOR,
146 CASP8, CXCR4, EBF1,
ELK3, IL6, JUND, SPIB

BCL11A, CIITA, FCRL1/2,
106 FOXP1, FYN, JAK1,
SWAP70

~
)

25 BACH2, BANK1, FCRL3,
NFATC2, NOTCH2, TGFBR2

33 BCL2, CCR7, CD8O0, CFLAR,
NFKB2, STAT3, TNIP1
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Other Clustering Applications

NASA: what types of stars are there?
Biology: are there sub-species?

Documents: what kinds of documents are on my HD?

Commercial

: what kinds of customers do | have?

Pointer
Irish Setter
German Shorthaired Pointer
Welsh Springer Spaniel
English Cocker Spaniel
American Cocker Spaniel
American Water Spaniel
Cavalier King Charles Spaniel
Chesapeake Bay Retriever
Golden Retriever
Portuguese Water Dog
Miniature Schnauzer
Standard Schnauzer
Giant Schnauzer
American Hairless Terrier
West Highland White Terrier
Cairn Terrier
Australian Terrier
Airedale Terrier

Doberman Pinscher
Italian Greyhound
Ibizan Houndr
Pharach Hound
Old English Sheepdog
Border Collie
Schipperke
Beagle
Basset Hound
Bloodhound

Clumber Spaniel
Australian Shepherd
Rhodesian Ridgeback
Irish Terrier
Bedlington Terrier
Kerry Blue Terrier
Soft Coated Wheaten Terrier
Flat-Coated Retriever
Labrador Retriever
Chihuahua
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Manchester Terrier

Rottweiler
Bullmastiff

Bulldog
Boxer
Mastiff

Pomeranian
Dachshund

Bichon Frise
andard Poodle
Whippet

Keeshond
rwegian Elkhound
Komondor

Kuvasz
Great Dane

Tibetan Terrier
Afghan Hound
Saluki

Presa Canario

Newfoundland
German Shepherd Dog
French Bulldog
Miniature Bull Terrier

" Saint Bemard
Bernese Mountain Dog
Greater Swiss Mountain

®

Irish Wolfhound
Greyhound
Borzoi
Belgain Sheepdog
Belgian Tervuren
Collie
Shetland Sheepdog

Samoyed
Lhasa Apso
Pekingese

Shih Tzu

Akita <R
Shiba Inu g~
Chow Chow
Chinese Shar-Pei
Alaskan Malamute
Siberian Husky
Basenji




K-Means

* Most popular clustering method is k-means.
* |nput:

— The number of clusters ‘k” (hyper-parameter).

— Initial guess of the center (the “mean”) of each cluster.
e Algorithm:

— Assign each x; to its closest mean.

— Update the means based on the assignment.
— Repeat until convergence.



K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example

Input: data matrix X", 2L o '%} '.. . .8?'."!:‘354'
(90 -737 s SR, "
- _ 0 » |
|3'0.‘1 ,:3 tor ® Assign each example to
lzg 204 st the closest mean.
12¢  A0C
i : \} T ..::....;.
L .‘.. R 0
Z ) o.ﬁ(

| | | | | !
-20 -15 -10 -5 0 5 10 15 20



K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example

https://www.naftaliharris.com/blog/visualizing-k-means-clustering
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering

K-Means Issues

Guaranteed to converge when using Euclidean distance.

Given a new test example:
— Assign it to the nearest mean to cluster it.

Assumes you know number of clusters ‘k’.

— Lots of heuristics to pick ‘k’, none satisfying:
* https://en.wikipedia.org/wiki/Determining_the _number_of clusters_in_a data_set

Each example is assigned to one (and only one) cluster:
— No possibility for overlapping clusters or leaving examples unassigned.

It may converge to sub-optimal solution...



K-Means Clustering with Different Initialization

K-Me lustering
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* Classic approach to dealing with sensitivity to initialization: random restarts.
— Try several different random starting points, choose the “best”.

* See bonus slides for a more clever approach called k-means++.



KNN vs. K-Means

* Don’t confuse KNN classification and k-means clustering:

Property KNN Classification K-Means Clustering

Task

Meaning of ‘k’

Initialization

Model complexity

Parametric?

Supervised learning (given y,)

Number of neighbours to consider
(not number of classes).

No training phase.

Model is complicated for small ‘k’,
simple for large ‘k’.

Non-parametric:
- Stores data ‘X’

Unsupervised learning (no given y,).

Number of clusters (always consider single
nearest mean).

Training that is sensitive to initialization.

Model is simple for small ‘k’, complicated for
large ‘K.

Parametric (for ‘k’ not depending on ‘n’)
- Stores means ‘W’



What is K-Means Doing?

 We can interpret K-means steps as minimizing an objective:

— Total sum of squared distances from each example x; to its center wy;
N
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* The k-means steps: $ /
L . P A . € 0,3,, K
— Minimize f" in terms of the V. (update cluster assignments).
— Minimize f" in terms of the w_ (update means).

. : (— W, — )
* Termination of the algorithm follows because: We | — W —
— Each step does not increase the objective. ? k
— There are a finite number of assignments to k clusters. L’;’:_"‘_’E:J
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What is K-Means Doing?

We can interpret K-means steps as minimizing an objective:

— Total sum of squared distances from each example x; to its center wy;
N
\ N N _ — 2
+\(""u)""l)"WW"') Yoo Yoo ) = Z )]Wy" al
1=
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The k-means steps: $ y
L . P A . € 0,3,, K
— Minimize f" in terms of the V. (update cluster assignments).
— Minimize f" in terms of the w_ (update means).

Use t’ to choose between initializations (fixed ‘k’). \ /- | — w, —
Need to change w_update under other distances: |
— L1-norm: set w, to median (“k-medians”, see bonus). L'\__:_VE/\/



Cost of K-means

e Bottleneck is calculating dlstance from each x; to each mean w_:
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Cost of K-means

Bottleneck is calculating dlstance from each x; to each mean w_:

fw, = x "= Z (w, ~x,)? Tt Jmeﬂswl/
L

VE ( 0F

— Each time we do this costs O(d).
We need to compute distance from ‘n” examples to ‘k” clusters.

Total cost of assigning examples to clusters is O(ndk).

— Fast if k is not too large.
Updating means is cheaper: O(nd). Oyect in cluster
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Vector Quantization

 K-means originally comes from signal processing.

* Designed for vector quantization:
— Replace examples with the mean of their cluster (“prototype”).

* Example:
— Facebook places: 1 location summarizes many.
: : | 9
— What sizes of clothing should | make? O 5
@@ o@ | - @ 89
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Vector Quantization for Basketball Players

* Clustering NBA basketball players based on shot type/percentage:

a8 Restricted Area vs Unassisted Percentages 08 K-Means Clusters of Restricted Area vs Unassisted Percentages
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* The “prototypes” (means) give offensive styles (like “catch and shoot”).



Vector Quantlzatlon Example
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(Bad) Vector Quantization in Practice

* Political parties can be thought as a form of vector quantization:
® * '-_-.'
Liberal #Lgreen
i )= BLOC PEOPLE'’S
6 \’ Québécois PARTY

— Hope is that parties represent what a cluster of voters want.
* With larger ‘k’ more voters have a party that closely reflects them.
* With smaller ‘k’, parties are less accurate reflections of people.



Summary

Random forests: bagging of deep randomized decision trees.
* One of the best “out of the box” classifiers.

Unsupervised learning: fitting data without explicit labels.
Clustering: finding ‘groups’ of related examples.

K-means: simple iterative clustering strategy.
— Fast but sensitive to initialization.

Vector quantization:
— Compressing examples by replacing them with the mean of their cluster.

Next time:
— John Snow and non-parametric clustering.



Extremely-Randomized Trees

* Extremely-randomized trees add an extra level of randomization:
1. Each tree is fit to a bootstrap sample.
2. Each split only considers a random subset of the features.
3. Each split only considers a random subset of the possible thresholds.

* So instead of considering up to ‘n’ thresholds,
only consider 10 or something small.

— Leads to different partitions so potentially more independence.



What is K-Means Doing?

* How are are k-means step decreasing this objective?
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* If we just write as function of a particular y, we get:
wr(y. )= | Wo g |[F+ (constat)

— The “constant” includes all other terms, and doesn’t affect location of min.
— We can minimize in terms of . by setting it to the ‘c” with w_ closest to x..



What is K-Means Doing?

How are are k-means step decreasing this objective?
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If we just write as function of a partlcular w,; we get:

wy)= 2 2 (wy=x,) + (MW)
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K-Medians Clustering

With other distances k-means may not converge.

— But we can make it converge by changing the updates so that they are
minimizing an objective function.

N
E.g., we can use the L1-norm objective: 7 HWF-— y,-/l,

Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:

— Assign points to clusters by finding “mean” with smallest L1-norm
distance.
— Update ‘means’ as median value (dimension-wise) of each cluster.
* This minimizes the L1-norm distance to all the points in the cluster.

This approach is more robust to outliers. L

/t, I< - w20y W\I) ’0\4+ ) d\,\sf(’f here



What is the “L1-norm and median” connection?

e Point that minimizes the sum of squared L2-norms to all points:

— Is given by the mean (just take derivative and set to 0):

{ 4
w':‘a,? Xi

/
* Point that minimizes the sum of L1-norms to all all points:

{(W): an | W“)(l'//,

— Is given by the median (derivative of absolute value is +1 if positive and -1 if
negative, so any point with half of points larger and half of points smaller is a
solution).



K-Medoids Clustering

A disadvantage of k-means in some applications:

— The means might not be valid data points.

— May be important for vector quantiziation.

E.g., consider bag of words features like [0,0,1,1,0].
— We have words 3 and 4 in the document.

A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].
— What does it mean to have 0.3 of word 2 in a document?

Alternative to k-means is k-medoids:
— Same algorithm as k-means, except the means must be data points.

— Update the means by finding example in cluster minimizing squared L2-
norm distance to all points in the cluster.



K-Means Initialization

e K-means is fast but sensitive to initialization.

* Classic approach to initialization: random restarts.
— Run to convergence using different random initializations.
— Choose the one that minimizes average squared distance of data to means.

* Newer approach: k-means++
— Random initialization that prefers means that are far apart.
— Yields provable bounds on expected approximation ratio.



K-Means++

e Steps of k-means++:
1. Selectinitial mean w, as a random x.
2. Compute distance d,. of each example x; to each mean w..

A:(‘, m“ “X.“Wc ”2

3. For each example ‘i’ set d. to the distance to the closest mean.
Al - V“OV\ %Aic‘i
4. Choose next mean by sampling an example ‘i’ proportional to (d)2.
2
P] (>'§ d'o\ — ), ‘7i:" Ji Con [)g
5. Keep returning to step 2 until we have k-means. Z z o]jj done n
).’l

Oln)
hfroka/ol'/i f}/ qu?’ we

(L\OOJ( X,’ af /ll?Xf Mean

* Expected approximation ratio is O(log(k)).

\
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K-Means++

First mean is a
random example.
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K-Means++

Weight examples by
distance to mean squared.
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K-Means++

Sample mean proportional

to distances squared.
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K-Means++
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Weight examples by squared
distance to nearest mean.
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K-Means++

Sample mean proportional
to minimum distances squared
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K-Means++

. o8’

Weight examples by squared
distance to mean.
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to distances squared.

(Now hit chosen target k=4.)
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K-Means++

Start k-means: assign
examples to the closest mean.
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K-Means++

Update the mean
of each cluster.
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K-Means++

Update the mean
of each cluster.
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In this case: just 2 iterations!



Discussion of K-Means++

Recall the objective function k-means tries to minimize:
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The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:
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Get good clustering with high probability by re-running.
However, there is no guarantee that ¢’ is a good clustering.



Uniform Sampling

e Standard approach to generating a random number from {1,2,...,n}:
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u <i/n.

* Conceptually, this divides interval [0,1] mto n equal-size pieces:
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Non-Uniform Sampling

Standard approach to generating a random number for general p..
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u < 2 p;
J?l

Conceptually, this divides interval [0,1] into non-equal-size pieces:
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Can sample from a generic discrete probability distribution in O(n).

If you need to generate ‘m’ samples:
— Cost is O(n + m log (n)) with binary search and storing cumulative sums.



How many iterations does k-means take?

Each update of the ‘)" or ‘w_” does not increase the objective f’.
And there are k" possible assighnments of the y. to ‘k’ clusters.

So within k" iterations you cannot improve the objective by
changing y,, and the algorithm stops.

Tighter-but-more-complicated “smoothed” analysis:
— https://arxiv.org/pdf/0904.1113.pdf



https://arxiv.org/pdf/0904.1113.pdf

Vector Quantization: Image Colors

 Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with K-means predictions:
(24-bits/pixel) 26 clusters: (6-bits/pixel)
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with  K-means predictions: R’P/”" chasye, wilh mean:
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with  K-means predictions: R’P/”" "'Aifrr with meamn:
(24-bits/pixel) 26 clusters: (3-bits/pixel)
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with  K-means predictions: R’P/”" "'Aifrr with meamn:
(24-bits/pixel) 26 clusters: (2-bits/pixel)
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 13 50] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with  K-means predictions: R’P/”" "'Aifrr with meamn:

(24-bits/pixel) 26 clusters: (1-bit/pixel)
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