CPSC 340:
Machine Learning and Data Mining

K-Means Clustering
Fall 2019
Last Time: Random Forests

- **Random forests** are an **ensemble** method.
 - Averages results of fitting deep **random trees** to boostrap samples of data.
 - Randomization **encourages** errors of different trees to be independent.
Last Time: Random Forests

- **Random forests** are an *ensemble* method.
 - Averages results of fitting deep *random trees* to *bootstrap samples* of data.
 - Randomization *encourages* errors of different trees to be independent.
Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.

Random tree 1:
- Sample (milk, oranges) \quad milk $>$ 0.5

Random tree 2:
- Sample (egg, lactose) \quad egg $>$ 0
Random Forest Ingredient 2: Random Trees

- For each split in a **random tree** model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.

```
Random tree 1:
- Sample (milk, oranges)  
  - Sample (egg, peanut)  
    - egg > 1

Random tree 2:
- Sample (egg, lactase)
  - egg > 0
```
Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.
- Splits will tend to use different features in different trees.
 - They will still overfit, but hopefully errors will be more independent.
- So the average tends to have a much lower test error.
- Empirically, random forests are one of the “best” classifiers.
- Fernandez-Delgado et al. [2014]:
 - Compared 179 classifiers on 121 datasets.
 - Random forests are most likely to be the best classifier.
End of Part 1: Key Concepts

• Fundamental ideas:
 – Training vs. test error (memorization vs. learning).
 – IID assumption (examples come independently from same distribution).
 – Golden rule of ML (test set should not influence training).
 – Fundamental trade-off (between training error vs. approximation error).
 – Validation sets and cross-validation (can approximate test error).
 – Optimization bias (we can overfit the training set and the validation set).
 – Decision theory (we should consider costs of predictions).
 – Parametric vs. non-parametric (whether model size depends on ‘n’).
 – No free lunch theorem (there is no “best” model).
End of Part 1: Key Concepts

• We saw 3 ways of “learning”:
 – Searching for rules.
 • Decision trees (greedy recursive splitting using decision stumps).
 – Counting frequencies.
 • Naïve Bayes (probabilistic classifier based on conditional independence).
 – Measuring distances.
 • K-nearest neighbours (non-parametric classifier with universal consistency).

• We saw 2 generic ways of improving performance:
 – Encouraging invariances with data augmentation.
 – Ensemble methods (combine predictions of several models).
 • Random forests (averaging plus randomization to reduce overfitting).
Application: Classifying Cancer Types

• “I collected gene expression data for 1000 different types of cancer cells, can you tell me the different classes of cancer?”

X =

• We are not given the class labels y, but want meaningful labels.
• An example of unsupervised learning.
Unsupervised Learning

- **Supervised learning:**
 - We have features x_i and class labels y_i.
 - Write a program that produces y_i from x_i.

- **Unsupervised learning:**
 - We only have x_i values, but no explicit target labels.
 - You want to do “something” with them.

- **Some unsupervised learning tasks:**
 - Outlier detection: Is this a ‘normal’ x_i?
 - Similarity search: Which examples look like this x_i?
 - Association rules: Which x_i occur together?
 - Latent-factors: What ‘parts’ are the x_i made from?
 - Data visualization: What does the high-dimensional X look like?
 - Ranking: Which are the most important x_i?
 - Clustering: What types of x_i are there?
Clustering

• **Clustering:**
 – Input: set of examples described by features x_i.
 – Output: an assignment of examples to ‘groups’.

• Unlike classification, we are not given the ‘groups’.
 – Algorithm must discover groups.

• Example of groups we might discover in e-mail spam:
 – ‘Lucky winner’ group.
 – ‘Weight loss’ group.
 – ‘I need your help’ group.
 – ‘Mail-order bride’ group.
Clustering Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]
Clustering Example

Input: data matrix \(X \).

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Output: clusters \(\hat{y} \).

\[
\hat{y} = \begin{bmatrix}
2 \\
3 \\
3 \\
1 \\
\vdots
\end{bmatrix}
\]
Data Clustering

• General goal of clustering algorithms:
 – Examples in the same group should be ‘similar’.
 – Examples in different groups should be ‘different’.

• But the ‘best’ clustering is hard to define:
 – We don’t have a test error.
 – Generally, there is no ‘best’ method in unsupervised learning.
 • So there are lots of methods: we’ll focus on important/representative ones.

• Why cluster?
 – You could want to know what the groups are.
 – You could want to find the group for a new example \(x_i \).
 – You could want to find examples related to a new example \(x_i \).
 – You could want a ‘prototype’ example for each group.
Clustering of Epstein-Barr Virus

http://jvi.asm.org/content/86/20/11096.abstract
Other Clustering Applications

• NASA: what types of stars are there?
• Biology: are there sub-species?
• Documents: what kinds of documents are on my HD?
• Commercial: what kinds of customers do I have?

http://www.biology-online.org/articles/canine_genomics_genetics_running/figures.html
K-Means

• Most popular clustering method is k-means.
• Input:
 – The number of clusters ‘k’ (hyper-parameter).
 – Initial guess of the center (the “mean”) of each cluster.
• Algorithm:
 – Assign each x_i to its closest mean.
 – Update the means based on the assignment.
 – Repeat until convergence.
K-Means Example

Input: data matrix 'X'.

\[X = \begin{bmatrix} -9.0 & -7.3 \\ -10.9 & -9.0 \\ 13.7 & 19.3 \\ 13.8 & 20.4 \\ 12.8 & 20.6 \end{bmatrix} \]

Start with ‘k’ initial ‘means’ (usually, random data points)
K-Means Example

Input: data matrix ‘X’.

\[X = \begin{bmatrix}
 -9.0 & -7.3 \\
 -10.9 & -9.0 \\
 13.7 & 19.3 \\
 13.8 & 20.4 \\
 12.8 & 20.6 \\
 \vdots & \vdots \\
\end{bmatrix} \]

Assign each example to the closest mean.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix}
\]

Update the mean of each group.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
. & .
\end{bmatrix}
\]

Assign each example to the closest mean.
K-Means Example

Update the mean of each group.

Input: data matrix ‘X’.

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix} \]
K-Means Example

Input: data matrix \(X\).

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Assign each example to the closest mean.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix}
\]

Update the mean of each group.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\end{bmatrix}
\]

Assign each example to the closest mean.
K-Means Example

Input: data matrix ‘X’.

\[
X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots \\
\end{bmatrix}
\]

Stop if no examples change groups.
K-Means Example

Input: data matrix ‘X’.

\[X = \begin{bmatrix} -9.0 & -7.3 \\ -10.9 & -9.0 \\ 13.7 & 19.3 \\ 13.8 & 20.4 \\ 12.8 & 20.6 \\ \vdots & \vdots \end{bmatrix} \]

Output:
- Clusters ‘\(\hat{y}\)’.
- Means ‘W’.

\[\hat{y} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ \vdots \end{bmatrix} \]

\[W = \begin{bmatrix} -1.2 & 17.8 \\ -10.2 & -8.0 \\ 11.0 & 19.5 \\ 11.8 & -3.6 \end{bmatrix} \]

Interactive demo:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering
K-Means Issues

• Guaranteed to converge when using Euclidean distance.

• Given a new test example:
 – Assign it to the nearest mean to cluster it.

• Assumes you know number of clusters ‘k’.
 – Lots of heuristics to pick ‘k’, none satisfying:
 • https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

• Each example is assigned to one (and only one) cluster:
 – No possibility for overlapping clusters or leaving examples unassigned.

• It may converge to sub-optimal solution...
K-Means Clustering with Different Initialization

- Classic approach to dealing with sensitivity to initialization: random restarts. Try several different random starting points, choose the “best”.
- See bonus slides for a more clever approach called k-means++.
KNN vs. K-Means

- Don’t confuse KNN classification and k-means clustering:

<table>
<thead>
<tr>
<th>Property</th>
<th>KNN Classification</th>
<th>K-Means Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Supervised learning (given y_i)</td>
<td>Unsupervised learning (no given y_i).</td>
</tr>
<tr>
<td>Meaning of ‘k’</td>
<td>Number of neighbours to consider (not number of classes).</td>
<td>Number of clusters (always consider single nearest mean).</td>
</tr>
<tr>
<td>Initialization</td>
<td>No training phase.</td>
<td>Training that is sensitive to initialization.</td>
</tr>
<tr>
<td>Model complexity</td>
<td>Model is complicated for small ‘k’, simple for large ‘k’.</td>
<td>Model is simple for small ‘k’, complicated for large ‘k’.</td>
</tr>
<tr>
<td>Parametric?</td>
<td>Non-parametric: - Stores data ‘X’</td>
<td>Parametric (for ‘k’ not depending on ‘n’): - Stores means ‘W’</td>
</tr>
</tbody>
</table>
What is K-Means Doing?

• We can interpret K-means steps as minimizing an objective:
 – Total sum of squared distances from each example x_i to its center $w_{\hat{y}_i}$:
 $$f(w_1, w_2, \ldots, w_k, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} \|w_{\hat{y}_i} - x_i\|^2$$

• The k-means steps:
 – Minimize ‘f’ in terms of the \hat{y}_i (update cluster assignments).
 – Minimize ‘f’ in terms of the w_c (update means).

• Termination of the algorithm follows because:
 – Each step does not increase the objective.
 – There are a finite number of assignments to k clusters.
What is K-Means Doing?

• We can interpret K-means steps as minimizing an objective:
 – Total sum of squared distances from each example \(x_i \) to its center \(w_{\hat{y}_i} \):
 \[
 f(w_1, w_2, \ldots, w_K, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} \| w_{\hat{y}_i} - x_i \|^2
 \]

• The k-means steps:
 – Minimize ‘\(f \)’ in terms of the \(\hat{y}_i \) (update cluster assignments).
 – Minimize ‘\(f \)’ in terms of the \(w_c \) (update means).

• Use ‘\(f \)’ to choose between initializations (fixed ‘\(k \)’).

• Need to change \(w_c \) update under other distances:
 – L1-norm: set \(w_c \) to median (“k-medians”, see bonus).
Cost of K-means

- Bottleneck is calculating distance from each x_i to each mean w_c:

$$\|w_c - x_i\|^2 = \sum_{j=1}^{d} (w_{cj} - x_{ij})^2$$
Cost of K-means

• Bottleneck is calculating distance from each \(x_i \) to each mean \(w_c \):

\[
\| w_c - x_i \|^2 = \sum_{j=1}^{d} (w_{cj} - x_{ij})^2
\]

— Each time we do this costs \(O(d) \).

• We need to compute distance from ‘n’ examples to ‘k’ clusters.

• Total cost of assigning examples to clusters is \(O(ndk) \).
 — Fast if \(k \) is not too large.

• Updating means is cheaper: \(O(nd) \).

- For each cluster ’c’, compute

\[
w_c = \frac{1}{n_c} \sum_{i \in C} x_i
\]

Object in cluster

Loop over objects in cluster

Number of objects in cluster ’c’
Vector Quantization

• K-means originally comes from signal processing.
• Designed for vector quantization:
 – Replace examples with the mean of their cluster ("prototype").

• Example:
 – Facebook places: 1 location summarizes many.
 – What sizes of clothing should I make?

Vector Quantization for Basketball Players

- Clustering NBA basketball players based on shot type/percentage:
 - The “prototypes” (means) give offensive styles (like “catch and shoot”).

Vector Quantization Example

\[X = \begin{bmatrix}
-9.0 & -7.3 \\
-10.9 & -9.0 \\
13.7 & 19.3 \\
13.8 & 20.4 \\
12.8 & 20.6 \\
\vdots & \vdots
\end{bmatrix} \]

Run k-means

\[W = \begin{bmatrix}
-1.2 & 17.8 \\
-10.2 & -8.0 \\
11.0 & 19.5 \\
11.8 & -3.6 \\
\end{bmatrix} \]

\[Y = \begin{bmatrix} 2 \\
2 \\
3 \\
3 \\
\vdots \end{bmatrix} \]

Approximate objects with means.

\[X = \begin{bmatrix}
-10.2 & -8.0 \\
-10.2 & -8.0 \\
11.0 & 19.5 \\
11.0 & 19.5 \\
-1.2 & 17.8 \\
\vdots & \vdots
\end{bmatrix} \]

These mean values are the prototypes. Each example can be approximated by prototype.
(Bad) Vector Quantization in Practice

• Political parties can be thought as a form of vector quantization:

 – Hope is that parties represent what a cluster of voters want.
 • With larger ‘k’ more voters have a party that closely reflects them.
 • With smaller ‘k’, parties are less accurate reflections of people.
Summary

• Random forests: bagging of deep randomized decision trees.
 • One of the best “out of the box” classifiers.
• Unsupervised learning: fitting data without explicit labels.
• Clustering: finding ‘groups’ of related examples.
• K-means: simple iterative clustering strategy.
 – Fast but sensitive to initialization.
• Vector quantization:
 – Compressing examples by replacing them with the mean of their cluster.

• Next time:
 – John Snow and non-parametric clustering.
Extremely-Randomized Trees

- **Extremely-randomized trees** add an extra level of randomization:
 1. Each tree is fit to a bootstrap sample.
 2. Each split only considers a random subset of the features.
 3. Each split only considers a random subset of the possible thresholds.

- So instead of considering up to ‘n’ thresholds, only consider 10 or something small.
 - Leads to different partitions so potentially more independence.
What is K-Means Doing?

• How are k-means step decreasing this objective?

\[f(w_1, w_2, \ldots, w_k, \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} ||w_{\hat{y}_i} - x_i||^2 \]

• If we just write as function of a particular \(\hat{y}_i \), we get:

\[f(\hat{y}_i) = ||w_{\hat{y}_i} - x_i||^2 + \text{(constant)} \]

 – The “constant” includes all other terms, and doesn’t affect location of min.
 – We can minimize in terms of \(\hat{y}_i \) by setting it to the ‘c’ with \(w_c \) closest to \(x_i \).
What is K-Means Doing?

• How are k-means step decreasing this objective?

\[f(w_1, w_2, \ldots, w_k; \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n) = \sum_{i=1}^{n} \| w_{\hat{y}_i} - x_i \|^2 \]

• If we just write as function of a particular \(w_{c_j} \) we get:

\[f(w_{c_j}) = \sum_{i \in C_j} \sum_{j=1}^{d} (w_{c_j} - x_{ij})^2 + \text{(constant)} \]

set of examples with \(\hat{y}_i = C \)

• Derivative is given by:

\[f'(w_{c_j}) = 2 \sum_{i \in C} (w_{c_j} - x_{ij}) \]

• Setting equal to 0 and solving for \(w_{c_j} \) gives:

\[\sum_{i \in C} w_{c_j} = \sum_{i \in C} x_{ij} \quad \text{or} \quad w_{c_j} \cdot \eta_{c} = \sum_{i \in C} x_{ij} \quad \text{or} \quad w_{c_j} = \frac{1}{\eta_{c}} \sum_{i \in C} x_{ij} \]
K-Medians Clustering

• With other distances k-means may not converge.
 – But we can make it converge by changing the updates so that they are minimizing an objective function.
• E.g., we can use the L1-norm objective:
 \[\sum_{i=1}^{n} \| w_p - y_i \|_1, \]

• Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:
 – Assign points to clusters by finding “mean” with smallest L1-norm distance.
 – Update ‘means’ as median value (dimension-wise) of each cluster.
 • This minimizes the L1-norm distance to all the points in the cluster.
• This approach is more robust to outliers.

\[\text{\textit{k-means will put a cluster here.}} \]
What is the “L1-norm and median” connection?

• Point that minimizes the sum of squared L2-norms to all points:

\[f(w) = \sum_{i=1}^{n} \|w - x_i\|^2 \]

– Is given by the mean (just take derivative and set to 0):

\[w = \frac{1}{n} \sum_{i=1}^{n} x_i \]

• Point that minimizes the sum of L1-norms to all all points:

\[f(w) = \sum_{i \in \mathbb{R}} \|w - x_i\|_1 \]

– Is given by the median (derivative of absolute value is +1 if positive and -1 if negative, so any point with half of points larger and half of points smaller is a solution).
K-Medoids Clustering

- A disadvantage of k-means in some applications:
 - The means might not be valid data points.
 - May be important for vector quantization.

- E.g., consider bag of words features like [0,0,1,1,0].
 - We have words 3 and 4 in the document.

- A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].
 - What does it mean to have 0.3 of word 2 in a document?

- Alternative to k-means is k-medoids:
 - Same algorithm as k-means, except the means must be data points.
 - Update the means by finding example in cluster minimizing squared L2-norm distance to all points in the cluster.
K-Means Initialization

• K-means is fast but sensitive to initialization.

• Classic approach to initialization: random restarts.
 – Run to convergence using different random initializations.
 – Choose the one that minimizes average squared distance of data to means.

• Newer approach: k-means++
 – Random initialization that prefers means that are far apart.
 – Yields provable bounds on expected approximation ratio.
K-Means++

• Steps of k-means++:

1. Select initial mean w_1 as a random x_i.
2. Compute distance d_{ic} of each example x_i to each mean w_c.
 \[d_{ic} = \sqrt{\sum_{j=1}^{D} (x_{ij} - w_{cj})^2} = \| x_i - w_c \|_2 \]
3. For each example ‘i’ set d_i to the distance to the closest mean.
 \[d_i = \min_c \{ d_{ic} \} \]
4. Choose next mean by sampling an example ‘i’ proportional to $(d_i)^2$.
 \[p_i \propto d_i^2 \Rightarrow p_i = \frac{d_i^2}{\sum_{j=1}^{k} d_j^2} \]
5. Keep returning to step 2 until we have k-means.

• Expected approximation ratio is $O(\log(k))$.
K-Means++
K-Means++

First mean is a random example.
K-Means++

Weight examples by distance to mean squared.
K-Means++

Sample mean proportional to distances squared.
K-Means++

Weight examples by squared distance to nearest mean.
K-Means++

Sample mean proportional to minimum distances squared.
K-Means++

Weight examples by squared distance to mean.
K-Means++

Sample mean proportional to distances squared. (Now hit chosen target k=4.)
K-Means++

Start k-means: assign examples to the closest mean.
K-Means++

Update the mean of each cluster.
K-Means++

In this case: just 2 iterations!

Update the mean of each cluster.
Discussion of K-Means++

• Recall the objective function k-means tries to minimize:

\[f(W, c) = \sum_{i=1}^{n} \sum_{h=1}^{c} \| x_i - w_{c(h)} \|_2^2 \]

• The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:

\[\frac{E[f(W, c)]}{f(W^*, c^*)} = O(\log(k)) \]

Expectation over random samples of “best” mean and clustering according to objective.

• Get good clustering with high probability by re-running.

• However, there is no guarantee that c* is a good clustering.
Uniform Sampling

- Standard approach to generating a random number from \{1,2,...,n\}:
 1. Generate a uniform random number ‘u’ in the interval \[0,1\].
 2. Return the largest index ‘i’ such that \(u \leq \frac{i}{n} \).

- Conceptually, this divides interval \[0,1\] into ‘n’ equal-size pieces:

- This assumes \(p_i = \frac{1}{n} \) for all ‘i’.
Non-Uniform Sampling

• Standard approach to generating a random number for general p_i.
 1. Generate a uniform random number ‘u’ in the interval $[0,1]$.
 2. Return the largest index ‘i’ such that $u \leq \sum_{j=1}^{i} p_j$.

• Conceptually, this divides interval $[0,1]$ into non-equal-size pieces:

• Can sample from a generic discrete probability distribution in $O(n)$.

• If you need to generate ‘m’ samples:
 – Cost is $O(n + m \log(n))$ with binary search and storing cumulative sums.
How many iterations does k-means take?

• Each update of the ‘\(\hat{y}_i\)’ or ‘\(w_c\)’ does not increase the objective ‘f’.
• And there are \(k^n\) possible assignments of the \(\hat{y}_i\) to ‘k’ clusters.
• So within \(k^n\) iterations you cannot improve the objective by changing \(\hat{y}_i\), and the algorithm stops.

• Tighter-but-more-complicated “smoothed” analysis:
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241\ 13\ 50]\) = □.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel) Run k-means with 2⁶ clusters: K-means predictions: (6-bits/pixel)

\[X = \begin{bmatrix} 3 \end{bmatrix} \text{ (all 8-bit) } \]

\[W = \begin{bmatrix} 3 \end{bmatrix} \text{ (64 colours) } \]

\[Y = \begin{bmatrix} 1 \ 2 \ 3 \ 2 \ 2 \ 1 \ 1 \ 3 \end{bmatrix} \text{ (6-bit number which refers to one of } 2^6 \text{ colours) } \]
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241 \ 13 \ 50] = \square\).
 – Can apply k-means to find set of prototype colours.
Vector Quantization: Image Colors

- Usual RGB representation of a pixel’s color: three 8-bit numbers.
 - For example, \([241\ 13\ 50]\) = 🔴.
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

Run k-means with 26 clusters:

K-means predictions: (3-bits/pixel)

Replace cluster with mean:

\[X = \begin{bmatrix} \vdots \end{bmatrix} \]
\[W = \begin{bmatrix} 1 \ 2 \ 3 \ 1 \ 2 \ 3 \end{bmatrix} \]
\[Y = \begin{bmatrix} \vdots \end{bmatrix} \]
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, \([241 \ 13 \ 50]\) = 🟢.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel) Run k-means with 2⁶ clusters: K-means predictions: (2-bits/pixel)

Replace cluster with mean:

\[
X = \begin{bmatrix}
\text{all } \frac{3}{8}\text{-bit}
\end{bmatrix}
\]

\[
W = \begin{bmatrix}
\text{3 pixels}
\end{bmatrix}
\]

\[
2^6 = 64 \text{ colours}
\]

\[
Y = \begin{bmatrix}
1 \ 2 \ 3 \ 2 \ 2 \ 2 \ 1 \ 1 \ 3
\end{bmatrix}
\]

\[
\text{1 2-bit number which refers to one of } 2^2 \text{ colours.}
\]
Vector Quantization: Image Colors

- Usual RGB representation of a pixel’s color: three 8-bit numbers.
 - For example, \([241 \ 13 \ 50] = \square\).
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

Run k-means with 2^6 clusters:

K-means predictions: (1-bit/pixel)

Replace cluster with mean: