CPSC 340:
Machine Learning and Data Mining

Ensemble Methods
Fall 2019
Welcome to the course!

Course webpage:
- https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Assignment 1:
- 2 late days to hand in tonight.

Assignment 2 is out.
- Due Friday of next week. It’s long so start early.
Last Time: K-Nearest Neighbours (KNN)

- **K-nearest neighbours algorithm for classifying \(\tilde{x}_i \):**
 - Find ‘k’ values of \(x_i \) that are most similar to \(\tilde{x}_i \).
 - Use mode of corresponding \(y_i \).

- **Lazy learning:**
 - To “train” you just store \(X \) and \(y \).

- **Non-parametric:**
 - Size of model grows with ‘\(n \)’ (number of examples)
 - Nearly-optimal test error with infinite data.

- **But high prediction cost and may need large ‘\(n \)’ if ‘\(d \)’ is large.**
Defining “Distance” with “Norms”

• A common way to define the “distance” between examples:
 – Take the “norm” of the difference between feature vectors.

\[\| x_i - \tilde{x}_i \|_2 = \sqrt{\sum_{j=1}^{d} (x_{ij} - \tilde{x}_{ij})^2} \]

• Norms are a way to measure the “length” of a vector.
 – The most common norm is the “L2-norm” (or “Euclidean norm”):

\[\| r \|_2 = \sqrt{\sum_{j=1}^{d} r_j^2} \]

 – Here, the “norm” of the difference is the standard Euclidean distance.
L2-norm, L1-norm, and L∞-Norms.

- The three most common norms: L2-norm, L1-norm, and L∞-norm.
 - Definitions of these norms with two-dimensions:

 \[
 \|r\|_2 = \sqrt{r_1^2 + r_2^2} \quad L_1 \text{ or "Manhattan" norm: } \|r\|_1 = |r_1| + |r_2| \quad L_\infty \text{ or "max" norm: } \|r\|_\infty = \max \{ |r_1|, |r_2| \}
 \]

 - Definitions of these norms in d-dimensions:

 \[
 L_2: \quad \|r\|_2 = \sqrt{\sum_{j=1}^{d} r_{j}^2} \quad L_1: \quad \|r\|_1 = \sum_{j=1}^{d} |r_{j}| \quad L_\infty: \quad \max_{j} \{ |r_{j}| \}
 \]
Norm and Norm\(^p\) Notation (MEMORIZE)

• Notation:
 – We often leave out the “2” for the L2-norm: We use \(\|r\|\) for \(\|r\|_2\)

 – We use superscripts for raising norms to powers: We use \(\|r\|^2\) for \((\|r\|)^2\)

 – You should understand why all of the following quantities are equal:

\[
\|r\|^2 = \|r\|_2^2 = (\|r\|_2)^2 = \left(\sqrt{\sum_{j=1}^{d} r_j^2}\right)^2 = \sum_{j=1}^{d} r_j^2 = \sum_{j=1}^{d} r_j \cdot r_j = r^T r = \langle r, r \rangle
\]
Norms as Measures of Distance

• By taking norm of difference, we get a “distance” between vectors:

\[\|r - s\|_2 = \sqrt{(r_1 - s_1)^2 + (r_2 - s_2)^2}\]

\[= \|r - s\| \text{ "Euclidean distance"}\]

\[\|r - s\|_1 = |r_1 - s_1| + |r_2 - s_2|\]

\[\|r - s\|_\infty = \max\{ |r_1 - s_1|, |r_2 - s_2| \}\]

• Place different “weights” on large differences:
 – \(L_1\): differences are equally notable.
 – \(L_2\): bigger differences are more important (because of squaring).
 – \(L_\infty\): only biggest difference is important.
KNN Distance Functions

• Most common KNN distance functions: \(\text{norm}(x_i - x_j) \).
 – L1-, L2-, and L\(\infty \)-norm.
 – Weighted norms (if some features are more important):
 \[\sum_{j=1}^{d} v_j |x_{ij}| \]
 “weight” of feature \(j \)
 – “Mahalanobis” distance (takes into account correlations).
 • See bonus slide for what functions define a “norm”.

• But we can consider other distance/similarity functions:
 – Jaccard similarity (if \(x_i \) are sets).
 – Edit distance (if \(x_i \) are strings).
 – Metric learning (\textit{learn} the best distance function).
Decision Trees vs. Naïve Bayes vs. KNN

\[
p(\text{sick} | \text{milk}, \text{egg}, \text{lactase}) \\
\approx p(\text{milk} | \text{sick}) p(\text{egg} | \text{sick}) p(\text{lactase} | \text{sick}) p(\text{sick})
\]

\[
(milk = 0.6, \text{egg} = 2, \text{lactase} = 0, ?) \text{ is close to } \\
(milk = 0.7, \text{egg} = 2, \text{lactase} = 0, \text{sick}) \text{ so predict sick.}
\]
Application: Optical Character Recognition

• To scan documents, we want to turn images into characters:
 – “Optical character recognition” (OCR).

https://www.youtube.com/watch?v=IHzwWFH1Wa-w
Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - “Optical character recognition” (OCR).
 - Turning this into a supervised learning problem (with 28 by 28 images):

Each feature is grayscale intensity of one of the 784 pixels

$$X = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$y = \begin{bmatrix}
3 \\
6 \\
0 \\
9
\end{bmatrix}$$
KNN for Optical Character Recognition

Assign "3"
Human vs. Machine Perception

• There is huge difference between what we see and what KNN sees:

What we see: 3
What the computer “sees”:
Actually, it’s worse:
What the Computer Sees

• Are these two images “similar”?
What the Computer Sees

• Are these two images “similar”?

• KNN does not know that labels should be translation invariant.
Encouraging Invariance

• May want classifier to be invariant to certain feature transforms.
 – Images: translations, small rotations, changes in size, mild warping,…

• The hard/slow way is to modify your distance function:
 – Find neighbours that require the “smallest” transformation of image.

• The easy/fast way is to just add transformed data during training:
 – Add translated/rotate/resized/warped versions of training images.

 3 → 3 3 3 3

 – Crucial part of many successful vision systems.
 – Also really important for sound (translate, change volume, and so on).
Application: Body-Part Recognition

• Microsoft Kinect:
 – Real-time recognition of 31 body parts from laser depth data.

• How could we write a program to do this?

Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.
3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

• ALL steps are important, but we’ll focus on the learning step.

• Do we have any classifiers that are accurate and run in real time?
 – Decision trees and naïve Bayes are fast, but often not very accurate.
 – KNN is often accurate, but not very fast.

• Deployed system uses an ensemble method called random forests.
Ensemble Methods

• Ensemble methods are classifiers that have classifiers as input.
 – Also called “meta-learning”.

• They have the best names:
 – Averaging.
 – Boosting.
 – Bootstrapping.
 – Bagging.
 – Cascading.
 – Random Forests.
 – Stacking.

• Ensemble methods often have higher accuracy than input classifiers.
Ensemble Methods

• Remember the fundamental trade-off:
 1. E_{train}: How small you can make the training error.
 2. E_{approx}: How well training error approximates the test error.

• Goal of ensemble methods is that meta-classifier:
 – Does much better on one of these than individual classifiers.
 – Doesn’t do too much worse on the other.

• This suggests two types of ensemble methods:
 1. Boosting: improves training error of classifiers with high E_{train}.
 2. Averaging: improves approximation error of classifiers with high E_{approx}.
Averaging

• Input to **averaging** is the predictions of a set of models:
 – Decision trees make one prediction.
 – Naïve Bayes makes another prediction.
 – KNN makes another prediction.

• Simple **model averaging**:
 – Take the mode of the predictions (or average probabilities if probabilistic).
Digression: Stacking

- A common variation is **stacking**
 - Fit another classifier that uses the predictions as features.

- Averaging/stacking often **performs better than individual models**.
 - Typically used by Kaggle winners.
 - E.g., Netflix $1M user-rating competition winner was stacked classifier.
Why can Averaging Work?

• Consider 3 binary classifiers, each independently correct with probability 0.80:

• With simple averaging, ensemble is correct if we have “at least 2 right”:
 – \(P(\text{all 3 right}) = 0.8^3 = 0.512. \)
 – \(P(2 \text{ rights, 1 wrong}) = 3*0.8^2(1-0.8) = 0.384. \)
 – \(P(1 \text{ right, 2 wrongs}) = 3*(1-0.8)^20.8 = 0.096. \)
 – \(P(\text{all 3 wrong}) = (1-0.8)^3 = 0.008. \)
 – So ensemble is right with probability 0.896 (which is 0.512+0.384).

• Notes:
 – For averaging to work, classifiers need to be at least somewhat independent.
 – You also want the probability of being right to be > 0.5, otherwise it will do much worse.
 – Probabilities also shouldn’t be to different (otherwise, it might be better to take most accurate).
Averaging

• Consider a set of classifiers that make these predictions:
 – Classifier 1: “spam”.
 – Classifier 2: “spam”.
 – Classifier 3: “spam”.
 – Classifier 4: “not spam”.
 – Classifier 5: “spam”.
 – Classifier 6: “not spam”.
 – Classifier 7: “spam”.
 – Classifier 8: “spam”.
 – Classifier 9: “spam”.
 – Classifier 10: “spam”.

• If these independently get 80% accuracy, mode will be close to 100%.
 – In practice errors won’t be completely independent (due to noise in labels).
Why can Averaging Work?

• Why can averaging lead to better results?

• Consider classifiers that overfit (like deep decision trees):
 – If they all overfit in exactly the same way, averaging does nothing.

• But if they make independent errors:
 – Probability that “average” is wrong can be lower than for each classifier.
 – Less attention to specific overfitting of each classifier.
Random Forests

• Random forests **average a set of deep decision trees**.
 – Tend to be one of the best “out of the box” classifiers.
 • Often close to the best performance of any method on the first run.
 – And **predictions are very fast**.

• Do deep decision trees make independent errors?
 – No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:
 – **Bootstrapping**.
 – **Random trees**.
Bootstrap Sampling

• Start with a standard deck of 52 cards:
 1. Sample a random card: ♠️
 (put it back and re-shuffle)
 2. Sample a random card: ♦️
 (put it back and re-shuffle)
 3. Sample a random card: ♣️
 (put it back and re-shuffle)
 ...
 52. Sample a random card: ♥️
 (which may be a repeat)

• Make a new deck of the 52 samples:
Bootstrap Sampling

• New 52-card deck is called a “bootstrap sample”:
 – Some cards will be missing, and some cards will be duplicated.
 • So calculations on the bootstrap sample will give different results than original data.
 – However, the bootstrap sample roughly maintains trends:
 • Roughly 25% of the cards will be diamonds.
 • Roughly 3/13 of the cards will be “face” cards.
 • There will be roughly four “10” cards.
 – Common use: compute a statistic based on several bootstrap samples.
 • Gives you an idea of how the statistic varies as you vary the data.
Random Forest Ingredient 1: Bootstrap

• **Bootstrap sample** of a list of ‘n’ examples:
 – A new set of size ‘n’ chosen independently with replacement.

\[
\text{for } i \in 1:n \\
\quad j = \text{rand}(1:n) \quad \# \text{pick a random number from } \{1, 2, \ldots, n\} \\
\quad X_{\text{bootstrap}}[i, :] = X[j, :] \quad \# \text{use the random sample}
\]

 – Gives new dataset of ‘n’ examples, with some duplicated and some missing.
 • For large ‘n’, approximately 63% of original examples are included.

• **Bagging**: using bootstrap samples for ensemble learning.
 – Generate several *bootstrap samples of the examples* \((x_i, y_i)\).
 – Fit a classifier to each bootstrap sample.
 – At test time, average the predictions.
Summary

• **Encouraging invariance:**
 • Add transformed data to be insensitive to the transformation.

• **Ensemble methods** take classifiers as inputs.
 • Try to reduce either E_{train} or E_{approx} without increasing the other much.
 • “Boosting” reduces E_{train} and “averaging” reduces E_{approx}.

• **Averaging:**
 • Improves predictions of multiple classifiers if errors are independent.

• **Bagging:**
 • Ensemble method where we apply same classifier to “bootstrap samples”.

• **Next time:**
 • We start unsupervised learning.
3 Defining Properties of Norms

A “norm” is any function satisfying the following 3 properties:

1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘α’ multiplies length by |α|
 - “If be will twice as long if you multiply by 2”: ||αr|| = |α|⋅||r||.
 - Implication is that norms cannot be negative.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:
 - “You can’t get there faster by a detour”.
 - “Triangle inequality”: ||r + s|| ≤ ||r|| + ||s||.
Squared/Euclidean-Norm Notation

We’re using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

$$\|x\|_2 = \sqrt{\sum_{j=1}^{d} w_j^2}.$$
$$\|x\|_1 = \sum_{j=1}^{d} |w_j|.$$

If the subscript is omitted, we mean the 2-norm:

$$\|x\| = \|x\|_2.$$

If we want to talk about the squared value of the norm we use a superscript of "2":

$$\|x\|_2^2 = \sum_{j=1}^{d} w_j^2.$$
$$\|x\|_1^2 = \left(\sum_{j=1}^{d} |w_j| \right)^2.$$

If we omit the subscript and have a superscript of "2", we’re taking about the squared L2-norm:

$$\|x\|^2 = \sum_{j=1}^{d} w_j^2.$$
Lp-norms

- The L_1, L_2, and L_∞-norms are special cases of Lp-norms:

$$\|x\|_p = \left(\sum_{j=1}^{d} |x_j|^p \right)^{1/p}$$

- This gives a norm for any (real-valued) $p \geq 1$.
 - The L_∞-norm is limit as ‘p’ goes to ∞.

- For $p < 1$, not a norm because triangle inequality not satisfied.
Why does Bootstrapping select approximately 63%?

- Probability of an arbitrary x_i being selected in a bootstrap sample:

 \[
 p(\text{selected at least once in } n \text{ trials}) \\
 = 1 - p(\text{not selected in any of } n \text{ trials}) \\
 = 1 - (p(\text{not selected in one trial}))^n \\
 = 1 - (1 - \frac{1}{n})^n \\
 \approx 1 - \frac{1}{e} \\
 \approx 0.63
 \]
Why Averaging Works

• Consider ‘k’ independent classifiers, whose errors have a variance of \(\sigma^2 \).
• If the errors are IID, the variance of the average is \(\sigma^2/k \).
 – So the more classifiers you average, the more you decrease error variance.
 (And the more the training error approximates the test error.)
• Generalization to case where classifiers are not independent is:
 \[
 c \sigma^2 + \frac{(1-c) \sigma^2}{k}
 \]
 – Where ‘c’ is the correlation.
• So the less correlation you have the closer you get to independent case.
• Randomization in random forests decreases correlation between trees.
 – See also “Sensitivity of Independence Assumptions”.
How these concepts often show up in practice

• Here is a recent e-mail related to many ideas we’ve recently covered:
 – “However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?”

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.
Bayesian Model Averaging

• Recall the key observation regarding ensemble methods:
 – If *models overfit in “different” ways, averaging gives better performance.*

• But should all models get equal weight?
 – E.g., decision trees of different depths, when lower depths have low training error.
 – E.g., a random forest where one tree does very well (on validation error) and others do horribly.
 – In science, research may be fraudulent or not based on evidence.

• In these cases, naïve *averaging may do worse.*
Bayesian Model Averaging

• Suppose we have a set of ‘m’ probabilistic binary classifiers w_j.
• If each one gets equal weight, then we predict using:

$$p(y_i \mid x_i) = \frac{1}{m} p(y_i \mid w_1, x_i) + \frac{1}{m} p(y_i \mid w_2, x_i) + \cdots + \left(\frac{1}{m}\right) p(y_i \mid w_m, x_i)$$

• Bayesian model averaging treats model ‘w_j’ as a random variable:

$$p(y_i \mid x_i) = \sum_{j=1}^{m} p(y_i \mid w_j, x_i) p(w_j \mid x_i) = \sum_{j=1}^{m} p(y_i \mid w_j, x_i) p(w_j)$$

• So we should weight by probability that w_j is the correct model:
 – Equal weights assume all models are equally probable.
Bayesian Model Averaging

• Can get better weights by conditioning on training set:

\[p(w_j | X, y) \propto p(y | w_j, X) p(w_j | X) = p(y | w_j, X) p(w_j) \]

• The ‘likelihood’ \(p(y | w_j, X) \) makes sense:
 – We should give more weight to models that predict ‘y’ well.
 – Note that hidden denominator penalizes complex models.

• The ‘prior’ \(p(w_j) \) is our ‘belief’ that \(w_j \) is the correct model.

• This is how rules of probability say we should weigh models.
 – The ‘correct’ way to predict given what we know.
 – But it makes some people unhappy because it is subjective.