CPSC 340:
Machine Learning and Data Mining

Ensemble Methods
Fall 2019

Admin

e Welcome to the course!

* Course webpage:
— https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

* Assignment 1:
— 2 late days to hand in tonight.

* Assignment 2 is out.
— Due Friday of next week. It’s long so start early.

https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Last Time: K-Nearest Neighbours (KNN)

K-nearest neighbours algorithm for classifying X:
— Find ‘k’ values of x; that are most similar to X..

— Use mode of corresponding y..

Lazy learning:

— To “train” you just store X and y.

Non-parametric:

— Size of model grows with ‘n” (number of examples)

7(3“ f\wf 2 (X,‘))

— Nearly-optimal test error with infinite data.

Nnew e)m\ —‘- "‘ +
69
O} 76?*/ rew erepl
+ iy
O e @A + @@6‘)(
0 0 L +
o 04 o +

]Ce ature | (Xi')

But high prediction cost and may need large ‘n’ if ‘d’ is large.

Defining “Distance” with “Norms”

A common way to define the “distance” between examples:
— Take the “norm” of the difference between feature vectors.

“AXn*X”“ E(XU’X”
Train ‘/ (/fseﬁ‘ \

“Norm
e)(c.w]r{'& qumP/e 2

* Norms are a way to measure the “length” of a vector.

— The most common norm is the “L2-norm” (or “Euclidean norm”):
- \ 2
”FHZ = AZ rj"
le

— Here, the “norm” of the difference is the standard Euclidean distance.

L2-norm, L1-norm, and Le=-Norm:s.

* The three most common norms: L2-norm, L1-norm, and Lee-norm.

— Definitions of these norms with two-dimensions:

Ll or "Euclidean” nom L‘ or "Manhallan' norm’ LOO or "max" norm:
:r- = -+ H(‘ " - MMX ’ /)
”f‘”; \) r A+, [l e 'rl, Ao E r, ,z}
'I: "l,)f|| ,’2 Llock,s:\ :‘.)f‘"
T L ©o- ST T - - T Tnl N
AN IJ“W of o \r\N 3 "Llock
{%r 'H‘e e (,1'0(}G 5— "l’o‘(“al L‘ockf U ‘Z;relcﬂ.‘on‘

— Definitions of these norms in d-dimensions.

s a2 _ 2 .
urm:(g . L el = Z e L, max InyIf

Infinite Series Video

https://www.youtube.com/watch?v=ineO1tIyPfM

Norm and NormP Notation (MEMORIZE)

* Notation:
— We often leave out the “2” for the L2-norm: M/e_ USe //p//]Qaf H/ /

— We use superscripts for raising norms to powers: We, use /r]Cor Q)

— You should understand why all of the following quantltles are egual

“f\“"l“)rlb“u J’_‘) Z_ ~Zr “fr‘

Norms as Measures of Distance

* By taking norm of difference, we get a “distance” between vectors:

' “
\‘f(r g,) + (, ~ 52) ﬂz\l sz
— “r 5” L"\C,c'?w\ cjlﬂtﬁwce“ S

“r -SHI = ‘r\ _5|‘ T \Q -S,z l “/Vumlafr of bLlocks >/Ov\ need Yo
walk 10 je+ from r 1o _g‘\l
“r —5“06 = VV\‘\)(i ’r|~$|)7 lrz -S),§ "/VIOS+ f\VlW]L‘ef‘ O’F L/OCK}

1N om\/ d fec’floV\ \/w\ Wouu
* Place different “weights” on large differences: |jave o wolk'
— L,: differences are equally notable.
— L,: bigger differences are more important (because of squaring).
— L..: only biggest difference is important.

KNN Distance Functions

* Most common KNN distance functions: norm(x; — x;).
— L1-, L2-, and Lee-norm.

— Weighted norms (if some features are more important): g Vi lX\; l
— “Mahalanobis” distance (takes into account correlations). /(*"Wtigw" of

e See bonus slide for what functions define a “norm”. Feafwf /:\

* But we can consider other distance/similarity functions:
— Jaccard similarity (if x, are sets).
— Edit distance (if x. are strings).
— Metric learning (learn the best distance function).

Decision Trees vs. Naive Bayes vs. KNN

@(70.5’)

P ! iRy ?9.) L'ase
,GC”Q){ ; 0

s p(mi“() sick) Plcw Jsic K>’) (lactase Isick)f(s“")

(“"'“ '06 299 ~ 1 lacfose = 0 ’)7 is close o
(milk = 07 e4q° 2 lacfase = 0 sick) so predict sick

Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:

® — N NG NN NN PN UG N NN NG AN

aracter rec

— “Optical ch

Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
— “Optical character recognition” (OCR).

3 —-=

— Turning this into a supervised learning problem (with 28 by 28 images):

(11213281 (12 (22)] .. | (1419) | .. [(2828) _char
"0 0 0 0 0 o0 1 0)) [3)
0 0 O 0o 0 o0 1 0 E— y> 6
0 0 © 0 0 O 0 0 ——> 0
Lo o0 o0 0 0 0 1 0) o) [9 _

~

N —~—
£ ach ’Fem‘fu/e S 3fﬂy§(a/€ injlchSiT\/ 6f one of ‘/ﬁc 73'/P3Y6U

KNN for Optical Character Recognition

4
?ﬁr w ’5"’:’??
7 M

KNN for Optical Character Recognition

7
)7 » A

J “

7

KNN for Optical Character Recognition

KNN for Optical Character Recognition

Human vs. Machine Perception

* There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”: Actually, it’s worse:

.rl'.r|: .

What the Computer Sees

* Are these two images “similar”?

What the Computer Sees

* Are these two images “similar”? .
Difference:

-
-

-

e KNN does not know that labels should be translation invariant.

Encouraging Invariance

* May want classifier to be invariant to certain feature transforms.
— Images: translations, small rotations, changes in size, mild warping,...

* The hard/slow way is to modify your distance function:
— Find neighbours that require the “smallest” transformation of image.

* The easy/fast way is to just add transformed data during training:
— Add translated/rotate/resized/warped versions of training images.

3—3 33

— Crucial part of many successful vision systems.
— Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

* Microsoft Kinect:
— Real-time recognition of 31 body parts from laser depth data.

 How could we write a program to do this?

Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.

] :") :‘ . X\ o ('\

bors e VA B
VeV’ 71, L3S '\‘\

?pﬁ « h:arha

3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby:.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

real (test)

synthetic (train & test)

Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

Do we have any classifiers that are accurate and run in real time?
— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.

Ensemble Methods

* Ensemble methods are classifiers that have classifiers as input.
— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

 Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,,: How small you can make the training error.
VS.

2. E.oorox: HOW well training error approximates the test error.

e Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:

1. Boosting: improves training error of classifiers with high E,_ ...

2. Averaging: improves approximation error of classifiers with high E_ ...

Averaging

* |nput to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.

* Simple model averaging:
— Take the mode of the predictions (or average probabilities if probabilistic).

)

/7 A@CiSIIDY' ".fe(” —_—) ,/V\D'/' Sfown \
Xl Y Naive gq/ej —) /! Sf)aw\‘ — 5 ,/§/pﬁm‘
\yk 'V\edf"ﬂt Y\ﬂ"() Lbows ——) //Sf QW\‘ "/

Digression: Stacking

* A common variation is stacking
— Fit another classifier that uses the predictions as features.

)

/y Aecision free — 7 ,/V\D'IL Spam \ ; X
Xi —— Naive ,go!)/cj — /,SP-W"‘\ —_— C‘QC‘S‘W\ 4f‘€€:H2 —'—?S'aam

k’l\eareﬂL r\e"()u;owff — /,5,”“'”" /;“7‘](// model modal 3 ‘},W /”44/
haf S‘,w\ S/Mn S5am rSIqu 7
* Averaging/stacking often performs Y- "”;“ 5’";““ (A Y= >
better than individual models. g P Spen .
— Typically used by Kaggle winners. / S Lo)

— E.g., Netflix S1M user-rating competition winner was stacked classifier.

Why can Averaging Work?

* Consider 3 binary classifiers, each independently correct with probability 0.80:

* With simple averaging, ensemble is correct if we have “at least 2 right”:
— P(all 3 right) =0.83=0.512.
— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)%0.8 = 0.096.
— P(all 3 wrong) = (1-0.8)3 = 0.008.
— So ensemble is right with probability 0.896 (which is 0.512+0.384).

* Notes:
— For averaging to work, classifiers need to be at least somewhat independent.
— You also want the probability of being right to be > 0.5, otherwise it will do much worse.
— Probabilities also shouldn’t be to different (otherwise, it might be better to take most accurate).

Averaging

* Consider a set of classifiers that make these predictions:

— Classifier 1: “spam”.

— Classifier 2: “spam”.

— Classifier 3: “spam”.

— Classifier 4: “not spam”.
— Classifier 5: “spam”.

— Classifier 6: “not spam”.
— Classifier 7: “spam”.

— Classifier 8: “spam”.

— Classifier 9: “spam”.

— Classifier 10: “spam”.

* If these independently get 80% accuracy, mode will be close to 100%.
— In practice errors won’t be completely independent (due to noise in labels).

Why can Averaging Work?

* Why can averaging lead to better results?

e Consider classifiers that overfit (like deep decision trees):
— If they all overfit in exactly the same way, averaging does nothing.

* But if they make independent errors:
— Probability that “average” is wrong can be lower than for each classifier.
— Less attention to specific overfitting of each classifier.

Random Forests

 Random forests average a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
e Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?
— No: with the same training data you’ll get the same decision tree.

* Two key ingredients in random forests:
— Bootstrapping.
— Random trees.

Bootstrap Sampling

e Start with a standard deck of 52 cards

1. Sample a random card:

A A
[

(put it back and re-shuffle)
2. Sample a random card:

L
LI
L
L
——

(put it back and re-shuffle)
3. Sample a random card:

-

L]
st

11
Ll

[+ &
L]
L]
L

(put it back and re-shuffle) +*

+

52. Sample a random card:

- - - >
b b
.

(which may be a repeat)

 Make a new deck of the 52 samples

Bootstrap Sampling

: e e lie ia h;n;u‘n:a:s:‘m Tyt
L L
. " o L o | & s alaalaalts 4
. 52-card deck is called
New card deck Is called a oo o oo o do ode ofoter]d o ot ot W
(lb | ”, 4 v vl vk vhv vEv vy vhv v .v'\r.""'”.""'
OOtStrap Salllpe . v ¥ !‘!i!!‘l u‘v v‘v
d oa da afa afa afa ala afaaa a] e afRGa VG
$47 1| HEC HEE I TR R N N Y A e d] el BTS. 4 Boad
Rl SORd PO 1 3
i1t L B
200 R R KIS G KD G G0 KR VY |VEE e LS e
: e i 1ia e alia alie alis alia alia & iarT i lam
4 RIS N
4 I I P EA A R B0 B m
d e e #de wle vl wle ol wle wll e Dl ok

— Some cards will be missing, and some cards will be duplicated.

* So calculations on the bootstrap sample will give different results than original data.
— However, the bootstrap sample roughly maintains trends:

* Roughly 25% of the cards will be diamonds.

* Roughly 3/13 of the cards will be “face” cards.
* There will be roughly four “10” cards.

— Common use: compute a statistic based on several bootstrap samples.
* Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap

* Bootstrap sample of a list of ‘n” examples:
— A new set of size ‘n’ chosen independently with replacement.

yor (N l-’n

\'): rané(l-‘n) #‘Di(/\/q randonn number from 2/)2)-—.);'\;
Xbod,f,qr[))fl = X[J)) # use The randomn Samf/(

— Gives new dataset of ‘n’ examples, with some duplicated and some missing.
* Forlarge ‘n’, approximately 63% of original examples are included.

e Bagging: using bootstrap samples for ensemble learning.
— Generate several bootstrap samples of the examples (x,y.).
— Fit a classifier to each bootstrap sample.
— At test time, average the predictions.

Summary

Encouraging invariance:

* Add transformed data to be insensitive to the transformation.
Ensemble methods take classifiers as inputs.

* Try toreduce either E

* “Boosting” reduces E
Averaging:

* Improves predictions of multiple classifiers if errors are independent.

Bagging:

 Ensemble method where we apply same classifier to “bootstrap samples”.

or E without increasing the other much.

train approx

and “averaging” reduces E

train approx*

Next time:
e We start unsupervised learning.

3 Defining Properties of Norms

* A “norm” is any function satisfying the following 3 properties:
1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘a” multiplies length by | a
“If be will twice as long if you multiply by 2”: | [ar|]| = |a|e]|]|r]].
* Implication is that norms cannot be negative.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:

* “You can’t get there faster by a detour”.
“Triangle inequality”: | |r+s|| < |]|r]] + |]|s]|].
xS

7 A el

o
= =Nl

Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
|zl = Ej:] wf
)l = 355 |wj]-

If the subscript is omitted, we mean the 2-norm:
]| = ll]l2-

It we want to talk about the sguared value of the norm we use a superscript of "2"

||I| % — E;:l 'UJ?-
2
lell? = (0 hsl) -

It we omit the subscript and have a superscript of "2, we're taking about the squared L2-norm:

2 = 325, w}

Lp-norms

* The L,-, L,-, and L.,-norms are special cases of Lp-norms:
d o
- P
j:l

* This gives a norm for any (real-valued) p > 1.
— The L_.-norm is limit as ‘p” goes to .

* For p <1, notanorm because triangle inequality not satisfied.

Why does Bootstrapping select approximately 63%?

* Probability of an arbitrary x, being selected in a bootstrap sample:

IO(Se/achJ at least once in 'n frm@
- “’ P(i’\s’{’ Se ’057[@4 in Gl of n' 7l/'(al$>

= | -—(P(Mvt selected in one trial)>n (trials are iﬁMenf)
— ' _ (I — ’A)n (()ﬂ)'o: /l__;_)_’ 'PW CAOOS»"’I?

aV\)/ of ne n-l e_ﬁ\—a/ 5~m/7)
v - e

~ 063

((I'%n)““’£~' 719 n-—-’700>

Why Averaging Works

Consider ‘k” independent classifiers, whose errors have a variance of o2.

If the errors are IID, the variance of the average is o0%/k.

— So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:

co’t U=-c)e”
k

— Where ‘c’ is the correlation.
So the less correlation you have the closer you get to independent case.
Randomization in random forests decreases correlation between trees.

— See also “Sensitivity of Independence Assumptions”.

https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/

How these concepts often show up in practice

* Here is a recent e-mail related to many ideas we’ve recently covered:

— “However, the performance did not improve while the model goes deeper and with
augmentation. The best result | got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation | got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so | trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

| really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that | have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

 Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bayesian Model Averaging

* Recall the key observation regarding ensemble methods:
— If models overfit in “different” ways, averaging gives better performance.

e But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low
training error.

— E.g., a random forest where one tree does very well (on validation error)
and others do horribly.

— In science, research may be fraudulent or not based on evidence.

* |n these cases, naive averaging may do worse.

Bayesian Model Averaging

* Suppose we have a set of ‘m’ probabilistic binary classifiers w..
* |f each one gets equal weight, then we predict using:

plyalad = Loty Tuyx) L ply lug)+ -+ () PRNA
frser

. . . LN
* Bayesian model averaging treats model ‘w;" as a random variable:*’ g

NN

‘ " f
F(Yﬂ 'XJ‘\>:J§/ F(V(UW\‘J[’(A'B = é Va(k/dj WJ-)XJ>{0(\46 I><J>:j?,()(% ‘W' y)/}/w)

'b_—/ N7)

* So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.

Bayesian Model Averaging Agern

Can get better weights by conditioning on training set:

The ‘likelihood’ p(y | w;, X) makes sense:
— We should give more weight to models that predict ‘v’ well.
— Note that hidden denominator penalizes complex models.

The “prior’ p(w;) is our ‘belief’ that w; is the correct model.

This is how rules of probability say we should weigh models.

— The ‘correct’ way to predict given what we know.
— But it makes some people unhappy because it is subjective.

W)

