
CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models

Fall 2019

Admin

• Course webpage:
– https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

• Assignment 1:
– 1 late day to hand in tonight, 2 for Wednesday.

• Assignment 2 is out.
– Due Friday of next week. It’s long so start early.

• Add/drop deadline is tomorrow.

• Auditing/Exchange:
– Bring your form to me after class.

https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

• We formulated as supervised learning:

– (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Last Time: Naïve Bayes

• We considered spam filtering methods based on naïve Bayes:

• Makes conditional independence assumption to make learning practical:

• Predict “spam” if p(yi = “spam” | xi) > p(yi = “not spam” | xi).

– We don’t need p(xi) to test this.

Naïve Bayes

• Naïve Bayes formally:

• Post-lecture slides: how to train/test by hand on a simple example.

Laplace Smoothing

• Our estimate of p(‘lactase’ = 1| ‘spam’) is:

– But there is a problem if you have no spam messages with lactase:

• p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

– Common fix is Laplace smoothing:

• Add 1 to numerator,
and 2 to denominator (for binary features).
– Acts like a “fake” spam example that has lactase,

and a “fake” spam example that doesn’t.

Laplace Smoothing

• Laplace smoothing:

– Typically you do this for all features.

• Helps against overfitting by biasing towards the uniform distribution.

• A common variation is to use a real number β rather than 1.

– Add ‘βk’ to denominator if feature has ‘k’ possible values (so it sums to 1).

This is a “maximum a posteriori” (MAP) estimate of the probabiliy. We’ll discuss MAP and how to derive this formula later.

Decision Theory

• Are we equally concerned about “spam” vs. “not spam”?

• True positives, false positives, false negatives, true negatives:

• The costs mistakes might be different:

– Letting a spam message through (false negative) is not a big deal.

– Filtering a not spam (false positive) message will make users mad.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ True Positive False Positive

Predict ‘not spam’ False Negative True Negative

Decision Theory

• We can give a cost to each scenario, such as:

• Instead of most probable label, take ො𝑦i minimizing expected cost:

• Even if “spam” has a higher probability,
predicting “spam” might have a expected higher cost.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0

Decision Theory Example

• Consider a test example we have p(෤𝑦i = “spam” | ෤𝑥i) = 0.6, then:

• Even though “spam” is more likely, we should predict “not spam”.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0

Decision Theory Discussion

• In other applications, the costs could be different.

– In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

• Decision theory and “darts”:

– http://www.datagenetics.com/blog/january12012/index.html

• Decision theory can help with “unbalanced” class labels:

– If 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.

– Decision theory approach avoids this.

– See also precision/recall curves and ROC curves in the bonus material.

http://www.datagenetics.com/blog/january12012/index.html

Decision Theory and Basketball

• “How Mapping Shots In The NBA Changed It Forever”

https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-it-forever/

(pause)

Decision Trees vs. Naïve Bayes

• Decision trees:

1. Sequence of rules based on 1 feature.

2. Training: 1 pass over data per depth.

3. Greedy splitting as approximation.

4. Testing: just look at features in rules.

5. New data: might need to change tree.

6. Accuracy: good if simple rules based on
individual features work (“symptoms”).

• Naïve Bayes:

1. Simultaneously combine all features.

2. Training: 1 pass over data to count.

3. Conditional independence assumption.

4. Testing: look at all features.

5. New data: just update counts.

6. Accuracy: good if features almost
independent given label (bag of words).

K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).

• To classify an example ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” training examples.

Egg Milk Fish

0 0.7 0

0.4 0.6 0

0 0 0

0.3 0.5 1.2

0.4 0 1.2

Sick?

1

1

0

1

1

Egg Milk Fish

0.3 0.6 0.8

Sick?

?

K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).

• To classify an example ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” training examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).

• To classify an example ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” training examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).

• To classify an example ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” training examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).

• To classify an example ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” training examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• Assumption:
– Examples with similar features are likely to have similar labels.

• Seems strong, but all good classifiers basically rely on this assumption.
– If not true there may be nothing to learn and you are in “no free lunch” territory.

– Methods just differ in how you define “similarity”.

• Most common distance function is Euclidean distance:

– xi is features of training example ‘i’, and ෤𝑥 ǁ𝑖 is features of test example ‘ ǁ𝑖’.

– Costs O(d) to calculate for a pair of examples.

Effect of ‘k’ in KNN.

• With large ‘k’ (hyper-parameter), KNN model will be very simple.
– With k=n, you just predict the mode of the labels.

– Model gets more complicated as ‘k’ decreases.

• Effect of ‘k’ on fundamental trade-off:
– As ‘k’ grows, training error increase and approximation error decreases.

KNN Implementation

• There is no training phase in KNN (“lazy” learning).
– You just store the training data.

– Costs O(1) if you use a pointer.

• But predictions are expensive: O(nd) to classify 1 test example.
– Need to do O(d) distance calculation for all ‘n’ training examples.

– So prediction time grows with number of training examples.
• Tons of work on reducing this cost (we’ll discuss this later).

• But storage is expensive: needs O(nd) memory to store ‘X’ and ‘y’.
– So memory grows with number of training examples.

– When storage depends on ‘n’, we call it a non-parametric model.

Parametric vs. Non-Parametric

• Parametric models:

– Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.

• E.g., naïve Bayes just stores counts.

• E.g., fixed-depth decision tree just stores rules for that depth.

– You can estimate the fixed parameters more accurately with more data.

– But eventually more data doesn’t help: model is too simple.

• Non-parametric models:

– Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

– Model gets more complicated as you get more data.

• E.g., KNN stores all the training data, so size of “model” is O(nd).

• E.g., decision tree whose depth grows with the number of examples.

Parametric vs. Non-Parametric Models

• Parametric models have bounded memory.

• Non-parametric models can have unbounded memory.

Effect of ‘n’ in KNN.

• With a small ‘n’, KNN model will be very simple.

• Model gets more complicated as ‘n’ increases.
– Requires more memory, but detects subtle differences between examples.

Consistency of KNN (‘n’ going to ‘∞’)

• KNN has appealing consistency properties:
– As ‘n’ goes to ∞, KNN test error is less than twice best possible error.

• For fixed ‘k’ and binary labels (under mild assumptions).

• Stone’s Theorem: KNN is “universally consistent”.
– If k/n goes to zero and ‘k’ goes to ∞, converges to the best possible error.

• For example, k = log(n).

• First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?
– No: it requires a continuity assumption on the labels.

– Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).

https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models

• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).

Parametric vs. Non-Parametric Models

• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).

• Many non-parametric models (like KNN) converge to optimal error.

Curse of Dimensionality

• “Curse of dimensionality”: problems with high-dimensional spaces.

– Volume of space grows exponentially with dimension.

• Circle has area O(r2), sphere has area O(r3), 4d hyper-sphere has area O(r4),…

– Need exponentially more points to ‘fill’ a high-dimensional volume.

• “Nearest” neighbours might be really far even with large ‘n’.

• KNN is also problematic if features have very different scales.

• Nevertheless, KNN is really easy to use and often hard to beat!

Summary

• Decision theory allows us to consider costs of predictions.

• K-Nearest Neighbours: use most common label of nearest examples.

• Often works surprisingly well.

• Suffers from high prediction and memory cost.

• Canonical example of a “non-parametric” model.

• Can suffer from the “curse of dimensionality”.

• Non-parametric models grow with number of training examples.

– Can have appealing “consistency” properties.

• Next Time:

• Fighting the fundamental trade-off and Microsoft Kinect.

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

“Proportional to” for Probabilities

• When we say “p(y) ∝ exp(-y2)” for a function ‘p’, we mean:

• However, if ‘p’ is a probability then it must sum to 1.

– If 𝑦 ∈ 1,2,3,4 then

• Using this fact, we can find β:

Probability of Paying Back a Loan and Ethics

• Article discussing predicting “whether someone will pay back a loan”:
– https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-

application-reveal.html

• Words that increase probability of paying back the most:
– debt-free, lower interest rate, after-tax, minimum payment, graduate.

• Words that decrease probability of paying back the most:
– God, promise, will pay, thank you, hospital.

• Article also discusses an important issue: are all these features ethical?
– Should you deny a loan because of religion or a family member in the hospital?
– ICBC is limited in the features it is allowed to use for prediction.

https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html

Avoiding Underflow

• During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:

Less-Naïve Bayes

• Given features {x1,x2,x3,…,xd}, naïve Bayes approximates p(y|x) as:

• The assumption is very strong, and there are “less naïve” versions:

– Assume independence of all variables except up to ‘k’ largest ‘j’ where j < i.

• E.g., naïve Bayes has k=0 and with k=2 we would have:

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

– Another practical variation is “tree-augmented” naïve Bayes.

Computing p(xi) under naïve Bayes

• Generative models don’t need p(xi) to make decisions.

• However, it’s easy to calculate under the naïve Bayes assumption:

Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called generative classifier:
– They often work well when you have tons of features.

– But they need to know p(xi | yi), probability of features given the class.
• How to “generate” features, based on the class label.

• To fit generative models, usually make BIG assumptions:
– Naïve Bayes (NB) for discrete xi:

• Assume that each variables in xi is independent of the others in xi given yi.

– Gaussian discriminant analysis (GDA) for continuous xi.
• Assume that p(xi | yi) follows a multivariate normal distribution.

• If all classes have same covariance, it’s called “linear discriminant analysis”.

Other Performance Measures

• Classification error might be wrong measure:

– Use weighted classification error if have different costs.

– Might want to use things like Jaccard measure: TP/(TP + FP + FN).

• Often, we report precision and recall (want both to be high):

– Precision: “if I classify as spam, what is the probability it actually is spam?”

• Precision = TP/(TP + FP).

• High precision means the filtered messages are likely to really be spam.

– Recall: “if a message is spam, what is probability it is classified as spam?”

• Recall = TP/(TP + FN)

• High recall means that most spam messages are filtered.

Precision-Recall Curve

• Consider the rule p(yi = ‘spam’ | xi) > t, for threshold ‘t’.

• Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

ROC Curve

• Receiver operating characteristic (ROC) curve:
– Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).

(negative examples classified as positive)

– Diagonal is random, perfect classifier would be in upper left.

– Sometimes papers report area under curve (AUC).
• Reflects performance for different possible thresholds on the probability.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

More on Unbalanced Classes

• With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

– Two common ones are the Jaccard coefficient and the F-score.

• Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

– Under-sample the majority class (only take 5% of the spam messages).

• https://www.jair.org/media/953/live-953-2037-jair.pdf

– Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

– Some notes on this issue are here.

https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

• In high dimensions:

– Distances become less meaningful:

• All vectors may have similar distances.

– Emergence of “hubs” (even with random data):

• Some datapoints are neighbours to many more points than average.

– Visualizing high dimensions and sphere-packing

https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

• To classify ‘t’ test examples based on KNN, cost is O(ndt).
– Need to compare ‘n’ training examples to ‘t’ test examples,

and computing a distance between two examples costs O(d).

• You can do this slightly faster using fast matrix multiplication:
– Let D be a matrix such that Dij contains:

where ‘i’ is a training example and ‘j’ is a test example.

– We can compute D in Julia using:

– And you get an extra boost because Julia uses multiple cores.

Condensed Nearest Neighbours

• Disadvantage of KNN is slow prediction time (depending on ‘n’).

• Condensed nearest neighbours:

– Identify a set of ‘m’ “prototype” training examples.

– Make predictions by using these “prototypes” as the training data.

• Reduces runtime from O(nd) down to O(md).

Condensed Nearest Neighbours

• Classic condensed nearest neighbours:

– Start with no examples among prototypes.

– Loop through the non-prototype examples ‘i’ in some order:

• Classify xi based on the current prototypes.

• If prediction is not the true yi, add it to the prototypes.

– Repeat the above loop until all examples are classified correctly.

• Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).

Condensed Nearest Neighbours

• Classic condensed nearest neighbours:

• Recent work shows that finding optimal compression is NP-hard.

– An approximation algorithm algorithm was published in 2018:

• “Near optimal sample compression for nearest neighbors”

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf

