CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models
Fall 2019



Admin

Course webpage:
— https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Assignment 1:
— 1 late day to hand in tonight, 2 for Wednesday.

Assignment 2 is out.
— Due Friday of next week. It’s long so start early.

Add/drop deadline is tomorrow.

Auditing/Exchange:

— Bring your form to me after class.


https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Last Time: E-mail Spam Filtering

 Want a build a system that filters spam e-mails:

 We formulated as supervised learning:
— (y, = 1) if e-mail i’ is spam, (y, = 0) if e-mail is not spam.

Jannie Keenan You wed $24,718.11
Abby  uabera USB Drives with y
Rosemarie Pag Re: New request created with 1D: ##62
Shawna Bulg RE: New request created with 1D: ##63
Gary  ualbera Cooperation

— (x; = 1) if word/phrase ‘j’ is in e-mail ‘¥, (x; = 0) if it is not.
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Last Time: Nalve Bayes

* We considered spam filtering methods based on naive Bayes:
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 Makes conditional independence assumption to make learning practical:
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* Predict “spam” if p(y, = “spam” | x,) > p(y, = “not spam” | x.).
— We don’t need p(x) to test this.



Naive Bayes

* Naive Bayes formally:
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* Post-lecture slides: how to train/test by hand on a simple example.



Laplace Smoothing

* Our estimate of p(‘lactase’ = 1| ‘spam’) is:
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— But there is a problem if you have no spam messages with lactase:

e p(‘lactase’ | ‘spam’) =0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing:

 Add 1 to numerator, — -I-)\
and 2 to denominator (for binary features). (#'Sfavv\ Messay e )

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.
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Laplace Smoothing

* Laplace smoothing: (&Srm messages with |0Lm_)_il

(#’;raﬁessa\yc) 7 + 2

— Typically you do this for all features.
* Helps against overfitting by biasing towards the uniform distribution.

A common variation is to use a real number B rather than 1.

— Add ‘Bk’ to denominator if feature has ‘k’ possible values (so it sums to 1).
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This is a “maximum a posteriori” (MAP) estimate of the probabiliy. We’ll discuss MAP and how to derive this formula later.



Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’

* Instead of most probable label, take y. minimizing expected cost:
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* Even if “spam” has a higher probability,

predicting “spam” might have a expected higher cost.



Decision Theory Example

Predict / True
Predict ‘spam’
Predict ‘not spam’ 10 0

e Consider a test example we have p(y, = “spam” | X,) = 0.6, then:
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= (0¢)(0) + (0 (100) = 0
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* Even though “spam” is more likely, we should predict “not spam”.



Decision Theory Discussion

* In other applications, the costs could be different.

— In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

e Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

e Decision theory can help with “unbalanced” class labels:
— 1f 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
— Decision theory approach avoids this.
— See also precision/recall curves and ROC curves in the bonus material.


http://www.datagenetics.com/blog/january12012/index.html

Decision Theory and Basketball

 “How Mapping Shots In The NBA Changed It Forever”
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e Decision trees:

A A A

Decision Trees vs. Nalve Bayes

wmllk 7 0.5

Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

* Nalve Bayes:
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Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (bag of words).



K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X;:

1. Find the 'k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X;:

1. Find the 'k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” training examples.

F2 |

1| F2 o o T+t

13 " o 0 o + + 4
2 3 ‘ + 3 o 60 + +
3 2 mm) + 0 oOOO +1—++1_

25 1 0]

35 1 ‘ + ’ X OO © ¥ T




1 a
1 3 ‘ O
2 3 ‘ +
3 2 ‘ +
25 1 O
35 1 ‘ +
=

K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X;:

1. Find the 'k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X;:

1. Find the 'k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X;:

1. Find the 'k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* Assumption:
— Examples with similar features are likely to have similar labels.

* Seems strong, but all good classifiers basically rely on this assumption.
— If not true there may be nothing to learn and you are in “no free lunch” territory.
— Methods just differ in how you define “similarity”.

e Most common distance function is Euclidean distance:

“ Xi ~%7“ = \‘E(XU ’)A(/S)?

— X is features of training example ‘', and X; is features of test example 7.
— Costs O(d) to calculate for a pair of examples.




Effect of ‘k” in KNN.

e With large ‘k’ (hyper-parameter), KNN model will be very simple.
— With k=n, you just predict the mode of the labels.
— Model gets more complicated as ‘k’ decreases.

K= k=3

e Effect of ‘k’ on fundamental trade-off:
— As ‘k” grows, training error increase and approximation error decreases.



KNN Implementation

 Thereis no training phase in KNN (“lazy” learning).
— You just store the training data.
— Costs O(1) if you use a pointer.

e But predictions are expensive: O(nd) to classify 1 test example.
— Need to do O(d) distance calculation for all ‘n’ training examples.

— So prediction time grows with number of training examples.
* Tons of work on reducing this cost (we’ll discuss this later).

e But storage is expensive: needs O(nd) memory to store X’ and ‘y’.
— So memory grows with number of training examples.
— When storage depends on ‘n’, we call it a non-parametric model.



Parametric vs. Non-Parametric

e Parametric models:

— Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.
* E.g., naive Bayes just stores counts.
* E.g., fixed-depth decision tree just stores rules for that depth.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:

|”

— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

— Model gets more complicated as you get more data.
* E.g., KNN stores all the training data, so size of “model” is O(nd).
e E.g., decision tree whose depth grows with the number of examples.



Parametric vs. Non-Parametric Models

* Parametric models have bounded memory.

* Non-parametric models can have unbounded memory.
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Effect of ‘n” in KNN.

 With a small ‘n’, KNN model will be very simple.
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* Model gets more complicated as ‘n’ increases.
— Requires more memory, but detects subtle differences between examples.



Consistency of KNN (‘n’ going to ‘oo’)

* KNN has appealing consistency properties:

— As ‘n’ goes to =, KNN test error is less than twice best possible error.
* For fixed ‘k’ and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to oo, converges to the best possible error.
* For example, k = log(n).
 First algorithm shown to have this property.

 Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.
— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).



https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E,.,)-
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Parametric vs. Non-Parametric Models

 With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E,.,)-

 Many non-parametric models (like KNN) converge to optimal error.
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Curse of Dimensionality

* “Curse of dimensionality”: problems with high-dimensional spaces.

— Volume of space grows exponentially with dimension.
 Circle has area O(r?), sphere has area O(r3), 4d hyper-sphere has area O(r%),...

— Need exponentially more points to ‘fill’ a high-dimensional volume.

* “Nearest” neighbours might be really far even with large ‘n’.

* KNN is also problematic if features have very different scales.

* Nevertheless, KNN is really easy to use and often hard to beat!



Summary

Decision theory allows us to consider costs of predictions.

K-Nearest Neighbours: use most common label of nearest examples.
e Often works surprisingly well.

e Suffers from high prediction and memory cost.

e Canonical example of a “non-parametric” model.

 Can suffer from the “curse of dimensionality”.

Non-parametric models grow with number of training examples.

— Can have appealing “consistency” properties.

Next Time:
* Fighting the fundamental trade-off and Microsoft Kinect.



Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase plye= L e N =6

* Training a naive Bayes model:
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Naive Bayes Training Phase plye= L e N =6

i

* Training a naive Bayes model:
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Naive Bayes Training Phase plye= L e N =6

i

* Training a naive Bayes model:
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Naive Bayes Training Phase plyr=E e N =6

i

* Training a naive Bayes model: ]
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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“Proportional to” for Probabilities

* When we say “p(y) « exp(-y?)” for a function ‘p’, we mean:

)D(\/7: I%WP(‘/) for Some (onsTaut /ﬁ\

 However, if ‘p’ is a probability then it must sum to 1.

— If y € {1,2,3,4} then P(.)) +,p {2)+P{§)+P(LI) — I

e Using this fact, we can find B:
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Probability of Paying Back a Loan and Ethics

Article discussing predicting “whether someone will pay back a loan”:

— https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-
application-reveal .html

Words that increase probability of paying back the most:
— debt-free, lower interest rate, after-tax, minimum payment, graduate.

Words that decrease probability of paying back the most:
— God, promise, will pay, thank you, hospital.

Article also discusses an important issue: are all these features ethical?

— Should you deny a loan because of religion or a family member in the hospital?
— ICBC is limited in the features it is allowed to use for prediction.


https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html

Avoiding Underflow

* During the prediction, the probability can underflow:
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Less-Nalve Bayes

e Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
P(\/ ,)/,)yz),-)y'!) ‘>< F(/) p (x” y()"‘)XJ l\/> l'o/oc/ucf ru/( wplo/'/h/ rr’MM/
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~x ’o(\/> lo(x, '\/) ,0(/1 ’y)r(Jg 177 r("dlﬁ (nave Buyes asiamion
 The assumption is very strong, and there are “less naive” versions:

— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.
* E.g., naive Bayes has k=0 and with k=2 we would have:

* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.



Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:
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Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x. | y:), probability of features given the class.
 How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x. given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x; | y,) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.



Other Performance Measures

e Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

e Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”
e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.



Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x;) > t, for threshold ‘t’.
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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ROC Curve

e Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

True Pocsitive Rate

Algorithm 1
Algorithm 2 -

0 0.2 0.4 0.6 0.8 1

False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.



More on Unbalanced Classes

 With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

* Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
e https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.



https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

 All vectors may have similar distances.

— Emergence of “hubs” (even with random data):
 Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing



https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t” test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

[y = 0,1 = Ml I = 257 # [l

where ‘i’ is a training example and ‘j’ is a test example.

— We can compute D in Julia using:
X1.7"2*ones(d,t) .+ ones(n,d)*(X2"'")."2 .- 2X1*X2'"

2

— And you get an extra boost because Julia uses multiple cores.



Condensed Nearest Neighbours

» Disadvantage of KNN is slow prediction time (depending on ‘n’).
* Condensed nearest neighbours:

) «

— ldentify a set of ‘m” “prototype” training examples.

— Make predictions by using these “prototypes” as the training data.

e Reduces runtime from O(nd) down to O(md).
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Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
— Start with no examples among prototypes.

— Loop through the non-prototype examples ‘i’ in some order:
* Classify x; based on the current prototypes.
* If prediction is not the true y,, add it to the prototypes.

— Repeat the above loop until all examples are classified correctly.

 Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).



Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
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* Recent work shows that finding optimal compression is NP-hard.
— An approximation algorithm algorithm was published in 2018:

e “Near optimal sample compression for nearest neighbors”



https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf

