CPSC 340: Machine Learning and Data Mining

Non-Parametric Models Fall 2019

Admin

- Course webpage:
 - <u>https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/</u>
- Assignment 1:
 - 1 late day to hand in tonight, 2 for Wednesday.
- Assignment 2 is out.
 - Due Friday of next week. It's long so start early.
- Add/drop deadline is tomorrow.
- Auditing/Exchange:
 - Bring your form to me after class.

Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

- We formulated as supervised learning:
 - $-(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
 - $(x_{ij} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{ij} = 0)$ if it is not.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0

□☆ » J	annie Keenan	ualberta You are owed \$24,718.11
□ ☆ » A	bby	ualberta USB Drives with your Logo
	Rosemarie Page	Re: New request created with ID: ##62
	Shawna Bulger	RE: New request created with ID: ##63
	Sary	ualberta Cooperation

Last Time: Naïve Bayes

• We considered spam filtering methods based on naïve Bayes:

$$p(y_i = "spam" | x_i) = \frac{p(x_i | y_i = "spam")p(y_i = "spam")}{p(x_i)}$$

- Makes conditional independence assumption to make learning practical: $p(hell_0 = 1, vicodin = 0, 340 = 1 | spam) \approx p(hell_0 = 1 | spam) p(vicodin = 0 | spam) p(340 = 1 | spam)$ HARD HARD
- Predict "spam" if $p(y_i = "spam" | x_i) > p(y_i = "not spam" | x_i)$.
 - We don't need $p(x_i)$ to test this.

Naïve Bayes

• Naïve Bayes formally:

$$\rho(y_i | x_i) = \frac{\rho(x_i | y_i) \rho(y_i)}{p(x_i)} \quad (first use Bayes rule)$$

$$\approx \frac{\rho(x_i | y_i) \rho(y_i)}{p(x_i)} \quad ("denominator doesn't matter") some for all y: all y:$$

• Post-lecture slides: how to train/test by hand on a simple example.

Laplace Smoothing

• Our estimate of p('lactase' = 1| 'spam') is:

- But there is a problem if you have no spam messages with lactase:
 - p('lactase' | 'spam') = 0, so spam messages with lactase automatically get through.
- Common fix is Laplace smoothing: (# Spam messages with lactase) + |
 Add 1 to numerator, and 2 to denominator (for binary features). (#spam messages) + 2
 Acts like a "fake" spam example that has lactase,
 - and a "fake" spam example that doesn't.

Laplace Smoothing

- Laplace smoothing: (#spam messages with lactase) + 1
 (#spam messages) + 2
 - Typically you do this for all features.
 - Helps against overfitting by biasing towards the uniform distribution.
- A common variation is to use a real number β rather than 1.
 - Add 'βk' to denominator if feature has 'k' possible values (so it sums to 1).

$$p(x_{ij}=c|y_i=c|as) \approx \frac{(number of examples in class with x_{ij}=c) + B}{(number of examples in class) + BK}$$

This is a "maximum a posteriori" (MAP) estimate of the probabiliy. We'll discuss MAP and how to derive this formula later.

Decision Theory

- Are we equally concerned about "spam" vs. "not spam"?
- True positives, false positives, false negatives, true negatives:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	True Positive	False Positive
Predict 'not spam'	False Negative	True Negative

- The costs mistakes might be different:
 - Letting a spam message through (false negative) is not a big deal.
 - Filtering a not spam (false positive) message will make users mad.

Decision Theory

• We can give a cost to each scenario, such as:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

• Instead of most probable label, take \hat{y}_i minimizing expected cost:

E cost
$$(\hat{y}_i, \hat{y}_i)$$
]
expectation of model (cost (\hat{y}_i, \hat{y}_i))
with respect to \hat{y}_i
if "expect to \hat{y}_i

 Even if "spam" has a higher probability, predicting "spam" might have a expected higher cost.

Decision Theory Example

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

• Consider a test example we have $p(\tilde{y}_i = \text{``spam''} | \tilde{x}_i) = 0.6$, then:

$$\mathbb{E} \left[\cos t \left(\hat{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} \right) \right] = \rho(\tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i}) \cos t \left(\hat{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"not spam"}, \tilde{\gamma}_{i} =$$

$$E\left[\cos^{\dagger}(\hat{y}_{i}=no^{\dagger}spam',\tilde{y}_{i})\right] = (0.6)(10) + (0.4)(0) = 6$$

• Even though "spam" is more likely, we should predict "not spam".

Decision Theory Discussion

- In other applications, the costs could be different.
 - In cancer screening, maybe false positives are ok, but don't want to have false negatives.
- Decision theory and "darts":
 - <u>http://www.datagenetics.com/blog/january12012/index.html</u>
- Decision theory can help with "unbalanced" class labels:
 - If 99% of e-mails are spam, you get 99% accuracy by always predicting "spam".
 - Decision theory approach avoids this.
 - See also precision/recall curves and ROC curves in the bonus material.

Decision Theory and Basketball

• "How Mapping Shots In The NBA Changed It Forever"

https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-it-forever/

(pause)

Decision Trees vs. Naïve Bayes

• Decision trees:

- 1. Sequence of rules based on 1 feature.
- 2. Training: 1 pass over data per depth.
- 3. Greedy splitting as approximation.
- 4. Testing: just look at features in rules.
- 5. New data: might need to change tree.
- 6. Accuracy: good if simple rules based on individual features work ("symptoms").

• Naïve Bayes:

- 1. Simultaneously combine all features.
- 2. Training: 1 pass over data to count.
- 3. Conditional independence assumption.
- 4. Testing: look at all features.
- 5. New data: just update counts.
- 6. Accuracy: good if features almost independent given label (bag of words).

- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.

- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.

- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.

- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.

- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.

- Assumption:
 - Examples with similar features are likely to have similar labels.
- Seems strong, but all good classifiers basically rely on this assumption.
 - If not true there may be nothing to learn and you are in "no free lunch" territory.
 - Methods just differ in how you define "similarity".
- Most common distance function is **Euclidean distance**:

$$|X_i - \widetilde{X_i}|| = \sqrt{\sum_{j=1}^{2} (x_{ij} - \widetilde{x_{ij}})^2}$$

- x_i is features of training example 'i', and $\tilde{x}_{\tilde{\iota}}$ is features of test example ' $\tilde{\iota}$ '.
- Costs O(d) to calculate for a pair of examples.

Effect of 'k' in KNN.

- With large 'k' (hyper-parameter), KNN model will be very simple.
 - With k=n, you just predict the mode of the labels.
 - Model gets more complicated as 'k' decreases.

• Effect of 'k' on fundamental trade-off:

- As 'k' grows, training error increase and approximation error decreases.

KNN Implementation

- There is no training phase in KNN ("lazy" learning).
 - You just store the training data.
 - Costs O(1) if you use a pointer.
- But predictions are expensive: O(nd) to classify 1 test example.
 - Need to do O(d) distance calculation for all 'n' training examples.
 - So prediction time grows with number of training examples.
 - Tons of work on reducing this cost (we'll discuss this later).
- But storage is expensive: needs O(nd) memory to store 'X' and 'y'.
 - So memory grows with number of training examples.
 - When storage depends on 'n', we call it a non-parametric model.

Parametric vs. Non-Parametric

- Parametric models:
 - Have fixed number of parameters: trained "model" size is O(1) in terms 'n'.
 - E.g., naïve Bayes just stores counts.
 - E.g., fixed-depth decision tree just stores rules for that depth.
 - You can estimate the fixed parameters more accurately with more data.
 - But eventually more data doesn't help: model is too simple.
- Non-parametric models:
 - Number of parameters grows with 'n': size of "model" depends on 'n'.
 - Model gets more complicated as you get more data.
 - E.g., KNN stores all the training data, so size of "model" is O(nd).
 - E.g., decision tree whose depth grows with the number of examples.

Parametric vs. Non-Parametric Models

- Parametric models have bounded memory.
- Non-parametric models can have unbounded memory.

Effect of 'n' in KNN.

• With a small 'n', KNN model will be very simple.

• Model gets more complicated as 'n' increases.

– Requires more memory, but detects subtle differences between examples.

Consistency of KNN ('n' going to ' ∞ ')

- KNN has appealing consistency properties:
 - As 'n' goes to ∞ , KNN test error is less than twice best possible error.
 - For fixed 'k' and binary labels (under mild assumptions).
- Stone's Theorem: KNN is "universally consistent".
 - If k/n goes to zero and 'k' goes to ∞ , converges to the best possible error.
 - For example, k = log(n).
 - First algorithm shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
 - No: it requires a continuity assumption on the labels.
 - Consistency says nothing about finite 'n' (see "<u>Dont Trust Asymptotics</u>").

Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
 - Even with infinite 'n', may not be able to achieve optimal error (E_{best}).

Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
 - Even with infinite 'n', may not be able to achieve optimal error (E_{best}) .
- Many non-parametric models (like KNN) converge to optimal error.

Curse of Dimensionality

- "Curse of dimensionality": problems with high-dimensional spaces.
 - Volume of space grows exponentially with dimension.
 - Circle has area O(r²), sphere has area O(r³), 4d hyper-sphere has area O(r⁴),...
 - Need exponentially more points to 'fill' a high-dimensional volume.
 - "Nearest" neighbours might be really far even with large 'n'.
- KNN is also problematic if features have very different scales.
- Nevertheless, KNN is really easy to use and often hard to beat!

Summary

- Decision theory allows us to consider costs of predictions.
- K-Nearest Neighbours: use most common label of nearest examples.
 - Often works surprisingly well.
 - Suffers from high prediction and memory cost.
 - Canonical example of a "non-parametric" model.
 - Can suffer from the "curse of dimensionality".
- Non-parametric models grow with number of training examples.
 - Can have appealing "consistency" properties.
- Next Time:
 - Fighting the fundamental trade-off and Microsoft Kinect.

Naïve Bayes Training Phase

• Training a naïve Bayes model:

Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set
$$n_c$$
 to the number of times $(y_i = c)$.

• Prediction in a naïve Bayes model:

Given a test example
$$\hat{x}_i$$
 we set prediction \hat{y}_i to the 'c' maximizing $p(\hat{x}_i | \hat{y}_i = c)$
Under the naive Bayes assumption we can maximize:
 $p(\hat{y}_i = c | \hat{x}_i) \propto \prod_{j=1}^{d} [p(\hat{x}_{ij} | \hat{y}_i = c)] p(\hat{y}_i = c)$

• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

$$\begin{array}{l} (\text{onsider } \widetilde{x}_{i} = [1 \ 1] \quad \text{in this data set} \longrightarrow \\ p(\widetilde{y}_{i} = 0 \ | \ \widetilde{x}_{i}) \propto p(\widetilde{x}_{i} = 1 \ | \ \widetilde{y}_{i} = 0) \\ = \quad (1) \qquad (0.25) \qquad (0.4) = 0. \\ = \quad (1) \qquad (0.25) \qquad (0.4) = 0. \\ = \quad (0.5) \qquad (0.666...) \qquad (0.6) = 0.2 \\ \end{array} \qquad \begin{array}{l} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0$$

"Proportional to" for Probabilities

• When we say " $p(y) \propto exp(-y^2)$ " for a function 'p', we mean:

$$p(y) = Bexp(-y^2)$$
 for some constant 'B'.

- However, if 'p' is a probability then it must sum to 1. $- If y \in \{1,2,3,4\}$ then $\rho(1) + \rho(2) + \rho(3) + \rho(4) = 1$
- Using this fact, we can find β:

$$\beta e_{xp}(-|^{2}) + \beta e_{xp}(-2^{2}) + \beta e_{xp}(-3^{2}) + \beta e_{xp}(-4^{2}) = |$$

$$\leq = 7 \beta E e_{xp}(-|^{2}) + e_{xp}(-2^{2}) + e_{xp}(-3^{2}) + e_{xp}(-4^{2}) = |$$

$$\leq = 7 \beta = e_{xp}(-1^{2}) + e_{xp}(-2^{2}) + e_{xp}(-3^{2}) + e_{xp}(-4^{2})$$

Probability of Paying Back a Loan and Ethics

- Article discussing predicting "whether someone will pay back a loan":
 - <u>https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html</u>
- Words that increase probability of paying back the most: — debt-free, lower interest rate, after-tax, minimum payment, graduate.
- Words that decrease probability of paying back the most: – God, promise, will pay, thank you, hospital.
- Article also discusses an important issue: are all these features ethical?
 - Should you deny a loan because of religion or a family member in the hospital?
 - ICBC is limited in the features it is allowed to use for prediction.

Avoiding Underflow

• During the prediction, the probability can underflow:

$$p(y_i = c \mid x_i) \propto \prod_{j=1}^{d} \left[p(x_{ij} \mid y_i = c) \right] p(y_i = c)$$

 $A \parallel \text{ these are } < 1 \text{ so the product gets very small.}$

• Standard fix is to (equivalently) maximize the logarithm of the probability: Rember that $\log(ab) = \log(a) + \log(b)$ so $\log(\pi a_i) = \sum_{i} \log(a_i)$ Since \log_{i} monotonic the 'c' maximizing $p(y = c | x_i)$ also maximizes $\log(y = c | x_i)$

50 maximize
$$\log\left(\frac{d}{11}\left[p(x_{ij} \mid y_{i}=c)\right]p(y_{i}=c)\right) = \sum_{j=1}^{d} \log(p(x_{ij} \mid y_{i}=c)) + \log(p(y_{i}=c))$$

Less-Naïve Bayes

- The assumption is very strong, and there are "less naïve" versions:
 - Assume independence of all variables except up to 'k' largest 'j' where j < i.
 - E.g., naïve Bayes has k=0 and with k=2 we would have:

$$\approx \rho(y) \rho(x, ly) \rho(x_2 | x_1, y) \rho(x_3 | x_7, x_7) \rho(x_4 | x_3, x_2, y) \cdots \rho(x_d | x_{d-2}, x_{d-1}) \gamma(y)$$

- Fewer independence assumptions so more flexible, but hard to estimate for large 'k'.
- Another practical variation is "tree-augmented" naïve Bayes.

Computing p(x_i) under naïve Bayes

- Generative models don't need p(x_i) to make decisions.
- However, it's easy to calculate under the naïve Bayes assumption: $p(x_i) = \sum_{i=1}^{k} p(x_{ij}y = c)$ (marginalization rule) $= \sum_{i=1}^{n} p(x_i | y = c) p(y = c) (product rule)$ $= \sum_{c=1}^{K} \left[\prod_{j=1}^{d} p(x_{ij} | y = c) \right] p(y=c) \quad (naive Bayes assumption)$ These are the quantilies we compute during training

Gaussian Discriminant Analysis

- Classifiers based on Bayes rule are called generative classifier:
 - They often work well when you have tons of features.
 - But they need to know $p(x_i | y_i)$, probability of features given the class.
 - How to "generate" features, based on the class label.
- To fit generative models, usually make BIG assumptions:
 - Naïve Bayes (NB) for discrete x_i:
 - Assume that each variables in x_i is independent of the others in x_i given y_i.
 - Gaussian discriminant analysis (GDA) for continuous x_i.
 - Assume that $p(x_i | y_i)$ follows a multivariate normal distribution.
 - If all classes have same covariance, it's called "linear discriminant analysis".

Other Performance Measures

- Classification error might be wrong measure:
 - Use weighted classification error if have different costs.
 - Might want to use things like Jaccard measure: TP/(TP + FP + FN).
- Often, we report precision and recall (want both to be high):
 - Precision: "if I classify as spam, what is the probability it actually is spam?"
 - Precision = TP/(TP + FP).
 - High precision means the filtered messages are likely to really be spam.
 - Recall: "if a message is spam, what is probability it is classified as spam?"
 - Recall = TP/(TP + FN)
 - High recall means that most spam messages are filtered.

Precision-Recall Curve

- Consider the rule $p(y_i = spam' | x_i) > t$, for threshold 't'.
- Precision-recall (PR) curve plots precision vs. recall as 't' varies.

ROC Curve

- Receiver operating characteristic (ROC) curve:
 - Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).

(negative examples classified as positive)

- Diagonal is random, perfect classifier would be in upper left.
- Sometimes papers report area under curve (AUC).
 - Reflects performance for different possible thresholds on the probability.

More on Unbalanced Classes

- With unbalanced classes, there are many alternatives to accuracy as a measure of performance:
 - Two common ones are the Jaccard coefficient and the F-score.
- Some machine learning models don't work well with unbalanced data. Some common heuristics to improve performance are:
 - Under-sample the majority class (only take 5% of the spam messages).
 - https://www.jair.org/media/953/live-953-2037-jair.pdf
 - Re-weight the examples in the accuracy measure (multiply training error of getting non-spam messages wrong by 10).
 - Some notes on this issue are <u>here</u>.

More on Weirdness of High Dimensions

- In high dimensions:
 - Distances become less meaningful:
 - All vectors may have similar distances.
 - Emergence of "hubs" (even with random data):
 - Some datapoints are neighbours to many more points than average.
 - Visualizing high dimensions and sphere-packing

Vectorized Distance Calculation

- To classify 't' test examples based on KNN, cost is O(ndt).
 - Need to compare 'n' training examples to 't' test examples, and computing a distance between two examples costs O(d).
- You can do this slightly faster using fast matrix multiplication:
 Let D be a matrix such that D_{ij} contains:

$$||x_i - y_j||^2 = ||x_i||^2 - 2x_i^T x_j + ||x_j||^2$$

where 'i' is a training example and 'j' is a test example.

– We can compute D in Julia using:

X1.^2*ones(d,t) .+ ones(n,d)*(X2').^2 .- 2X1*X2'

And you get an extra boost because Julia uses multiple cores.

Condensed Nearest Neighbours

- Disadvantage of KNN is slow prediction time (depending on 'n').
- Condensed nearest neighbours:
 - Identify a set of 'm' "prototype" training examples.
 - Make predictions by using these "prototypes" as the training data.
- Reduces runtime from O(nd) down to O(md).

"(ondensed" version SAME predictions

Condensed Nearest Neighbours

- Classic condensed nearest neighbours:
 - Start with no examples among prototypes.
 - Loop through the non-prototype examples 'i' in some order:
 - Classify x_i based on the current prototypes.
 - If prediction is not the true y_i, add it to the prototypes.
 - Repeat the above loop until all examples are classified correctly.
- Some variants first remove points from the original data, if a full-data KNN classifier classifies them incorrectly ("outliers').

Condensed Nearest Neighbours

• Classic condensed nearest neighbours:

- Recent work shows that finding optimal compression is NP-hard.
 - An approximation algorithm algorithm was published in 2018:
 - "Near optimal sample compression for nearest neighbors"