CPSC 340: Machine Learning and Data Mining

Non-Parametric Models

Fall 2019
Admin

• Course webpage:

• Assignment 1:
 – 1 late day to hand in tonight, 2 for Wednesday.

• Assignment 2 is out.
 – Due Friday of next week. It’s long so start early.

• Add/drop deadline is tomorrow.

• Auditing/Exchange:
 – Bring your form to me after class.
Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

• We formulated as supervised learning:
 – \((y_i = 1)\) if e-mail ‘i’ is spam, \((y_i = 0)\) if e-mail is not spam.
 – \((x_{ij} = 1)\) if word/phrase ‘j’ is in e-mail ‘i’, \((x_{ij} = 0)\) if it is not.

<table>
<thead>
<tr>
<th></th>
<th>Hi</th>
<th>CPSC</th>
<th>340</th>
<th>Vicodin</th>
<th>Offer</th>
<th>...</th>
<th>Spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Last Time: Naïve Bayes

• We considered spam filtering methods based on naïve Bayes:

\[
p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"}) p(y_i = \text{"spam"})}{p(x_i)}
\]

• Makes conditional independence assumption to make learning practical:

\[
p(hello = 1, \text{vicodin} = 0, 340 = 1 \mid \text{spam}) \approx p(hello = 1 \mid \text{spam}) p(\text{vicodin} = 0 \mid \text{spam}) p(340 = 1 \mid \text{spam})
\]

\[\text{HARD}\]

\[\text{easy} \quad \text{easy} \quad \text{easy}\]

• Predict “spam” if \(p(y_i = \text{“spam”} \mid x_i) > p(y_i = \text{“not spam”} \mid x_i)\).
 – We don’t need \(p(x_i)\) to test this.
Naïve Bayes

• Naïve Bayes formally:

\[p(y_i | x_i) = \frac{p(x_i | y_i) p(y_i)}{p(x_i)} \quad \text{(First use Bayes rule)} \]

\[\propto p(x_i | y_i) p(y_i) \quad \text{("denominator doesn't matter")} \]

\[\approx \frac{1}{d} \prod_{j=1}^{d} \left[p(x_{ij} | y_i) \right] p(y_i) \quad \text{(Conditional independence assumption)} \]

Only needs easy probabilities.

• Post-lecture slides: how to train/test by hand on a simple example.
Laplace Smoothing

• Our estimate of \(p(\text{‘lactase’} = 1 \mid \text{‘spam’}) \) is:

\[
\frac{\text{# spam messages with lactase}}{\text{# spam messages}}
\]

– But there is a problem if you have no spam messages with lactase:
 • \(p(\text{‘lactase’} \mid \text{‘spam’}) = 0 \), so spam messages with lactase automatically get through.

– Common fix is Laplace smoothing:
 • Add 1 to numerator, and 2 to denominator (for binary features).
 – Acts like a “fake” spam example that has lactase, and a “fake” spam example that doesn’t.
Laplace Smoothing

- **Laplace smoothing:**
 \[
 \frac{(\text{#spam messages with lactase}) + 1}{(\text{#spam messages}) + 2}
 \]
 - Typically you do this for all features.
 - Helps against overfitting by biasing towards the uniform distribution.
 - A common variation is to use a **real number** β rather than 1.
 - Add βk to denominator if feature has k possible values (so it sums to 1).

 \[
 p(x_{ij} = c | y_i = \text{class}) \sim \frac{\text{(number of examples in class with } x_{ij} = c) + \beta}{\text{(number of examples in class) + } \beta k}
 \]

 This is a “maximum a posteriori” (MAP) estimate of the probability. We’ll discuss MAP and how to derive this formula later.
Decision Theory

• Are we equally concerned about “spam” vs. “not spam”?
• True positives, false positives, false negatives, true negatives:

<table>
<thead>
<tr>
<th>Predict / True</th>
<th>True ‘spam’</th>
<th>True ‘not spam’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict ‘spam’</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td>Predict ‘not spam’</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
</tbody>
</table>

• The costs mistakes might be different:
 – Letting a spam message through (false negative) is not a big deal.
 – Filtering a not spam (false positive) message will make users mad.
Decision Theory

• We can give a cost to each scenario, such as:

<table>
<thead>
<tr>
<th>Predict / True</th>
<th>True ‘spam’</th>
<th>True ‘not spam’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict ‘spam’</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Predict ‘not spam’</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

• Instead of most probable label, take \hat{y}_i minimizing expected cost:

$$\mathbb{E} \left[\text{cost}(\hat{y}_i, \tilde{y}_i) \right]$$

Cost of predicting \hat{y}_i if it’s really \tilde{y}_i

• Even if “spam” has a higher probability, predicting “spam” might have an expected higher cost.
Decision Theory Example

<table>
<thead>
<tr>
<th>Predict / True</th>
<th>True ‘spam’</th>
<th>True ‘not spam’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict ‘spam’</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Predict ‘not spam’</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

• Consider a test example we have \(p(\tilde{y}_i = \text{“spam”} \mid \tilde{x}_i) = 0.6 \), then:

\[
\mathbb{E} \left[\text{cost} \left(\hat{y}_i = \text{“spam”}, \tilde{y}_i \right) \right] = p(\tilde{y}_i = \text{“spam”} \mid \tilde{x}_i) \text{cost} \left(\hat{y}_i = \text{“spam”}, \tilde{y}_i = \text{“spam”} \right) + p(\tilde{y}_i = \text{“not spam”} \mid \tilde{x}_i) \text{cost} \left(\hat{y}_i = \text{“spam”}, \tilde{y}_i = \text{“not spam”} \right) \\
= (0.6)(0) + (0.4)(100) = 40
\]

\[
\mathbb{E} \left[\text{cost} \left(\hat{y}_i = \text{“not spam”}, \tilde{y}_i \right) \right] = (0.6)(10) + (0.4)(0) = 6
\]

• Even though “spam” is more likely, we should predict “not spam”.
Decision Theory Discussion

• In other applications, the costs could be different.
 – In cancer screening, maybe false positives are ok, but don’t want to have false negatives.

• Decision theory and “darts”:

• Decision theory can help with “unbalanced” class labels:
 – If 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
 – Decision theory approach avoids this.
 – See also precision/recall curves and ROC curves in the bonus material.
Decision Theory and Basketball

• “How Mapping Shots In The NBA Changed It Forever”

(pause)
Decision Trees vs. Naïve Bayes

• Decision trees:
 1. Sequence of rules based on 1 feature.
 2. Training: 1 pass over data per depth.
 5. New data: might need to change tree.
 6. Accuracy: good if simple rules based on individual features work (“symptoms”).

• Naïve Bayes:
 1. Simultaneously combine all features.
 2. Training: 1 pass over data to count.
 5. New data: just update counts.
 6. Accuracy: good if features almost independent given label (bag of words).
K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).
• To classify an example \tilde{x}_i:
 1. Find the ‘k’ training examples x_i that are “nearest” to \tilde{x}_i.
 2. Classify using the most common label of “nearest” training examples.

<table>
<thead>
<tr>
<th>Egg</th>
<th>Milk</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sick?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egg</th>
<th>Milk</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sick?</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
</tr>
</tbody>
</table>

3 “nearest” neighbours. Most common label is “sick”.
K-Nearest Neighbours (KNN)

• An old/simple classifier: \textit{k-nearest neighbours (KNN)}.

• To classify an example \tilde{x}_i:
 1. Find the ‘k’ training examples x_i that are “nearest” to \tilde{x}_i.
 2. Classify using the most common label of “nearest” training examples.
K-Nearest Neighbours (KNN)

• An old/simple classifier: \textit{k-nearest neighbours (KNN)}.
• To classify an example \tilde{x}_i:
 1. Find the ‘k’ training examples x_i that are “nearest” to \tilde{x}_i.
 2. Classify using the most common label of “nearest” training examples.
K-Nearest Neighbours (KNN)

• An old/simple classifier: \(k\)-nearest neighbours (KNN).

• To classify an example \(\tilde{x}_i\):
 1. Find the ‘\(k\)’ training examples \(x_i\) that are “nearest” to \(\tilde{x}_i\).
 2. Classify using the most common label of “nearest” training examples.
K-Nearest Neighbours (KNN)

• An old/simple classifier: k-nearest neighbours (KNN).
• To classify an example \tilde{x}_i:
 1. Find the ‘k’ training examples x_i that are “nearest” to \tilde{x}_i.
 2. Classify using the most common label of “nearest” training examples.

<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>2.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.5</td>
<td>1</td>
<td>+</td>
</tr>
</tbody>
</table>
K-Nearest Neighbours (KNN)

• Assumption:
 – Examples with similar features are likely to have similar labels.

• Seems strong, but all good classifiers basically rely on this assumption.
 – If not true there may be nothing to learn and you are in “no free lunch” territory.
 – Methods just differ in how you define “similarity”.

• Most common distance function is Euclidean distance:
 \[
 \| x_i - \tilde{x}_i \| = \sqrt{\sum_{j \in i} (x_{ij} - \tilde{x}_{ij})^2}
 \]
 – \(x_i \) is features of training example ‘i’, and \(\tilde{x}_i \) is features of test example ‘\(\tilde{i} \)’.
 – Costs \(O(d) \) to calculate for a pair of examples.
Effect of ‘k’ in KNN.

• With large ‘k’ (hyper-parameter), KNN model will be very simple.
 – With k=n, you just predict the mode of the labels.
 – Model gets more complicated as ‘k’ decreases.

\[
k = 1 \quad k = 3 \quad k = 10
\]

• Effect of ‘k’ on fundamental trade-off:
 – As ‘k’ grows, training error increase and approximation error decreases.
KNN Implementation

• There is **no training** phase in KNN ("lazy" learning).
 – You just store the training data.
 – Costs $O(1)$ if you use a pointer.

• But **predictions are expensive**: $O(nd)$ to classify 1 test example.
 – Need to do $O(d)$ distance calculation for all ‘n’ training examples.
 – So **prediction time grows with number of training examples**.
 • Tons of work on reducing this cost (we’ll discuss this later).

• But **storage is expensive**: needs $O(nd)$ memory to store ‘X’ and ‘y’.
 – So memory grows with number of training examples.
 – When storage depends on ‘n’, we call it a **non-parametric** model.
Parametric vs. Non-Parametric

• **Parametric** models:
 – Have fixed number of parameters: trained “model” size is $O(1)$ in terms ‘n’.
 • E.g., naïve Bayes just stores counts.
 • E.g., fixed-depth decision tree just stores rules for that depth.
 – You can estimate the fixed parameters more accurately with more data.
 – But eventually more data doesn’t help: model is too simple.

• **Non-parametric** models:
 – Number of parameters grows with ‘n’: size of “model” depends on ‘n’.
 – Model gets more complicated as you get more data.
 • E.g., KNN stores all the training data, so size of “model” is $O(nd)$.
 • E.g., decision tree whose depth *grows with the number of examples*.
Parametric vs. Non-Parametric Models

- Parametric models have bounded memory.
- Non-parametric models can have unbounded memory.
Effect of ‘n’ in KNN.

• With a small ‘n’, KNN model will be very simple.

\[n = 2, k=1 \]

\[n = 20, k=1 \]

• Model gets more complicated as ‘n’ increases.
 – Requires more memory, but detects subtle differences between examples.
Consistency of KNN (‘n’ going to ‘∞’)

• KNN has appealing consistency properties:
 – As ‘n’ goes to ∞, KNN test error is less than twice best possible error.
 • For fixed ‘k’ and binary labels (under mild assumptions).

• Stone’s Theorem: KNN is “universally consistent”.
 – If k/n goes to zero and ‘k’ goes to ∞, converges to the best possible error.
 • For example, k = log(n).
 • First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?
 – No: it requires a continuity assumption on the labels.
 – Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics").
Parametric vs. Non-Parametric Models

• With parametric models, there is an accuracy limit.
 – Even with infinite ‘n’, may not be able to achieve optimal error (E_{best}).
Parametric vs. Non-Parametric Models

• With parametric models, there is an **accuracy limit**.
 – Even with infinite ‘n’, may not be able to achieve optimal error (E_{best}).
• Many non-parametric models (like KNN) **converge to optimal error**.
Curse of Dimensionality

• “Curse of dimensionality”: problems with high-dimensional spaces.
 – Volume of space grows \textit{exponentially} with dimension.
 • Circle has area $O(r^2)$, sphere has area $O(r^3)$, 4d hyper-sphere has area $O(r^4)$, ...
 – Need \textit{exponentially more points} to ‘fill’ a high-dimensional volume.
 • “Nearest” neighbours might be really far even with large ‘n’.

• KNN is also problematic if features have very different scales.

• Nevertheless, \textit{KNN is really easy to use and often hard to beat}!
Summary

• **Decision theory** allows us to consider costs of predictions.
• **K-Nearest Neighbours**: use most common label of nearest examples.
 • Often works surprisingly well.
 • Suffers from high prediction and memory cost.
 • Canonical example of a “non-parametric” model.
 • Can suffer from the “curse of dimensionality”.
• **Non-parametric models** grow with number of training examples.
 – Can have appealing “consistency” properties.

• Next Time:
 • Fighting the fundamental trade-off and Microsoft Kinect.
Naïve Bayes Training Phase

- Training a naïve Bayes model:

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set \(n_c \) to the number of times \((y_i = c) \).

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]
Naïve Bayes Training Phase

- Training a naïve Bayes model:
 1. Set n_c to the number of times ($y_i = c$).
 2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
1 & 1
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
p(y_i = 0) = \frac{4}{10} \quad n_0 = 4
\]

\[
p(y_i = 1) = \frac{6}{10} \quad n_i = 6
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times ($y_i = c$, $x_j = k$).

$$X = \begin{bmatrix}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}$$

$$p(y_i = 1) = \frac{6}{10} \leftarrow n_1 = 6$$

$$p(y_i = 0) = \frac{4}{10} \leftarrow n_0 = 4$$

$n_{121} = 4$
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times $(y_i = c)$.
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{ck} as the number of times $(y_i = c, x_{ij} = k)$.
4. Estimate $p(x_{ij} = k | y_i = c)$ as $\frac{n_{ck}}{n}$.

\[
\begin{align*}
X &= \begin{bmatrix}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix} \\
\end{align*}
\]

\[
\begin{align*}
\rho(y_i = 1) &= \frac{6}{10} \quad n_1 = 6 \\
n_{121} &= 4 \\
\rho(x_{i2} = 1 | y_i = 1) &= \frac{4}{10} \\
\rho(y_i = 0) &= \frac{4}{10} \quad n_0 = 4
\end{align*}
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set \(n_c \) to the number of times \((y_i = c) \).
2. Estimate \(p(y_i = c) \) as \(\frac{n_c}{n} \).
3. Set \(n_{cjk} \) as the number of times \((y_i = c, x_{ij} = k) \).
4. Estimate \(p(x_{ij} = k | y_i = c) \) as \(\frac{n_{cjk}}{n} \).
5. Use that \(p(x_{ij} = k | y_i = c) = \frac{p(x_{ij} = k, y_i = c)}{p(y_i = c)} \)

\[
= \frac{n_{cjk}}{n_c} = \frac{n_{cjk}}{n_c}
\]

\[
p(x_{i1} = 1 | y_i = 1) = \frac{4}{6} = \frac{2}{3}
\]

\[
p(x_{i2} = 1 | y_i = 1) = \frac{4}{10} = \frac{2}{5}
\]

\[
p(y_i = 0) = \frac{4}{10}
\]

\[
p(y_i = 1) = \frac{6}{10}
\]

\[
n_0 = 4
\]

\[
n_1 = 6
\]

\[
X = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0
\end{bmatrix}
\]
Naïve Bayes Prediction Phase

- Prediction in a naïve Bayes model:

Given a test example \(\tilde{x}_i \), we set prediction \(\tilde{y}_i \) to the 'c' maximizing \(p(\tilde{x}_i | \tilde{y}_i = c) \)

Under the naïve Bayes assumption we can maximize:

\[
p(\tilde{y}_i = c | \tilde{x}_i) \propto \prod_{j=1}^{d} \left[p(\tilde{x}_{ij} | \tilde{y}_i = c) \right] p(\tilde{y}_i = c)
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x}_i = [1 \ 1]$ in this data set.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

\[
p(\tilde{y}_i = 0 | \tilde{x}_i) \propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 0) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0)
\]

\[
= (1) (0.25) (0.4) = 0.1
\]

Consider \(\tilde{x}_i = [1 \ 1] \) in this data set

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Prediction Phase

- Prediction in a naïve Bayes model:

Consider \(\tilde{x}_i = [1, 1] \) in this data set:

\[
p(\tilde{y}_i = 0 | \tilde{x}_i) \propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 0) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0)
= (1) (0.25) (0.4) = 0.1
\]

\[
p(\tilde{y}_i = 1 | \tilde{x}_i) \propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 1) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 1) p(\tilde{y}_i = 1)
= (0.5) (0.666...) (0.6) = 0.2
\]

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Prediction Phase

- Prediction in a naïve Bayes model:

Consider $\tilde{x}_i = [1 \ 1]$ in this data set.

\[
p(\tilde{y}_i = 0 | \tilde{x}_i) \propto p(\tilde{x}_1 = 1 | \tilde{y}_i = 0) p(\tilde{x}_2 = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0) = (1) (0.25) (0.4) = 0.1
\]

\[
p(\tilde{y}_i = 1 | \tilde{x}_i) \propto p(\tilde{x}_1 = 1 | \tilde{y}_i = 1) p(\tilde{x}_2 = 1 | \tilde{y}_i = 1) p(\tilde{y}_i = 1) = (0.5) (0.666...) (0.6) = 0.2
\]

Since $p(\tilde{y}_i = 1 | \tilde{x}_i)$ is bigger than $p(\tilde{y}_i = 0 | \tilde{x}_i)$, naïve Bayes predicts $\tilde{y}_i = 1$.

(Don't sum to 1 because we're ignoring $p(\tilde{x}_i)$)
"Proportional to" for Probabilities

- When we say \(p(y) \propto \exp(-y^2) \) for a function \(p \), we mean:
 \[
p(y) = B \exp(-y^2) \text{ for some constant } B.
 \]

- However, if \(p \) is a probability then it must sum to 1.
 - If \(y \in \{1,2,3,4\} \) then
 \[
p(1) + p(2) + p(3) + p(4) = 1
 \]

- Using this fact, we can find \(B \):
 \[
 B \exp(-1^2) + B \exp(-2^2) + B \exp(-3^2) + B \exp(-4^2) = 1
 \]
 \[
 \iff B \left[\exp(-1^2) + \exp(-2^2) + \exp(-3^2) + \exp(-4^2) \right] = 1
 \]
 \[
 \iff B = \frac{1}{\exp(-1^2) + \exp(-2^2) + \exp(-3^2) + \exp(-4^2)}
 \]
Probability of Paying Back a Loan and Ethics

• Article discussing predicting “whether someone will pay back a loan”:

• Words that increase probability of paying back the most:
 – debt-free, lower interest rate, after-tax, minimum payment, graduate.

• Words that decrease probability of paying back the most:
 – God, promise, will pay, thank you, hospital.

• Article also discusses an important issue: are all these features ethical?
 – Should you deny a loan because of religion or a family member in the hospital?
 – ICBC is limited in the features it is allowed to use for prediction.
Avoiding Underflow

• During the prediction, the probability can underflow:

\[p(y_i = c \mid x_i) \propto \prod_{j=1}^{d} \left[p(x_{ij} \mid y_i = c) \right] p(y_i = c) \]

All these are \(<1\) so the product gets very small.

• Standard fix is to (equivalently) maximize the logarithm of the probability:

Remember that \(\log(ab) = \log(a) + \log(b) \) so \(\log(\prod_{i} a_i) = \sum_{i} \log(a_i) \)

Since \(\log \) is monotonic the \(c \) maximizing \(p(y_i = c \mid x_i) \) also maximizes \(\log p(y_i = c \mid x_i) \)

So maximize \(\log \left(\prod_{j=1}^{d} \left[p(x_{ij} \mid y_i = c) \right] p(y_i = c) \right) = \sum_{j=1}^{d} \log(p(x_{ij} \mid y_i = c)) + \log(p(y_i = c)) \)
Less-Naïve Bayes

• Given features \{x1,x2,x3,...,xd\}, naïve Bayes approximates \(p(y|x) \) as:

\[
p(y \mid x_1, x_2, \ldots, x_d) \propto p(y) p(x_1, x_2, \ldots, x_d \mid y) \]

\[
= p(y) p(x_1 \mid y) p(x_2 \mid x_1, y) p(x_3 \mid x_2, x_1, y) \ldots p(x_d \mid x_{i-1}, \ldots, x_1, y)
\]

\[
\approx p(y) p(x_1 \mid y) p(x_2 \mid y) p(x_3 \mid y) \ldots p(x_d \mid y) \quad \text{(naïve Bayes assumption)}
\]

• The assumption is very strong, and there are “less naïve” versions:

 – Assume independence of all variables except up to ‘k’ largest ‘j’ where \(j < i \).

 • E.g., naïve Bayes has \(k=0 \) and with \(k=2 \) we would have:

\[
\approx p(y) p(x_1 \mid y) p(x_2 \mid x_1, y) p(x_3 \mid x_2, x_1, y) \ldots p(x_d \mid x_{i-2}, x_{i-1}, y)
\]

 – Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.
 – Another practical variation is “tree-augmented” naïve Bayes.
Computing $p(x_i)$ under naïve Bayes

• Generative models don’t need $p(x_i)$ to make decisions.
• However, it’s easy to calculate under the naïve Bayes assumption:

$$p(x_i) = \sum_{c=1}^{K} p(x_i, y = c) \quad \text{(marginalization rule)}$$

$$= \sum_{c=1}^{K} p(x_i \mid y = c) p(y = c) \quad \text{(product rule)}$$

$$= \sum_{c=1}^{K} \left[\prod_{j=1}^{d} p(x_{ij} \mid y = c) \right] p(y = c) \quad \text{(naïve Bayes assumption)}$$

These are the quantities we compute during training.
Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called **generative classifier**:
 – They often work well when you have **tons of features**.
 – But they need to know $p(x_i \mid y_i)$, probability of features given the class.
 • How to “generate” features, based on the class label.

• To fit generative models, usually make BIG assumptions:
 – **Naïve Bayes** (NB) for discrete x_i:
 • Assume that each variables in x_i is independent of the others in x_i given y_i.

 – **Gaussian discriminant analysis** (GDA) for continuous x_i.
 • Assume that $p(x_i \mid y_i)$ follows a multivariate normal distribution.
 • If all classes have same covariance, it’s called “linear discriminant analysis”.
Other Performance Measures

• Classification error might be wrong measure:
 – Use weighted classification error if have different costs.
 – Might want to use things like Jaccard measure: \(\frac{TP}{TP + FP + FN} \).

• Often, we report **precision** and **recall** (want both to be high):
 – Precision: “if I classify as spam, what is the probability it actually is spam?”
 • Precision = \(\frac{TP}{TP + FP} \).
 • High precision means the filtered messages are likely to really be spam.
 – Recall: “if a message is spam, what is probability it is classified as spam?”
 • Recall = \(\frac{TP}{TP + FN} \)
 • High recall means that most spam messages are filtered.
Precision-Recall Curve

• Consider the rule $p(y_i = \text{‘spam’} \mid x_i) > t$, for threshold ‘t’.
• Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
ROC Curve

• Receiver operating characteristic (ROC) curve:
 – Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
 – Diagonal is random, perfect classifier would be in upper left.
 – Sometimes papers report area under curve (AUC).
 • Reflects performance for different possible thresholds on the probability.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf
More on Unbalanced Classes

• With unbalanced classes, there are many alternatives to accuracy as a measure of performance:
 – Two common ones are the Jaccard coefficient and the F-score.

• Some machine learning models don’t work well with unbalanced data. Some common heuristics to improve performance are:
 – Under-sample the majority class (only take 5% of the spam messages).
 – Re-weight the examples in the accuracy measure (multiply training error of getting non-spam messages wrong by 10).
 – Some notes on this issue are [here](#).
More on Weirdness of High Dimensions

• In high dimensions:
 – Distances become less meaningful:
 • All vectors may have similar distances.
 – Emergence of “hubs” (even with random data):
 • Some datapoints are neighbours to many more points than average.
 – Visualizing high dimensions and sphere-packing
Vectorized Distance Calculation

• To classify ‘t’ test examples based on KNN, cost is $O(ndt)$.
 – Need to compare ‘n’ training examples to ‘t’ test examples,
 and computing a distance between two examples costs $O(d)$.

• You can do this slightly faster using fast matrix multiplication:
 – Let D be a matrix such that D_{ij} contains:
 $\|x_i - x_j\|^2 = \|x_i\|^2 - 2x_i^\top x_j + \|x_j\|^2$
 where ‘i’ is a training example and ‘j’ is a test example.
 – We can compute D in Julia using:
 $$X1.^2*\text{ones}(d,t) + \text{ones}(n,d)*(X2').^2 - 2X1*X2'$$
 – And you get an extra boost because Julia uses multiple cores.
Condensed Nearest Neighbours

- Disadvantage of KNN is slow prediction time (depending on ‘n’).
- Condensed nearest neighbours:
 - Identify a set of ‘m’ “prototype” training examples.
 - Make predictions by using these “prototypes” as the training data.
- Reduces runtime from $O(nd)$ down to $O(md)$.
Condensed Nearest Neighbours

• Classic condensed nearest neighbours:
 – Start with no examples among prototypes.
 – Loop through the non-prototype examples ‘i’ in some order:
 • Classify x_i based on the current prototypes.
 • If prediction is not the true y_i, add it to the prototypes.
 – Repeat the above loop until all examples are classified correctly.

• Some variants first remove points from the original data, if a full-data KNN classifier classifies them incorrectly (“outliers”).
Condensed Nearest Neighbours

• Classic condensed nearest neighbours:

• Recent work shows that finding optimal compression is NP-hard.
 – An approximation algorithm was published in 2018:
 • “Near optimal sample compression for nearest neighbors”