CPSC 340: Machine Learning and Data Mining Number of Iterations Gradient Descent

Mark Schmidt

University of British Columbia

Fall 2019

Cost of L2-Regularizd Least Squares

• Two strategies from 340 for L2-regularized least squares:

Closed-form solution,

$$w = (X^T X + \lambda I)^{-1} (X^T y),$$

which costs $O(nd^2 + d^3)$.

• This is fine for d = 5000, but may be too slow for d = 1,000,000.

Q Run t iterations of gradient descent,

$$w^{k+1} = w^k - \alpha_k \underbrace{(X^T(Xw^k - y) + \lambda w^k)}_{\nabla f(w^k)},$$

which costs O(ndt).

• I'm using t as total number of iterations, and k as iteration number.

- Gradient descent is faster if t is not too big:
 - If we only do $t < \max\{d, d^2/n\}$ iterations.

• So, how many iterations t of gradient descent do we need?

Gradient Descent Progress Guarantee

Number of Iterations for PL Functions

Outline

Gradient Descent Progress Guarantee

2 Numberof Iterations for Non-Convex Functions

3 Number of Iterations for PL Functions

Gradient Descent for Finding a Local Minimum

- A typical gradient descent algorithm:
 - Start with some initial guess, w^0 .
 - Generate new guess w^1 by moving in the negative gradient direction:

$$w^1 = w^0 - \alpha_0 \nabla f(w^0),$$

where α_0 is the step size.

• Repeat to successively refine the guess:

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k), \text{ for } k = 1, 2, 3, \dots$$

where we might use a different step-size α_k on each iteration.

Stop if ||∇f(w^k)|| ≤ ε.
 In practice, you also stop if you detect that you aren't making progress.

Number of Iterations for PL Functions

Gradient Descent in 2D

Lipschitz Contuity of the Gradient

- Let's first show a basic property:
 - $\bullet\,$ If the step-size α_t is small enough, then gradient descent decreases f.
- \bullet We'll analyze gradient descent assuming gradient of f is Lipschitz continuous.
 - $\bullet\,$ There exists an L such that for all w and v we have

$$\|\nabla f(w) - \nabla f(v)\| \le L \|w - v\|.$$

- "Gradient can't change arbitrarily fast".
- This is a fairly weak assumption: it's true in almost all ML models.
 - Least squares, logistic regression, neural networks with sigmoid activations, etc.

Lipschitz Contuity of the Gradient

 $\bullet\,$ For C^2 functions, Lipschitz continuity of the gradient is equivalent to

 $\nabla^2 f(w) \preceq LI,$

for all w.

- Equivalently: "singular values of the Hessian are bounded above by L".
 For least squares, minimum L is the maximum eigenvalue of X^TX.
- This means we can bound quadratic forms involving the Hessian using

$$d^{T} \nabla^{2} f(u) d \leq d^{T} (LI) d$$
$$= L d^{T} d$$
$$= L ||d||^{2}.$$

Descent Lemma

• For a C^2 function, a variation on the multivariate Taylor expansion is that

$$f(v) = \underbrace{f(w) + \nabla f(w)^T (v - w)}_{\text{tangent hyper-plane}} + \underbrace{\frac{1}{2} (v - w)^T \nabla^2 f(u) (v - w)}_{\text{quadratic form}},$$

for any w and v (with u being some convex combination of w and v).

• Lipschitz continuity implies the green term is at most $L\|v-w\|^2$,

$$f(v) \le f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} ||v - w||^2,$$

which is called the descent lemma.

• The descent lemma also holds for C^1 functions (bonus slide).

Descent Lemma

• The descent lemma gives us a convex quadratic upper bound on f:

• This bound is minimized by a gradient descent step from w with $\alpha_k = 1/L$.

Gradient Descent decreases f for $\alpha_k = 1/L$

• So let's consider doing gradient descent with a step-size of $\alpha_k=1/L$,

$$w^{k+1} = w^k - \frac{1}{L}\nabla f(w^k).$$

• If we substitle w^{k+1} and w^k into the descent lemma we get

$$f(w^{k+1}) \le f(w^k) + \nabla f(w^k)^T (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.$$

 \bullet Now if we use that $(w^{k+1}-w^k)=-\frac{1}{L}\nabla f(w^k)$ in gradient descent,

$$\begin{split} f(w^{k+1}) &\leq f(w^k) - \frac{1}{L} \nabla f(w^k)^T \nabla f(w^k) + \frac{L}{2} \|\frac{1}{L} \nabla f(w^k)\|^2 \\ &= f(w^k) - \frac{1}{L} \|\nabla f(w^k)\|^2 + \frac{1}{2L} \|\nabla f(w^k)\|^2 \\ &= f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2. \end{split}$$

Implication of Lipschitz Continuity

• We've derived a bound on guaranteed progress when using $\alpha_k = 1/L$.

$$f(w^{k+1}) \le f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$

- If gradient is non-zero, $\alpha_k=1/L$ is guaranteed to decrease objective.
- Amount we decrease grows with the size of the gradient.
- Same argument shows that any $\alpha_k < 2/L$ will decrease f.

Choosing the Step-Size in Practice

- In practice, you should never use $\alpha_k = 1/L$.
 - L is usually expensive to compute, and this step-size is really small.
 - You only need a step-size this small in the worst case.
- One practical option is to approximate L:
 - Start with a small guess for \hat{L} (like $\hat{L} = 1$).
 - Before you take your step, check if the progress bound is satisfied:

$$f(\underbrace{w^k - (1/\hat{L})\nabla f(w^k)}_{\text{potential } w^{k+1}}) \leq f(w^k) - \frac{1}{2\hat{L}} \|\nabla f(w^k)\|^2$$

• Double \hat{L} if it's not satisfied, and test the inequality again.

- Worst case: eventually have $L \leq \hat{L} < 2L$ and you decrease f at every iteration.
- Good case: $\hat{L} \ll L$ and you are making more progress than using 1/L.

Choosing the Step-Size in Practice

- An approach that usually works better is a backtracking line-search:
 - Start each iteration with a large step-size α .
 - So even if we took small steps in the past, be optimistic that we're not in worst case.
 - Decrease α until if Armijo condition is satisfied (this is what *findMin.jl* does),

$$f(\underbrace{w^k - \alpha \nabla f(w^k)}_{\text{potential } w^{k+1}}) \leq f(w^k) - \alpha \gamma \|\nabla f(w^k)\|^2 \quad \text{for} \quad \gamma \in (0, 1/2],$$

often we choose γ to be very small like $\gamma = 10^{-4}$.

- We would rather take a small decrease instead of trying many α values.
- $\bullet\,$ Good codes use clever tricks to initialize and decrease the α values.
 - $\bullet~$ Usually only try 1 value per iteration.
- Even more fancy line-search: Wolfe conditions (makes sure α is not too small).
 - Good reference on these tricks: Nocedal and Wright's Numerical Optimization book.

Gradient Descent Progress Guarantee

Number of Iterations for PL Functions

Outline

1 Gradient Descent Progress Guarantee

2 Number of Iterations for Non-Convex Functions

3 Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

- In 340, we claimed that $\nabla f(w^k)$ converges to zero as k goes to ∞ .
 - For convex functions, this means it converges to a global optimum.
 - However, we may not have $\nabla f(w^k) = 0$ for any finite k.
- Instead, we're usually happy with $\|\nabla f(w^k)\| \leq \epsilon$ for some small ϵ .
 - Given an ϵ , how many iterations does it take for this to happen?
- We'll first answer this question only assuming that
 - Gradient ∇f is Lipschitz continuous (as before).
 - 2 Step-size $\alpha_k = 1/L$ (this is only to make things simpler).
 - Solution f can't go below a certain value f^* ("bounded below").
- Most ML objectives f are bounded below (like the squared error being at least 0).
 - We're not assuming convexity (argument will work for any smooth problem).

Convergence Rate of Gradient Descent

- Key ideas:
 - We start at some $f(w^0)$, and at each step we decrease f by at least $\frac{1}{2L} \|\nabla f(w^k)\|^2$. • But we can't decrease $f(w^k)$ below f^* .
- Let's start with our guaranteed progress bound,

$$f(w^k) \le f(w^{k-1}) - \frac{1}{2L} \|\nabla f(w^{k-1})\|^2.$$

 \bullet Since we want to bound $\|\nabla f(w^k)\|,$ let's rearrange as

$$\|\nabla f(w^{k-1})\|^2 \le 2L(f(w^{k-1}) - f(w^k)).$$

Numberof Iterations for Non-Convex Functions

Convergence Rate of Gradient Descent

• So for each iteration k, we have

$$\|\nabla f(w^{k-1})\|^2 \le 2L[f(w^{k-1}) - f(w^k)].$$

• Let's sum up the squared norms of all the gradients up to iteration t,

$$\sum_{k=1}^{t} \|\nabla f(w^{k-1})\|^2 \le 2L \sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)]$$

- Now we use two tricks:
 - **(**) On the left, use that all $\|\nabla f(w^{k-1})\|$ are at least as big as their minimum.
 - **2** On the right, use that this is a telescoping sum:

$$\sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)] = f(w^0) - \underbrace{f(w^1) + f(w^1)}_{0} - \underbrace{f(w^2) + f(w^2)}_{0} - \dots f(w^t)$$
$$= f(w^0) - f(w^t).$$

Convergence Rate of Gradient Descent

• With these substitutions we have

$$\sum_{k=1}^{t} \underbrace{\min_{j \in \{0,\dots,t-1\}} \left\{ \|\nabla f(w^{j})\|^{2} \right\}}_{\text{poderedence on } k} \le 2L[f(w^{0}) - f(w^{t})].$$

• Now using that
$$f(w^t) \geq f^*$$
 we get

$$t \min_{k \in \{0,1,\dots,t-1\}} \left\{ \|\nabla f(w^k)\|^2 \right\} \le 2L[f(w^0) - f^*],$$

and finally that

$$\min_{k \in \{0,1,\dots,t-1\}} \left\{ \|\nabla f(w^k)\|^2 \right\} \le \frac{2L[f(w^0) - f^*]}{t} = O(1/t),$$

so if we run for t iterations, we'll find teast one k with $\|\nabla f(w^k)\|^2 = O(1/t)$.

Convergence Rate of Gradient Descent

• Our "error on iteration *t*" bound:

$$\min_{k \in \{0,1,\dots,t-1\}} \left\{ \|\nabla f(w^k)\|^2 \right\} \le \frac{2L[f(w^0) - f^*]}{t}.$$

• We want to know when the norm is below ϵ , which is guaranteed if:

$$\frac{2L[f(w^0) - f^*]}{t} \le \epsilon.$$

 \bullet Solving for t gives that this is guaranteed for every t where

$$t \ge \frac{2L[f(w^0) - f^*]}{\epsilon},$$

so gradient descent requires $t = O(1/\epsilon)$ iterations to achieve $\|\nabla f(w^k)\|^2 \le \epsilon$.

Discussion of O(1/t) and $O(1/\epsilon)$ Results

• So if computing gradient costs O(nd), total cost of gradient descent is $O(nd/\epsilon)$.

- O(nd) per iteration and $O(1/\epsilon)$ iterations.
- This also be shown for practical step-size strategies.
 - Just changes constants.
- This convergence rate is dimension-independent:
 - It does not directly depend on dimension *d*.
 - Though L might grow as dimension increases.
- Consider least squares with a fixed L and $f(w^0),$ and an accuracy $\epsilon:$
 - There is dimension d beyond which gradient descent is faster than normal equations.

Number of Iterations for PL Functions

I Gradient Descent Progress Guarantee

- 2 Numberof Iterations for Non-Convex Functions
- 3 Number of Iterations for PL Functions

Iteration Complexity

- Iteration complexity: smallest t such that algorithm guarantees ϵ -solution.
- $\bullet~{\rm Think}~{\rm of}~{\rm log}(1/\epsilon)$ as "number of digits of accuracy" you want.
 - We want iteration complexity to grow slowly with $1/\epsilon$.
- Is $O(1/\epsilon)$ a good iteration complexity?
- Not really, if you need 10 iterations for a "digit ''of accuracy then:
 - You might need 100 for 2 digits.
 - You might need 1000 for 3 digits.
 - You might need 10000 for 4 digits.
- We would normally call this exponential time.

Polyak-Łojasiewicz (PL) Inequality

- In scientific computing, having an error like O(1/t) is called a sublinear rate.
- For many "nice" functions f, gradient descent actually has a linear rate.
 - Error is $O(\rho^t)$ after t iterations, so we only need $O(\log(1/\epsilon))$ iterations.
 - This is more like a polynomial number of iterations.
- For example, for functions satisfying the Polyak-Łojasiewicz (PL) inequality,

$$\frac{1}{2} \|\nabla f(w)\|^2 \ge \mu(f(w) - f^*),$$

for all w and some $\mu > 0$.

• "Gradient grows as a quadratic function as we increase f".

Linear Convergence under the PL Inequality

• Recall our guaranteed progress bound

$$f(w^{k+1}) \le f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$

 \bullet Under the PL inequality we have $-\|\nabla f(w^k)\|^2 \leq -2\mu(f(w^k)-f^*),$ so

$$f(w^{k+1}) \le f(w^k) - \frac{\mu}{L}(f(w^k) - f^*).$$

• Let's subtract f^* from both sides,

$$f(w^{k+1}) - f^* \le f(w^k) - f^* - \frac{\mu}{L}(f(w^k) - f^*),$$

and factorizing the right side gives

$$f(w^{k+1}) - f^* \le \left(1 - \frac{\mu}{L}\right) (f(w^k) - f^*).$$

Linear Convergence under the PL Inequality

• Applying this recursively:

$$\begin{split} f'(w^k) - f^* &\leq \left(1 - \frac{\mu}{L}\right) \left[f(w^{k-1}) - f(w^*)\right] \\ &\leq \left(1 - \frac{\mu}{L}\right) \left[\left(1 - \frac{\mu}{L}\right) \left[f(w^{k-2}) - f^*\right]\right] \\ &= \left(1 - \frac{\mu}{L}\right)^2 \left[f(w^{k-2}) - f^*\right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^3 \left[f(w^{k-3}) - f^*\right] \\ &\leq \left(1 - \frac{\mu}{L}\right)^k \left[f(w^0) - f^*\right] \end{split}$$

We'll always have 0 < μ ≤ L so we have (1 − μ/L) < 1.
So PL implies a linear convergence rate: f(w^k) − f^{*} = O(ρ^k) for ρ < 1.

Linear Convergence under the PL Inequality

• We've shown that

$$f(w^k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k [f(w^0) - f^*]$$

• By using the inequality that

$$(1-\gamma) \le \exp(-\gamma),$$

we have that

$$f(w^k) - f^* \le \exp\left(-k\frac{\mu}{L}\right)[f(w^0) - f^*],$$

which is why linear convergence is sometimes called "exponential convergence".

 \bullet We'll have $f(w^t) - f^* \leq \epsilon$ for any t where

$$t \geq \frac{L}{\mu} \log((f(w^0) - f^*)/\epsilon) = O(\log(1/\epsilon)).$$

Discussion of Linear Convergence under the PL Inequality

• PL is satisfied for many standard convex models like least squares (bonus).

- So cost of least squares is $O(nd \log(1/\epsilon))$.
- PL is also satisfied for some non-convex functions like $w^2 + 3\sin^2(w)$.
 - It's satisfied for PCA on a certain "Riemann manifold".
 - But it's not satisfied for many models, like neural networks.
- The PL constant μ might be terrible.
 - For least squares μ is the smallest non-zero eigenvalue of the Hessian.
- It may be hard to show that a function satisfies PL.
 - But regularizing a convex function gives a PL function with non-trivial $\mu...$

Strong Convexity

• We say that a function f is strongly convex if the function

$$f(w) - rac{\mu}{2} \|w\|^2,$$

is a convex function for some $\mu > 0$.

- "If you 'un-regularize' by μ then it's still convex."
- For C^2 functions this is equivalent to assuming that

 $\nabla^2 f(w) \succeq \mu I,$

that the eigenvalues of the Hessian are at least μ everywhere.

- Two nice properties of strongly-convex functions:
 - A unique solution exists.
 - C^1 strongly-convex functions satisfy the PL inequality with constant μ (bonus).

Effect of Regularization on Convergence Rate

• We said that f is strongly convex if the function

$$f(w) - rac{\mu}{2} \|w\|^2,$$

is a convex function for some $\mu > 0$.

- For a C^2 univariate function, equivalent to $f''(w) \ge \mu$.
- If we have a convex loss f, adding L2-regularization makes it strongly-convex,

$$f(w) + \frac{\lambda}{2} \|w\|^2,$$

with strong-convexity (and PL constant) μ being at least λ .

- So adding L2-regularization can improve rate from sublinear to linear.
 - Go from exponential $O(1/\epsilon)$ to polynomial $O(\log(1/\epsilon))$ iterations.
 - And guarantees a unique solution.

Effect of Regularization on Convergence Rate

• Our convergence rate under PL was

$$f(w^k) - f^* \le \underbrace{\left(1 - \frac{\mu}{L}\right)^k}_{\rho^k} [f(w^0) - f^*].$$

• For L2-regularized least squares we have

$$\frac{L}{\mu} = \frac{\max\{\operatorname{eig}(X^{\top}X)\} + \lambda}{\min\{\operatorname{eig}(X^{\top}X)\} + \lambda}.$$

- So as λ gets larger ρ gets closer to 0 and we converge faster.
- The number $\frac{L}{\mu}$ is called the condition number of f.
 - For least squares, it's the "matrix condition number" of $\nabla^2 f(w)$.

Summary

- Guaranteed progress bound if gradient is Lipschitz, based on norm of gradient.
- Practical step size strategies based on the progress bound.
- Error on iteration t of O(1/t) for functions that are bounded below.
 - Implies that we need $t = O(1/\epsilon)$ iterations to have $\|\nabla f(x^k)\| \le \epsilon$.
- Polyak-Łojasiewicz inequality leads to linear convergence of gradient descent.
 - Only needs $O(\log(1/\epsilon))$ iterations to get within ϵ of global optimum.
- Strongly-convex differentiable functions functions satisfy PL-inequality.
 - Adding L2-regularization makes gradient descent go faster.

Checking Derivative Code

- Gradient descent codes require you to write objective/gradient code.
 - This tends to be error-prone, although automatic differentiation codes are helping.
- Make sure to check your derivative code:
 - Numerical approximation to partial derivative:

$$\nabla_i f(x) \approx \frac{f(x+\delta e_i) - f(x)}{\delta}$$

• For large-scale problems you can check a random direction *d*:

$$\nabla f(x)^T d \approx \frac{f(x+\delta d) - f(x)}{\delta}$$

• If the left side coming from your code is very different from the right side, there is likely a bug.

Lipschitz Continuity of Logistic Regression Gradient

• Logistic regression Hessian is

$$\nabla^2 f(w) = \sum_{i=1}^n \underbrace{h(y_i w^T x^i) h(-y^i w^T x^i)}_{d_{ii}} x^i (x^i)^T$$
$$\leq 0.25 \sum_{i=1}^n x^i (x^i)^T$$
$$= 0.25 X^T X.$$

- In the second line we use that $h(\alpha) \in (0,1)$ and $h(-\alpha) = 1 \alpha$.
 - This means that $d_{ii} \leq 0.25$.

• So for logistic regression, we can take $L = \frac{1}{4} \max\{ eig(X^T X) \}.$

Why the gradient descent iteration?

• For a C^2 function, a variation on the multivariate Taylor expansion is that

$$f(v) = f(w) + \nabla f(w)^{T} (v - w) + \frac{1}{2} (v - w)^{T} \nabla^{2} f(u) (v - w),$$

for any w and v (with u being some convex combination of w and v).

• If w and v are very close to each other, then we have

$$f(v) = f(w) + \nabla f(w)^T (v - w) + O(||v - w||^2),$$

and the last term becomes negligible.

- Ignoring the last term, for a fixed ||v w|| I can minimize f(v) by choosing $(v w) \propto -\nabla f(w)$.
 - So if we're moving a small amount the optimal choice is gradient descent.

Descent Lemma for C^1 Functions

• Let ∇f be L-Lipschitz continuous, and define $g(\alpha) = f(x + \alpha z)$ for a scalar α .

$$f(y) = f(x) + \int_0^1 \nabla f(x + \alpha(y - x))^T (y - x) d\alpha \quad (\text{fund. thm. calc.})$$

$$(\pm \text{ const.}) = f(x) + \nabla f(x)^T (y - x) + \int_0^1 (\nabla f(x + \alpha(y - x)) - \nabla f(x))^T (y - x) d\alpha$$

$$(\text{CS ineq.}) \leq f(x) + \nabla f(x)^T (y - x) + \int_0^1 \|\nabla f(x + \alpha(y - x)) - \nabla f(x)\| \|y - x\| d\alpha$$

$$(\text{Lipschitz}) \leq f(x) + \nabla f(x)^T (y - x) + \int_0^1 L \|x + \alpha(y - x) - x\| \|y - x\| d\alpha$$

$$(\text{homog.}) = f(x) + \nabla f(x)^T (y - x) + \int_0^1 L \alpha \|y - x\|^2 d\alpha$$

$$(\int_0^1 \alpha = \frac{1}{2}) = f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2.$$

Equivalent Conditions to Lipschitz Continuity of Gradient

• We said that Lipschitz continuity of the gradient

$$\|\nabla f(w) - \nabla f(v)\| \le L \|w - v\|,$$

is equivalent for ${\cal C}^2$ functions to having

 $\nabla^2 f(w) \preceq LI.$

- There are a lot of other equivalent definitions, see here:
 - http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

Why is $\mu \leq L$?

 $\bullet\,$ The descent lemma for functions with $L\text{-Lipschitz}\,\,\nabla f$ is that

$$f(v) \le f(w) + \nabla f(w)^{\top} (v - w) + \frac{L}{2} ||v - w||^2.$$

• Minimizing both sides in terms of v (by taking the gradient and setting to 0 and observing that it's convex) gives

$$f^* \le f(w) - \frac{1}{2L} \|\nabla f(w)\|^2.$$

• So with PL and Lipschitz we have

$$\frac{1}{2\mu} \|\nabla f(w)\|^2 \ge f(w) - f^* \ge \frac{1}{2L} \|\nabla f(w)\|^2,$$

which implies $\mu \leq L$.

Strong Convexity Implies PL Inequality

• As before, from Taylor's theorem we have for C^2 functions that

$$f(v) = f(w) + \nabla f(w)^{\top} (v - w) + \frac{1}{2} (v - w)^{\top} \nabla^2 f(u) (v - w).$$

• By strong-convexity, $d^{\top} \nabla^2 f(u) d \ge \mu \|d\|^2$ for any d and u.

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w) + \frac{\mu}{2} \|v - w\|^2$$

• Treating right side as function of v, we get a quadratic lower bound on f.

Strong Convexity Implies PL Inequality

 \bullet As before, from Taylor's theorem we have for C^2 functions that

$$f(v) = f(w) + \nabla f(w)^{\top} (v - w) + \frac{1}{2} (v - w)^{\top} \nabla^2 f(u) (v - w).$$

• By strong-convexity, $d^{\top} \nabla^2 f(u) d \ge \mu \|d\|^2$ for any d and u.

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w) + \frac{\mu}{2} ||v - w||^2.$$

- Treating right side as function of v, we get a quadratic lower bound on f.
- Minimize both sides in terms of v gives

$$f^* \ge f(w) - \frac{1}{2\mu} \|\nabla f(w)\|^2,$$

which is the PL inequality (bonus slides show for C^1 functions).

Combining Lipschitz Continuity and Strong Convexity

- Lipschitz continuity of gradient gives guaranteed progress.
- Strong convexity of functions gives maximum sub-optimality.

• Progress on each iteration will be at least a fixed fraction of the sub-optimality.

 C^1 Strongly-Convex Functions satisfy PL

• If $g(x) = f(x) - \frac{\mu}{2} ||x||^2$ is convex then from C^1 definition of convexity

$$g(y) \ge g(x) + \nabla g(x)^{\top} (y - x)$$

or that

$$f(y) - \frac{\mu}{2} \|y\|^2 \ge f(x) - \frac{\mu}{2} \|x\|^2 + (\nabla f(x) - \mu x)^\top (y - x),$$

which gives

$$\begin{split} f(y) &\geq f(x) + \nabla f(x)^{\top} (y - x) + \frac{\mu}{2} \|y\|^2 - \mu x^{\top} y + \frac{\mu}{2} \|x\|^2 \\ &= f(x) + \nabla f(x)^{\top} (y - x) + \frac{\mu}{2} \|y - x\|^2, \quad \text{(complete square)} \end{split}$$

the inequality we used to show C^2 strongly-convex function f satisfies PL.

PL Inequality for Least Squares

- Least squares can be written as f(x) = g(Ax) for a σ -strongly-convex g and matrix A, we'll show that the PL inequality is satisfied for this type of function.
- The function is minimized at some $f(y^*)$ with $y^* = Ax$ for some x, let's use $\mathcal{X}^* = \{x | Ax = y^*\}$ as the set of minimizers. We'll use x_p as the "projection" (defined next lecture) of x onto \mathcal{X}^* .

$$f^* = f(x_p) \ge f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma}{2} ||A(x_p - x)||^2$$
$$\ge f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma\theta(A)}{2} ||x_p - x||^2$$
$$\ge f(x) + \min_y \left[\langle \nabla f(x), y - x \rangle + \frac{\sigma\theta(A)}{2} ||y - x||^2 \right]$$
$$= f(x) - \frac{1}{2\theta(A)\sigma} ||\nabla f(x)||^2.$$

• The first line uses strong-convexity of g, the second line uses the "Hoffman bound" which relies on \mathcal{X}^* being a polyhedral set defined in this particular way to give a constant $\theta(A)$ depending on A that holds for all x (in this case it's the smallest non-zero singular value of A), and the third line uses that x_p is a particular y in the min.

Linear Convergence for "Locally-Nice" Functions

• For linear convergence it's sufficient to have

$$L[f(x^{t+1}) - f(x^t)] \ge \frac{1}{2} \|\nabla f(x^t)\|^2 \ge \mu[f(x^t) - f^*],$$

for all x^t for some L and μ with $L \ge \mu > 0$.

(technically, we could even get rid of the connection to the gradient)

- Notice that this only needs to hold for all x^t , not for all possible x.
 - We could get linear rate for "nasty" function if the iterations stay in a "nice" region.
 - ${\, \bullet \,}$ We can get lucky and converge faster than the global L/μ would suggest.
- Arguments like this give linear rates for some non-convex problems like PCA.

Convergence of Iterates

- Under strong-convexity, you can also show that the iterations converge linearly.
- $\bullet\,$ With a step-size of 1/L you can show that

$$||w^{k+1} - w^*|| \le \left(1 - \frac{\mu}{L}\right) ||w^k - w^*||.$$

 $\bullet\,$ If you use a step-size of $2/(\mu+L)$ this improves to

$$||w^{k+1} - w^*|| \le \left(\frac{L-\mu}{L+\mu}\right) ||w^k - w^*||.$$

- Under PL, the solution w^* is not unique.
 - You can show linear convergence of $\|w^k w_p^k\|$, where w_p^k is closest solution.