
Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

CPSC 340: Machine Learning and Data Mining
Number of Iterations Gradient Descent

Mark Schmidt

University of British Columbia

Fall 2019

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Cost of L2-Regularizd Least Squares
Two strategies from 340 for L2-regularized least squares:

1 Closed-form solution,
w = (XTX + λI)−1(XT y),

which costs O(nd2 + d3).
This is fine for d = 5000, but may be too slow for d = 1, 000, 000.

2 Run t iterations of gradient descent,

wk+1 = wk − αk (X
T (Xwk − y) + λwk)︸ ︷︷ ︸

∇f(wk)

,

which costs O(ndt).
I’m using t as total number of iterations, and k as iteration number.

Gradient descent is faster if t is not too big:
If we only do t < max{d, d2/n} iterations.

So, how many iterations t of gradient descent do we need?

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Outline

1 Gradient Descent Progress Guarantee

2 Numberof Iterations for Non-Convex Functions

3 Number of Iterations for PL Functions

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Gradient Descent for Finding a Local Minimum

A typical gradient descent algorithm:

Start with some initial guess, w0.

Generate new guess w1 by moving in the negative gradient direction:

w1 = w0 − α0∇f(w0),

where α0 is the step size.

Repeat to successively refine the guess:

wk+1 = wk − αk∇f(wk), for k = 1, 2, 3, . . .

where we might use a different step-size αk on each iteration.
Stop if ‖∇f(wk)‖ ≤ ε.

In practice, you also stop if you detect that you aren’t making progress.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Gradient Descent in 2D

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Lipschitz Contuity of the Gradient

Let’s first show a basic property:

If the step-size αt is small enough, then gradient descent decreases f .

We’ll analyze gradient descent assuming gradient of f is Lipschitz continuous.

There exists an L such that for all w and v we have

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖.

“Gradient can’t change arbitrarily fast”.

This is a fairly weak assumption: it’s true in almost all ML models.

Least squares, logistic regression, neural networks with sigmoid activations, etc.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Lipschitz Contuity of the Gradient

For C2 functions, Lipschitz continuity of the gradient is equivalent to

∇2f(w) � LI,

for all w.

Equivalently: “singular values of the Hessian are bounded above by L”.

For least squares, minimum L is the maximum eigenvalue of XTX.

This means we can bound quadratic forms involving the Hessian using

dT∇2f(u)d ≤ dT (LI)d
= LdTd

= L‖d‖2.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Descent Lemma

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w)︸ ︷︷ ︸
tangent hyper-plane

+
1

2
(v − w)T∇2f(u)(v − w)︸ ︷︷ ︸

quadratic form

,

for any w and v (with u being some convex combination of w and v).

Lipschitz continuity implies the green term is at most L‖v − w‖2,

f(v) ≤ f(w) +∇f(w)T (v − w) + L

2
‖v − w‖2,

which is called the descent lemma.

The descent lemma also holds for C1 functions (bonus slide).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Descent Lemma

The descent lemma gives us a convex quadratic upper bound on f :

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

This bound is minimized by a gradient descent step from w with αk = 1/L.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Gradient Descent decreases f for αk = 1/L

So let’s consider doing gradient descent with a step-size of αk = 1/L,

wk+1 = wk − 1

L
∇f(wk).

If we substitle wk+1 and wk into the descent lemma we get

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) + L

2
‖wk+1 − wk‖2.

Now if we use that (wk+1 − wk) = − 1
L∇f(w

k) in gradient descent,

f(wk+1) ≤ f(wk)− 1

L
∇f(wk)T∇f(wk) + L

2
‖ 1
L
∇f(wk)‖2

= f(wk)− 1

L
‖∇f(wk)‖2 + 1

2L
‖∇f(wk)‖2

= f(wk)− 1

2L
‖∇f(wk)‖2.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Implication of Lipschitz Continuity

We’ve derived a bound on guaranteed progress when using αk = 1/L.

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

f(x) Guaranteed
Progress

If gradient is non-zero, αk = 1/L is guaranteed to decrease objective.

Amount we decrease grows with the size of the gradient.

Same argument shows that any αk < 2/L will decrease f .

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Choosing the Step-Size in Practice

In practice, you should never use αk = 1/L.
L is usually expensive to compute, and this step-size is really small.

You only need a step-size this small in the worst case.

One practical option is to approximate L:

Start with a small guess for L̂ (like L̂ = 1).
Before you take your step, check if the progress bound is satisfied:

f(wk − (1/L̂)∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− 1

2L̂
‖∇f(wk)‖2.

Double L̂ if it’s not satisfied, and test the inequality again.

Worst case: eventually have L ≤ L̂ < 2L and you decrease f at every iteration.

Good case: L̂ << L and you are making more progress than using 1/L.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Choosing the Step-Size in Practice

An approach that usually works better is a backtracking line-search:
Start each iteration with a large step-size α.

So even if we took small steps in the past, be optimistic that we’re not in worst case.

Decrease α until if Armijo condition is satisfied (this is what findMin.jl does),

f(wk − α∇f(wk)︸ ︷︷ ︸
potential wk+1

) ≤ f(wk)− αγ‖∇f(wk)‖2 for γ ∈ (0, 1/2],

often we choose γ to be very small like γ = 10−4.

We would rather take a small decrease instead of trying many α values.

Good codes use clever tricks to initialize and decrease the α values.

Usually only try 1 value per iteration.

Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Outline

1 Gradient Descent Progress Guarantee

2 Numberof Iterations for Non-Convex Functions

3 Number of Iterations for PL Functions

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

In 340, we claimed that ∇f(wk) converges to zero as k goes to ∞.

For convex functions, this means it converges to a global optimum.
However, we may not have ∇f(wk) = 0 for any finite k.

Instead, we’re usually happy with ‖∇f(wk)‖ ≤ ε for some small ε.

Given an ε, how many iterations does it take for this to happen?

We’ll first answer this question only assuming that
1 Gradient ∇f is Lipschitz continuous (as before).
2 Step-size αk = 1/L (this is only to make things simpler).
3 Function f can’t go below a certain value f∗ (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).

We’re not assuming convexity (argument will work for any smooth problem).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

Key ideas:
1 We start at some f(w0), and at each step we decrease f by at least 1

2L‖∇f(w
k)‖2.

2 But we can’t decrease f(wk) below f∗.
3 So ‖∇f(wk)‖2 must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

f(wk) ≤ f(wk−1)− 1

2L
‖∇f(wk−1)‖2.

Since we want to bound ‖∇f(wk)‖, let’s rearrange as

‖∇f(wk−1)‖2 ≤ 2L(f(wk−1)− f(wk)).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

So for each iteration k, we have

‖∇f(wk−1)‖2 ≤ 2L[f(wk−1)− f(wk)].

Let’s sum up the squared norms of all the gradients up to iteration t,

t∑
k=1

‖∇f(wk−1)‖2 ≤ 2L

t∑
k=1

[f(wk−1)− f(wk)].

Now we use two tricks:
1 On the left, use that all ‖∇f(wk−1)‖ are at least as big as their minimum.
2 On the right, use that this is a telescoping sum:

t∑
k=1

[f(wk−1)− f(wk)] = f(w0)− f(w1) + f(w1)︸ ︷︷ ︸
0

− f(w2) + f(w2)︸ ︷︷ ︸
0

− . . . f(wt)

= f(w0)− f(wt).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

With these substitutions we have
t∑

k=1

min
j∈{0,...,t−1}

{
‖∇f(wj)‖2

}
︸ ︷︷ ︸

no dependence on k

≤ 2L[f(w0)− f(wt)].

Now using that f(wt) ≥ f∗ we get

t min
k∈{0,1,...,t−1}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗],

and finally that

min
k∈{0,1,...,t−1}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
= O(1/t),

so if we run for t iterations, we’ll find least one k︸ ︷︷ ︸
the minimum

with ‖∇f(wk)‖2 = O(1/t).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence Rate of Gradient Descent

Our “error on iteration t” bound:

min
k∈{0,1,...,t−1}

{
‖∇f(wk)‖2

}
≤ 2L[f(w0)− f∗]

t
.

We want to know when the norm is below ε, which is guaranteed if:

2L[f(w0)− f∗]
t

≤ ε.

Solving for t gives that this is guaranteed for every t where

t ≥ 2L[f(w0)− f∗]
ε

,

so gradient descent requires t = O(1/ε) iterations to achieve ‖∇f(wk)‖2 ≤ ε.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Discussion of O(1/t) and O(1/ε) Results

So if computing gradient costs O(nd), total cost of gradient descent is O(nd/ε).

O(nd) per iteration and O(1/ε) iterations.

This also be shown for practical step-size strategies.

Just changes constants.

This convergence rate is dimension-independent:

It does not directly depend on dimension d.
Though L might grow as dimension increases.

Consider least squares with a fixed L and f(w0), and an accuracy ε:

There is dimension d beyond which gradient descent is faster than normal equations.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Outline

1 Gradient Descent Progress Guarantee

2 Numberof Iterations for Non-Convex Functions

3 Number of Iterations for PL Functions

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Iteration Complexity

Iteration complexity: smallest t such that algorithm guarantees ε-solution.

Think of log(1/ε) as “number of digits of accuracy” you want.

We want iteration complexity to grow slowly with 1/ε.

Is O(1/ε) a good iteration complexity?

Not really, if you need 10 iterations for a “digit ‘’of accuracy then:

You might need 100 for 2 digits.
You might need 1000 for 3 digits.
You might need 10000 for 4 digits.

We would normally call this exponential time.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Polyak- Lojasiewicz (PL) Inequality

In scientific computing, having an error like O(1/t) is called a sublinear rate.

For many “nice” functions f , gradient descent actually has a linear rate.

Error is O(ρt) after t iterations, so we only need O(log(1/ε)) iterations.
This is more like a polynomial number of iterations.

For example, for functions satisfying the Polyak- Lojasiewicz (PL) inequality,

1

2
‖∇f(w)‖2 ≥ µ(f(w)− f∗),

for all w and some µ > 0.

“Gradient grows as a quadratic function as we increase f”.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Linear Convergence under the PL Inequality

Recall our guaranteed progress bound

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2.

Under the PL inequality we have −‖∇f(wk)‖2 ≤ −2µ(f(wk)− f∗), so

f(wk+1) ≤ f(wk)− µ

L
(f(wk)− f∗).

Let’s subtract f∗ from both sides,

f(wk+1)−f∗ ≤ f(wk)−f∗ − µ

L
(f(wk)− f∗),

and factorizing the right side gives

f(wk+1)− f∗ ≤
(
1− µ

L

)
(f(wk)− f∗).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Linear Convergence under the PL Inequality

Applying this recursively:

f(wk)− f∗≤
(
1− µ

L

)
[f(wk−1)− f(w∗)]

≤
(
1− µ

L

) [(
1− µ

L

)
[f(wk−2)− f∗]

]
=
(
1− µ

L

)2
[f(wk−2)− f∗]

≤
(
1− µ

L

)3
[f(wk−3)− f∗]

≤
(
1− µ

L

)k
[f(w0)− f∗]

We’ll always have 0 < µ ≤ L so we have (1− µ/L) < 1.

So PL implies a linear convergence rate: f(wk)− f∗ = O(ρk) for ρ < 1.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Linear Convergence under the PL Inequality

We’ve shown that

f(wk)− f∗ ≤
(
1− µ

L

)k
[f(w0)− f∗]

By using the inequality that

(1− γ) ≤ exp(−γ),

we have that
f(wk)− f∗ ≤ exp

(
−k µ

L

)
[f(w0)− f∗],

which is why linear convergence is sometimes called “exponential convergence”.

We’ll have f(wt)− f∗ ≤ ε for any t where

t ≥ L

µ
log((f(w0)− f∗)/ε) = O(log(1/ε)).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Discussion of Linear Convergence under the PL Inequality

PL is satisfied for many standard convex models like least squares (bonus).

So cost of least squares is O(nd log(1/ε)).

PL is also satisfied for some non-convex functions like w2 + 3 sin2(w).

It’s satisfied for PCA on a certain “Riemann manifold”.
But it’s not satisfied for many models, like neural networks.

The PL constant µ might be terrible.

For least squares µ is the smallest non-zero eigenvalue of the Hessian.

It may be hard to show that a function satisfies PL.

But regularizing a convex function gives a PL function with non-trivial µ...

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Strong Convexity

We say that a function f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
“If you ‘un-regularize’ by µ then it’s still convex.”

For C2 functions this is equivalent to assuming that

∇2f(w) � µI,

that the eigenvalues of the Hessian are at least µ everywhere.

Two nice properties of strongly-convex functions:
A unique solution exists.
C1 strongly-convex functions satisfy the PL inequality with constant µ (bonus).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Effect of Regularization on Convergence Rate

We said that f is strongly convex if the function

f(w)− µ

2
‖w‖2,

is a convex function for some µ > 0.
For a C2 univariate function, equivalent to f ′′(w) ≥ µ.

If we have a convex loss f , adding L2-regularization makes it strongly-convex,

f(w) +
λ

2
‖w‖2,

with strong-convexity (and PL constant) µ being at least λ.

So adding L2-regularization can improve rate from sublinear to linear.
Go from exponential O(1/ε) to polynomial O(log(1/ε)) iterations.
And guarantees a unique solution.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Effect of Regularization on Convergence Rate

Our convergence rate under PL was

f(wk)− f∗ ≤
(
1− µ

L

)k
︸ ︷︷ ︸

ρk

[f(w0)− f∗].

For L2-regularized least squares we have

L

µ
=

max{eig(X>X)}+ λ

min{eig(X>X)}+ λ
.

So as λ gets larger ρ gets closer to 0 and we converge faster.

The number L
µ is called the condition number of f .

For least squares, it’s the “matrix condition number” of ∇2f(w).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Summary

Guaranteed progress bound if gradient is Lipschitz, based on norm of gradient.

Practical step size strategies based on the progress bound.

Error on iteration t of O(1/t) for functions that are bounded below.

Implies that we need t = O(1/ε) iterations to have ‖∇f(xk)‖ ≤ ε.
Polyak- Lojasiewicz inequality leads to linear convergence of gradient descent.

Only needs O(log(1/ε)) iterations to get within ε of global optimum.

Strongly-convex differentiable functions functions satisfy PL-inequality.

Adding L2-regularization makes gradient descent go faster.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Checking Derivative Code

Gradient descent codes require you to write objective/gradient code.

This tends to be error-prone, although automatic differentiation codes are helping.

Make sure to check your derivative code:

Numerical approximation to partial derivative:

∇if(x) ≈
f(x+ δei)− f(x)

δ

For large-scale problems you can check a random direction d:

∇f(x)T d ≈ f(x+ δd)− f(x)
δ

If the left side coming from your code is very different from the right side,
there is likely a bug.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Lipschitz Continuity of Logistic Regression Gradient

Logistic regression Hessian is

∇2f(w) =

n∑
i=1

h(yiw
Txi)h(−yiwTxi)︸ ︷︷ ︸

dii

xi(xi)T

� 0.25

n∑
i=1

xi(xi)T

= 0.25XTX.

In the second line we use that h(α) ∈ (0, 1) and h(−α) = 1− α.

This means that dii ≤ 0.25.

So for logistic regression, we can take L = 1
4 max{eig(XTX)}.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Why the gradient descent iteration?

For a C2 function, a variation on the multivariate Taylor expansion is that

f(v) = f(w) +∇f(w)T (v − w) + 1

2
(v − w)T∇2f(u)(v − w),

for any w and v (with u being some convex combination of w and v).

If w and v are very close to each other, then we have

f(v) = f(w) +∇f(w)T (v − w) +O(‖v − w‖2),

and the last term becomes negligible.

Ignoring the last term, for a fixed ‖v − w‖ I can minimize f(v) by choosing
(v − w) ∝ −∇f(w).

So if we’re moving a small amount the optimal choice is gradient descent.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Descent Lemma for C1 Functions
Let ∇f be L-Lipschitz continuous, and define g(α) = f(x+ αz) for a scalar α.

f(y) = f(x) +

∫ 1

0
∇f(x+ α(y − x))T (y − x)dα (fund. thm. calc.)

(± const.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
(∇f(x+ α(y − x))−∇f(x))T (y − x)dα

(CS ineq.) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
‖∇f(x+ α(y − x))−∇f(x)‖‖y − x‖dα

(Lipschitz) ≤ f(x) +∇f(x)T (y − x) +
∫ 1

0
L‖x+ α(y − x)− x‖‖y − x‖dα

(homog.) = f(x) +∇f(x)T (y − x) +
∫ 1

0
Lα‖y − x‖2dα

(

∫ 1

0
α =

1

2
) = f(x) +∇f(x)T (y − x) + L

2
‖y − x‖2.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Equivalent Conditions to Lipschitz Continuity of Gradient

We said that Lipschitz continuity of the gradient

‖∇f(w)−∇f(v)‖ ≤ L‖w − v‖,

is equivalent for C2 functions to having

∇2f(w) � LI.

There are a lot of other equivalent definitions, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

http://xingyuzhou.org/blog/notes/Lipschitz-gradient

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Why is µ ≤ L?

The descent lemma for functions with L-Lipschitz ∇f is that

f(v) ≤ f(w) +∇f(w)>(v − w) + L

2
‖v − w‖2.

Minimizing both sides in terms of v (by taking the gradient and setting to 0 and
observing that it’s convex) gives

f∗ ≤ f(w)− 1

2L
‖∇f(w)‖2.

So with PL and Lipschitz we have

1

2µ
‖∇f(w)‖2 ≥ f(w)− f∗ ≥ 1

2L
‖∇f(w)‖2,

which implies µ ≤ L.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) + 1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) + µ

2
‖v − w‖2

Treating right side as function of v, we get a quadratic lower bound on f .

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Strong Convexity Implies PL Inequality

As before, from Taylor’s theorem we have for C2 functions that

f(v) = f(w) +∇f(w)>(v − w) + 1

2
(v − w)>∇2f(u)(v − w).

By strong-convexity, d>∇2f(u)d ≥ µ‖d‖2 for any d and u.

f(v) ≥ f(w) +∇f(w)>(v − w) + µ

2
‖v − w‖2.

Treating right side as function of v, we get a quadratic lower bound on f .

Minimize both sides in terms of v gives

f∗ ≥ f(w)− 1

2µ
‖∇f(w)‖2,

which is the PL inequality (bonus slides show for C1 functions).

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Combining Lipschitz Continuity and Strong Convexity

Lipschitz continuity of gradient gives guaranteed progress.

Strong convexity of functions gives maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Progress on each iteration will be at least a fixed fraction of the sub-optimality.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

C1 Strongly-Convex Functions satisfy PL

If g(x) = f(x)− µ
2‖x‖

2 is convex then from C1 definition of convexity

g(y) ≥ g(x) +∇g(x)>(y − x)

or that

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 + (∇f(x)− µx)>(y − x),

which gives

f(y) ≥ f(x) +∇f(x)>(y − x) + µ

2
‖y‖2 − µx>y + µ

2
‖x‖2

= f(x) +∇f(x)>(y − x) + µ

2
‖y − x‖2, (complete square)

the inequality we used to show C2 strongly-convex function f satisfies PL.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

PL Inequality for Least Squares

Least squares can be written as f(x) = g(Ax) for a σ-strongly-convex g and matrix A, we’ll show that the PL inequality is satisfied for
this type of function.

The function is minimized at some f(y∗) with y∗ = Ax for some x, let’s use X∗ = {x|Ax = y∗} as the set of minimizers. We’ll use
xp as the “projection” (defined next lecture) of x onto X∗.

f
∗

= f(xp) ≥ f(x) + 〈∇f(x), xp − x〉 +
σ

2
||A(xp − x)||2

≥ f(x) + 〈∇f(x), xp − x〉 +
σθ(A)

2
||xp − x||2

≥ f(x) + min
y

[
〈∇f(x), y − x〉 +

σθ(A)

2
||y − x||2

]
= f(x)−

1

2θ(A)σ
||∇f(x)||2.

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on X∗ being a polyhedral set defined in this

particular way to give a constant θ(A) depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and

the third line uses that xp is a particular y in the min.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Linear Convergence for “Locally-Nice” Functions

For linear convergence it’s sufficient to have

L[f(xt+1)− f(xt)] ≥ 1

2
‖∇f(xt)‖2 ≥ µ[f(xt)− f∗],

for all xt for some L and µ with L ≥ µ > 0.
(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all xt, not for all possible x.

We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
We can get lucky and converge faster than the global L/µ would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.

Gradient Descent Progress Guarantee Numberof Iterations for Non-Convex Functions Number of Iterations for PL Functions

Convergence of Iterates

Under strong-convexity, you can also show that the iterations converge linearly.

With a step-size of 1/L you can show that

‖wk+1 − w∗‖ ≤
(
1− µ

L

)
‖wk − w∗‖.

If you use a step-size of 2/(µ+ L) this improves to

‖wk+1 − w∗‖ ≤
(
L− µ
L+ µ

)
‖wk − w∗‖.

Under PL, the solution w∗ is not unique.

You can show linear convergence of ‖wk − wk
p‖, where wk

p is closest solution.

	Gradient Descent Progress Guarantee
	Numberof Iterations for Non-Convex Functions
	Number of Iterations for PL Functions

