Cost of L2-Regularized Least Squares

Two strategies from 340 for L2-regularized least squares:

1. Closed-form solution,
 \[w = (X^T X + \lambda I)^{-1}(X^T y), \]
 which costs \(O(nd^2 + d^3)\).
 - This is fine for \(d = 5000\), but may be too slow for \(d = 1,000,000\).

2. Run \(t\) iterations of gradient descent,
 \[w^{k+1} = w^k - \alpha_k \frac{\nabla f(w^k)}{\nabla f(w^k)} \]
 \[= w^k - \alpha_k \left(X^T (Xw^k - y) + \lambda w^k \right), \]
 which costs \(O(ndt)\).
 - I’m using \(t\) as total number of iterations, and \(k\) as iteration number.

Gradient descent is faster if \(t\) is not too big:
- If we only do \(t < \max\{d, d^2/n\}\) iterations.

So, how many iterations \(t\) of gradient descent do we need?
Outline

1. Gradient Descent Progress Guarantee
2. Number of Iterations for Non-Convex Functions
3. Number of Iterations for PL Functions
Gradient Descent for Finding a Local Minimum

- A typical gradient descent algorithm:
 - Start with some initial guess, w^0.
 - Generate new guess w^1 by moving in the negative gradient direction:
 \[w^1 = w^0 - \alpha_0 \nabla f(w^0), \]
 where α_0 is the step size.
 - Repeat to successively refine the guess:
 \[w^{k+1} = w^k - \alpha_k \nabla f(w^k), \quad \text{for } k = 1, 2, 3, \ldots \]
 where we might use a different step-size α_k on each iteration.
 - Stop if $\|\nabla f(w^k)\| \leq \epsilon$.
 - In practice, you also stop if you detect that you aren’t making progress.
Gradient Descent in 2D
Lipschitz Continuity of the Gradient

Let's first show a basic property:

- If the step-size α_t is small enough, then gradient descent decreases f.

We'll analyze gradient descent assuming gradient of f is Lipschitz continuous.

- There exists an L such that for all w and v we have

$$\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|.$$

- “Gradient can’t change arbitrarily fast”.

This is a fairly weak assumption: it’s true in almost all ML models.

- Least squares, logistic regression, neural networks with sigmoid activations, etc.
Lipschitz Continuity of the Gradient

- For C^2 functions, Lipschitz continuity of the gradient is equivalent to

$$\nabla^2 f(w) \preceq LI,$$

for all w.

- Equivalently: “singular values of the Hessian are bounded above by L”.
 - For least squares, minimum L is the maximum eigenvalue of $X^T X$.

- This means we can bound quadratic forms involving the Hessian using

$$d^T \nabla^2 f(u)d \leq d^T (LI)d$$

$$= Ld^T d$$

$$= L\|d\|^2.$$
Descent Lemma

- For a C^2 function, a variation on the multivariate Taylor expansion is that

$$f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u) (v - w),$$

for any w and v (with u being some convex combination of w and v).

- Lipschitz continuity implies the green term is at most $L\|v - w\|^2$,

$$f(v) \leq f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} \|v - w\|^2,$$

which is called the descent lemma.

- The descent lemma also holds for C^1 functions (bonus slide).
The descent lemma gives us a convex quadratic upper bound on f:

$$f(x) + \nabla f(x)^T(y-x) + (L/2)\|y-x\|^2$$

This bound is minimized by a gradient descent step from w with $\alpha_k = 1/L$.
Gradient Descent decreases f for $\alpha_k = 1/L$

- So let’s consider doing gradient descent with a step-size of $\alpha_k = 1/L$,

$$w^{k+1} = w^k - \frac{1}{L} \nabla f(w^k).$$

- If we substitute w^{k+1} and w^k into the descent lemma we get

$$f(w^{k+1}) \leq f(w^k) + \nabla f(w^k)^T (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.$$

- Now if we use that $(w^{k+1} - w^k) = -\frac{1}{L} \nabla f(w^k)$ in gradient descent,

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{L} \nabla f(w^k)^T \nabla f(w^k) + \frac{L}{2} \frac{1}{L} \|\nabla f(w^k)\|^2$$

$$= f(w^k) - \frac{1}{L} \|\nabla f(w^k)\|^2 + \frac{1}{2L} \|\nabla f(w^k)\|^2$$

$$= f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$
Implication of Lipschitz Continuity

- We’ve derived a **bound on guaranteed progress** when using $\alpha_k = 1/L$.

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$

- If gradient is non-zero, $\alpha_k = 1/L$ is guaranteed to decrease objective.
- Amount we decrease grows with the size of the gradient.
- Same argument shows that any $\alpha_k < 2/L$ will decrease f.
Choosing the Step-Size in Practice

- In practice, you should never use $\alpha_k = 1/L$.
 - L is usually expensive to compute, and this step-size is really small.
 - You only need a step-size this small in the worst case.

- One practical option is to approximate L:
 - Start with a small guess for \hat{L} (like $\hat{L} = 1$).
 - Before you take your step, check if the progress bound is satisfied:
 $$f\left(w^k - \left(\frac{1}{\hat{L}}\right)\nabla f(w^k)\right) \leq f(w^k) - \frac{1}{2\hat{L}} \|\nabla f(w^k)\|^2.$$
 - Double \hat{L} if it’s not satisfied, and test the inequality again.
 - Worst case: eventually have $L \leq \hat{L} < 2L$ and you decrease f at every iteration.
 - Good case: $\hat{L} << L$ and you are making more progress than using $1/L$.
Choosing the Step-Size in Practice

- An approach that usually works better is a **backtracking line-search**:
 - Start each iteration with a large step-size α.
 - So even if we took small steps in the past, be optimistic that we’re not in worst case.
 - **Decrease α** until if Armijo condition is satisfied (this is what \texttt{findMin.jl} does),
 \[
 f(w^k - \alpha \nabla f(w^k)) \leq f(w^k) - \alpha \gamma \|\nabla f(w^k)\|^2 \quad \text{for} \quad \gamma \in (0, 1/2],
 \]
 often we **choose γ to be very small** like $\gamma = 10^{-4}$.
 - We would rather take a small decrease instead of trying many α values.

- Good codes use clever tricks to initialize and decrease the α values.
 - Usually only try 1 value per iteration.
- Even more fancy line-search: **Wolfe conditions** (makes sure α is not too small).
 - Good reference on these tricks: Nocedal and Wright’s \textit{Numerical Optimization} book.
Outline

1. Gradient Descent Progress Guarantee
2. Number of Iterations for Non-Convex Functions
3. Number of Iterations for PL Functions
Convergence Rate of Gradient Descent

In 340, we claimed that $\nabla f(w^k)$ converges to zero as k goes to ∞.
- For convex functions, this means it converges to a global optimum.
- However, we may not have $\nabla f(w^k) = 0$ for any finite k.

Instead, we’re usually happy with $\|\nabla f(w^k)\| \leq \epsilon$ for some small ϵ.
- Given an ϵ, how many iterations does it take for this to happen?

We’ll first answer this question only assuming that

1. Gradient ∇f is Lipschitz continuous (as before).
2. Step-size $\alpha_k = 1/L$ (this is only to make things simpler).
3. Function f can’t go below a certain value f^* (“bounded below”).

Most ML objectives f are bounded below (like the squared error being at least 0).
- We’re not assuming convexity (argument will work for any smooth problem).
Convergence Rate of Gradient Descent

Key ideas:
1. We start at some \(f(w^0) \), and at each step we decrease \(f \) by at least \(\frac{1}{2L} \| \nabla f(w^k) \|^2 \).
2. But we can’t decrease \(f(w^k) \) below \(f^* \).
3. So \(\| \nabla f(w^k) \|^2 \) must be going to zero “fast enough”.

Let’s start with our guaranteed progress bound,

\[
f(w^k) \leq f(w^{k-1}) - \frac{1}{2L} \| \nabla f(w^{k-1}) \|^2.
\]

Since we want to bound \(\| \nabla f(w^k) \| \), let’s rearrange as

\[
\| \nabla f(w^{k-1}) \|^2 \leq 2L(f(w^{k-1}) - f(w^k)).
\]
Convergence Rate of Gradient Descent

So for each iteration k, we have

$$\| \nabla f(w^{k-1}) \|^2 \leq 2L[f(w^{k-1}) - f(w^k)].$$

Let’s sum up the squared norms of all the gradients up to iteration t,

$$\sum_{k=1}^{t} \| \nabla f(w^{k-1}) \|^2 \leq 2L \sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)].$$

Now we use two tricks:

1. On the left, use that all $\| \nabla f(w^{k-1}) \|$ are at least as big as their minimum.
2. On the right, use that this is a telescoping sum:

$$\sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)] = f(w^0) - \underbrace{f(w^1) + f(w^1)}_{0} - \underbrace{f(w^2) + f(w^2)}_{0} - \ldots - f(w^t)$$

$$= f(w^0) - f(w^t).$$
Convergence Rate of Gradient Descent

With these substitutions we have
\[
\sum_{k=1}^{t} \min_{j \in \{0, \ldots, t-1\}} \left\{ \| \nabla f(w^j) \|^2 \right\} \leq 2L[f(w^0) - f(w^t)].
\]

Now using that \(f(w^t) \geq f^* \) we get
\[
t \min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq 2L[f(w^0) - f^*],
\]

and finally that
\[
\min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t} = O(1/t),
\]

so if we run for \(t \) iterations, we’ll find the minimum
\[
\| \nabla f(w^k) \|^2 = O(1/t).
\]
Convergence Rate of Gradient Descent

- Our “error on iteration t” bound:

\[
\min_{k \in \{0, 1, \ldots, t-1\}} \left\{ \| \nabla f(w^k) \|_2^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t}.
\]

- We want to know when the norm is below ϵ, which is guaranteed if:

\[
\frac{2L[f(w^0) - f^*]}{t} \leq \epsilon.
\]

- Solving for t gives that this is guaranteed for every t where

\[
t \geq \frac{2L[f(w^0) - f^*]}{\epsilon},
\]

so gradient descent requires $t = O(1/\epsilon)$ iterations to achieve $\| \nabla f(w^k) \|_2^2 \leq \epsilon$.

Discussion of $O(1/t)$ and $O(1/\epsilon)$ Results

- So if computing gradient costs $O(nd)$, total cost of gradient descent is $O(nd/\epsilon)$.
 - $O(nd)$ per iteration and $O(1/\epsilon)$ iterations.

- This also be shown for **practical step-size strategies**.
 - Just changes constants.

- This convergence rate is **dimension-independent**:
 - It does not directly depend on dimension d.
 - Though L might grow as dimension increases.

- Consider least squares with a fixed L and $f(w^0)$, and an accuracy ϵ:
 - There is dimension d beyond which gradient descent is faster than normal equations.
Outline

1. Gradient Descent Progress Guarantee
2. Number of Iterations for Non-Convex Functions
3. Number of Iterations for PL Functions
Iteration Complexity

- **Iteration complexity**: smallest t such that algorithm guarantees ϵ-solution.

- Think of $\log(1/\epsilon)$ as “number of digits of accuracy” you want.
 - We want iteration complexity to grow slowly with $1/\epsilon$.

- Is $O(1/\epsilon)$ a good iteration complexity?
 - Not really, if you need 10 iterations for a “digit” of accuracy then:
 - You might need 100 for 2 digits.
 - You might need 1000 for 3 digits.
 - You might need 10000 for 4 digits.

- We would normally call this **exponential time**.
Gradient Descent Progress Guarantee

Polyak-Łojasiewicz (PL) Inequality

- In scientific computing, having an error like $O(1/t)$ is called a sublinear rate.

- For many “nice” functions f, gradient descent actually has a linear rate.
 - Error is $O(\rho^t)$ after t iterations, so we only need $O(\log(1/\epsilon))$ iterations.
 - This is more like a polynomial number of iterations.

- For example, for functions satisfying the Polyak-Łojasiewicz (PL) inequality,

 $$\frac{1}{2}\|\nabla f(w)\|^2 \geq \mu(f(w) - f^*),$$

 for all w and some $\mu > 0$.
 - “Gradient grows as a quadratic function as we increase f”.
Linear Convergence under the PL Inequality

- Recall our guaranteed progress bound

\[f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2. \]

- Under the PL inequality we have \(-\|\nabla f(w^k)\|^2 \leq -2\mu(f(w^k) - f^*)\), so

\[f(w^{k+1}) \leq f(w^k) - \frac{\mu}{L} (f(w^k) - f^*). \]

- Let’s subtract \(f^*\) from both sides,

\[f(w^{k+1}) - f^* \leq f(w^k) - f^* - \frac{\mu}{L} (f(w^k) - f^*), \]

and factorizing the right side gives

\[f(w^{k+1}) - f^* \leq \left(1 - \frac{\mu}{L}\right) (f(w^k) - f^*). \]
Linear Convergence under the PL Inequality

- Applying this recursively:

\[f(w^k) - f^* \leq \left(1 - \frac{\mu}{L}\right) \left[f(w^{k-1}) - f(w^*)\right] \]

\[\leq \left(1 - \frac{\mu}{L}\right) \left[\left(1 - \frac{\mu}{L}\right) \left[f(w^{k-2}) - f^*\right]\right] \]

\[= \left(1 - \frac{\mu}{L}\right)^2 \left[f(w^{k-2}) - f^*\right] \]

\[\leq \left(1 - \frac{\mu}{L}\right)^3 \left[f(w^{k-3}) - f^*\right] \]

\[\leq \left(1 - \frac{\mu}{L}\right)^k \left[f(w^0) - f^*\right] \]

- We’ll always have \(0 < \mu \leq L\) so we have \(1 - \mu/L < 1\).
 - So PL implies a linear convergence rate: \(f(w^k) - f^* = O(\rho^k)\) for \(\rho < 1\).
Linear Convergence under the PL Inequality

- We’ve shown that
 \[f(w^k) - f^* \leq \left(1 - \frac{\mu}{L}\right)^k [f(w^0) - f^*] \]

- By using the inequality that
 \[(1 - \gamma) \leq \exp(-\gamma), \]
 we have that
 \[f(w^k) - f^* \leq \exp\left(-k \frac{\mu}{L}\right) [f(w^0) - f^*], \]
 which is why linear convergence is sometimes called “exponential convergence”.

- We’ll have \(f(w^t) - f^* \leq \epsilon \) for any \(t \) where
 \[t \geq \frac{L}{\mu} \log((f(w^0) - f^*)/\epsilon) = O(\log(1/\epsilon)). \]
Discussion of Linear Convergence under the PL Inequality

- PL is satisfied for many standard convex models like least squares (bonus).
 - So cost of least squares is $O(nd \log(1/\epsilon))$.

- PL is also satisfied for some non-convex functions like $w^2 + 3 \sin^2(w)$.
 - It’s satisfied for PCA on a certain “Riemann manifold”.
 - But it’s not satisfied for many models, like neural networks.

- The PL constant μ might be terrible.
 - For least squares μ is the smallest non-zero eigenvalue of the Hessian.

- It may be hard to show that a function satisfies PL.
 - But regularizing a convex function gives a PL function with non-trivial μ...
Strong Convexity

- We say that a function f is **strongly convex** if the function

 $$f(w) - \frac{\mu}{2} \| w \|^2,$$

 is a convex function for some $\mu > 0$.
 - “If you ‘un-regularize’ by μ then it’s still convex.”

- For C^2 functions this is equivalent to assuming that

 $$\nabla^2 f(w) \succeq \mu I,$$

 that the eigenvalues of the Hessian are at least μ everywhere.

- Two nice properties of strongly-convex functions:
 - A **unique solution** exists.
 - C^1 strongly-convex functions **satisfy the PL inequality** with constant μ (bonus).
Effect of Regularization on Convergence Rate

- We said that f is strongly convex if the function

 $$f(w) - \frac{\mu}{2} \|w\|^2,$$

 is a convex function for some $\mu > 0$.
 - For a C^2 univariate function, equivalent to $f''(w) \geq \mu$.

- If we have a convex loss f, adding L2-regularization makes it strongly-convex,

 $$f(w) + \frac{\lambda}{2} \|w\|^2,$$

 with strong-convexity (and PL constant) μ being at least λ.

- So adding L2-regularization can improve rate from sublinear to linear.
 - Go from exponential $O(1/\epsilon)$ to polynomial $O(\log(1/\epsilon))$ iterations.
 - And guarantees a unique solution.
Effect of Regularization on Convergence Rate

- Our convergence rate under PL was
 \[f(w^k) - f^* \leq \left(1 - \frac{\mu}{L} \right)^k [f(w^0) - f^*]. \]

- For L2-regularized least squares we have
 \[\frac{L}{\mu} = \frac{\max\{\text{eig}(X^\top X)\} + \lambda}{\min\{\text{eig}(X^\top X)\} + \lambda}. \]

- So as \(\lambda \) gets larger \(\rho \) gets closer to 0 and we converge faster.

- The number \(\frac{L}{\mu} \) is called the condition number of \(f \).
 - For least squares, it’s the “matrix condition number” of \(\nabla^2 f(w) \).
Summary

- **Guaranteed progress bound** if gradient is Lipschitz, based on norm of gradient.
- **Practical step size strategies** based on the progress bound.
- **Error on iteration** t of $O(1/t)$ for functions that are bounded below.
 - Implies that we need $t = O(1/\epsilon)$ iterations to have $\|\nabla f(x^k)\| \leq \epsilon$.
- **Polyak-Łojasiewicz inequality** leads to linear convergence of gradient descent.
 - Only needs $O(\log(1/\epsilon))$ iterations to get within ϵ of global optimum.
- **Strongly-convex** differentiable functions satisfy PL-inequality.
 - Adding L2-regularization makes gradient descent go faster.
Checking Derivative Code

- Gradient descent codes require you to write objective/gradient code. This tends to be error-prone, although automatic differentiation codes are helping.

- Make sure to check your derivative code:
 - Numerical approximation to partial derivative:
 \[\nabla_i f(x) \approx \frac{f(x + \delta e_i) - f(x)}{\delta} \]
 - For large-scale problems you can check a random direction \(d \):
 \[\nabla f(x)^T d \approx \frac{f(x + \delta d) - f(x)}{\delta} \]
 - If the left side coming from your code is very different from the right side, there is likely a bug.
Lipschitz Continuity of Logistic Regression Gradient

- Logistic regression Hessian is

\[
\nabla^2 f(w) = \sum_{i=1}^{n} \frac{h(y_i w^T x^i)h(-y_i w^T x^i)x^i(x^i)^T}{d_{ii}}
\]

\[
\leq 0.25 \sum_{i=1}^{n} x^i(x^i)^T
\]

\[
= 0.25 X^T X.
\]

- In the second line we use that \(h(\alpha) \in (0, 1)\) and \(h(-\alpha) = 1 - \alpha\).
 - This means that \(d_{ii} \leq 0.25\).

- So for logistic regression, we can take \(L = \frac{1}{4} \max \{\text{eig}(X^T X)\}\).
Why the gradient descent iteration?

- For a C^2 function, a variation on the multivariate Taylor expansion is that
 \[
 f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u) (v - w),
 \]
 for any w and v (with u being some convex combination of w and v).

- If w and v are very close to each other, then we have
 \[
 f(v) = f(w) + \nabla f(w)^T (v - w) + O(\|v - w\|^2),
 \]
 and the last term becomes negligible.

- Ignoring the last term, for a fixed $\|v - w\|$ I can minimize $f(v)$ by choosing
 $(v - w) \propto -\nabla f(w)$.
 So if we’re moving a small amount the optimal choice is gradient descent.
Descent Lemma for C^1 Functions

- Let ∇f be L-Lipschitz continuous, and define $g(\alpha) = f(x + \alpha z)$ for a scalar α.

- $f(y) = f(x) + \int_0^1 \nabla f(x + \alpha(y - x))^T(y - x) d\alpha$ \quad (fund. thm. calc.)

- $(\pm \text{const.}) = f(x) + \nabla f(x)^T(y - x) + \int_0^1 (\nabla f(x + \alpha(y - x)) - \nabla f(x))^T(y - x) d\alpha$

- $(\text{CS ineq.}) \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 \|\nabla f(x + \alpha(y - x)) - \nabla f(x)\|\|y - x\| d\alpha$

- $(\text{Lipschitz}) \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 L\|x + \alpha(y - x) - x\|\|y - x\| d\alpha$

- $(\text{homog.}) = f(x) + \nabla f(x)^T(y - x) + \int_0^1 L\alpha\|y - x\|^2 d\alpha$

- $(\int_0^1 \alpha = \frac{1}{2}) = f(x) + \nabla f(x)^T(y - x) + \frac{L}{2}\|y - x\|^2.$
Equivalent Conditions to Lipschitz Continuity of Gradient

- We said that Lipschitz continuity of the gradient
 \[\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|, \]
is equivalent for C^2 functions to having
 \[\nabla^2 f(w) \preceq LI. \]

- There are a lot of other equivalent definitions, see here:
Why is $\mu \leq L$?

- The descent lemma for functions with L-Lipschitz ∇f is that
 \[
 f(v) \leq f(w) + \nabla f(w)\top (v - w) + \frac{L}{2}\|v - w\|^2.
 \]

- Minimizing both sides in terms of v (by taking the gradient and setting to 0 and observing that it’s convex) gives
 \[
 f^* \leq f(w) - \frac{1}{2L}\|\nabla f(w)\|^2.
 \]

- So with PL and Lipschitz we have
 \[
 \frac{1}{2\mu}\|\nabla f(w)\|^2 \geq f(w) - f^* \geq \frac{1}{2L}\|\nabla f(w)\|^2,
 \]
 which implies $\mu \leq L$.
Strong Convexity Implies PL Inequality

- As before, from **Taylor’s theorem** we have for \(C^2 \) functions that

\[
f(v) = f(w) + \nabla f(w)^\top (v - w) + \frac{1}{2} (v - w)^\top \nabla^2 f(u) (v - w).
\]

- By **strong-convexity**, \(d^\top \nabla^2 f(u) d \geq \mu \|d\|^2 \) for any \(d \) and \(u \).

\[
f(v) \geq f(w) + \nabla f(w)^\top (v - w) + \frac{\mu}{2} \|v - w\|^2
\]

- Treating right side as function of \(v \), we get a quadratic lower bound on \(f \).
Strong Convexity Implies PL Inequality

- As before, from Taylor’s theorem we have for C^2 functions that
 \[f(v) = f(w) + \nabla f(w)^\top (v - w) + \frac{1}{2} (v - w)^\top \nabla^2 f(u) (v - w). \]

- By strong-convexity, $d^\top \nabla^2 f(u) d \geq \mu \|d\|^2$ for any d and u.
 \[f(v) \geq f(w) + \nabla f(w)^\top (v - w) + \frac{\mu}{2} \|v - w\|^2. \]

- Treating right side as function of v, we get a quadratic lower bound on f.

- Minimize both sides in terms of v gives
 \[f^* \geq f(w) - \frac{1}{2\mu} \|\nabla f(w)\|^2, \]
 which is the PL inequality (bonus slides show for C^1 functions).
Combining Lipschitz Continuity and Strong Convexity

- Lipschitz continuity of gradient gives guaranteed progress.
- Strong convexity of functions gives maximum sub-optimality.

Progress on each iteration will be at least a fixed fraction of the sub-optimality.
C^1 Strongly-Convex Functions satisfy PL

- If $g(x) = f(x) - \frac{\mu}{2} \|x\|^2$ is convex then from C^1 definition of convexity

$$g(y) \geq g(x) + \nabla g(x)^\top (y - x)$$

or that

$$f(y) - \frac{\mu}{2} \|y\|^2 \geq f(x) - \frac{\mu}{2} \|x\|^2 + (\nabla f(x) - \mu x)^\top (y - x),$$

which gives

$$f(y) \geq f(x) + \nabla f(x)^\top (y - x) + \frac{\mu}{2} \|y\|^2 - \mu x^\top y + \frac{\mu}{2} \|x\|^2$$

$$= f(x) + \nabla f(x)^\top (y - x) + \frac{\mu}{2} \|y - x\|^2, \quad \text{(complete square)}$$

the inequality we used to show C^2 strongly-convex function f satisfies PL.
Least squares can be written as $f(x) = g(Ax)$ for a σ-strongly-convex g and matrix A, we'll show that the PL inequality is satisfied for this type of function.

The function is minimized at some $f(y^*)$ with $y^* = Ax$ for some x, let's use $\mathcal{X}^* = \{x | Ax = y^*\}$ as the set of minimizers. We'll use x_p as the “projection” (defined next lecture) of x onto \mathcal{X}^*.

$$f^* = f(x_p) \geq f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma}{2} ||A(x_p - x)||^2$$

$$\geq f(x) + \langle \nabla f(x), x_p - x \rangle + \frac{\sigma \theta(A)}{2} ||x_p - x||^2$$

$$\geq f(x) + \min_y \left[\langle \nabla f(x), y - x \rangle + \frac{\sigma \theta(A)}{2} ||y - x||^2 \right]$$

$$= f(x) - \frac{1}{2\theta(A)\sigma} ||\nabla f(x)||^2.$$

The first line uses strong-convexity of g, the second line uses the “Hoffman bound” which relies on \mathcal{X}^* being a polyhedral set defined in this particular way to give a constant $\theta(A)$ depending on A that holds for all x (in this case it’s the smallest non-zero singular value of A), and the third line uses that x_p is a particular y in the min.
For linear convergence it’s sufficient to have

\[
L[f(x^{t+1}) - f(x^t)] \geq \frac{1}{2} \|\nabla f(x^t)\|^2 \geq \mu[f(x^t) - f^*],
\]

for all \(x^t \) for some \(L \) and \(\mu \) with \(L \geq \mu > 0 \).

(technically, we could even get rid of the connection to the gradient)

Notice that this only needs to hold for all \(x^t \), not for all possible \(x \).

- We could get linear rate for “nasty” function if the iterations stay in a “nice” region.
- We can get lucky and converge faster than the global \(L/\mu \) would suggest.

Arguments like this give linear rates for some non-convex problems like PCA.
Convergence of Iterates

- Under strong-convexity, you can also show that the iterations converge linearly.

- With a step-size of $1/L$ you can show that

$$
\|w^{k+1} - w^*\| \leq \left(1 - \frac{\mu}{L}\right) \|w^k - w^*\|.
$$

- If you use a step-size of $2/(\mu + L)$ this improves to

$$
\|w^{k+1} - w^*\| \leq \left(\frac{L - \mu}{L + \mu}\right) \|w^k - w^*\|.
$$

- Under PL, the solution w^* is not unique.
 - You can show linear convergence of $\|w^k - w_p^k\|$, where w_p^k is closest solution.