CPSC 340:
Machine Learning and Data Mining
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Unsupervised Graph-Based Ranking

* We want to rank “importance” based on graph between examples.
— Every webpage is a node, and every web-link is an edge.
— Every paper is a node, and every citation is an edge.
— Every Facebook user is a node, and every “friendship” is an edge.

facebook




Unsupervised Graph-Based Ranking

We want to rank “importance” based on graph between examples.
— Every webpage is a node, and every web-link is an edge.

— Every paper is a node, and every citation is an edge.

— Every Facebook user is a node, and every “friendship” is an edge.

Key idea: use links (edges) to predict importance of nodes.
Many link analysis methods, usually with recursive definitions:

— A journal is “influential” if it is cited by “influential” journals.

We will discuss PageRank, Google’s original ranking algorithm.



PageRank

* Wikipedia’s cartoon illustration of PageRank:

— Large face => higher rank. > i

e Key ideas:

—@ |

— Important webpages are linked from
other important webpages.

— Link is more meaningful if a webpage pﬂgEHﬂ"h
has few links.




Random Walk View of PageRank

 PageRank algorithm can be interpreted as a random walk:
— At time t=0, start at a random webpage.
— At time t=1, follow a random link on the current page.
— At time t=2, follow a random link on the current page.

* PageRank:
— Probability of landing on page as t->co,
* Obvious problem:

— Pages with no in-links have a rank of 0.
— Algorithm can get “stuck” in part of the graph.




Random Walk View of PageRank

* Fix: add small probability of going to a random webpage at time ‘t’".

* Damped PageRank algorithm:
— At time t=0, start at a random webpage.
— At time t=1:
e With probability a (like 10%): go to a random webpage.
* With probability (1- a): follow a random link on the current page.

— At time t=2, follow a random link on the current page.
* With probability a: go to a random webpage.
e With probability (1- a): follow a random link on the current page.

* PageRank:
— Probability of landing on page as t->co,



PageRank Computation

 “Monte Carlo” method for computing PageRank:
— Just run the random walk algorithm a really long time.

— Count the number of times you visit each webpage.
 Maybe include a “burn in” time at the start where you don’t count pages.
e Can parallelize by using ‘m’ independent surfers.

— Intuitive but slow.

* |t can also be solved analytically with SVD:
— But O(n3) for ‘n” webpages.

* Google’s approach is the power method:
— Repeated multiplication by transition matrix: O(nLinks) per iteration.



Application: Game of Thrones

 PageRank can be used for other applications.
e “Who is the main character in the Game of Thrones books?”
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Ranking Discussion

* Modern ranking methods are more advanced:
— Guarding against methods that exploit algorithm.
— Removing offensive/illegal content.
— Supervised and personalized ranking methods.
— Take into account that you often only care about top rankings.
— Also work on diversity of rankings:

* E.g., divide objects into sub-topics and do weighted “covering” of topics.

— Persistence/freshness as in recommender systems (news articles).



(pause)



Previously: Graph-Based Semi-Supervised Learning

Graph-based semi-supervised learning:
— Define weighted graph on training examples:

* For example, use KNN graph or points within radius ‘€.
* Weight is how ‘important’ it is for nodes to share label.
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PageRank, Label Propagation, and Random Walks

e Standard graph-based SSL also has a random walk interpretation:
— At time t= 0, set your state to the node you want to label.
— At time t > 0, move to a random neighbor.

* With probability proportional to w; (how much we want them to be similar).

— If you land on a labeled node, choose that label for this “round”.

* Final predictions are probabilities of outputting each label.
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What else can we do with random walks?

* We've discussed random walks for ranking and SSL.

— Useful for problems defined on graphs.

— We can convert from features to graphs using things like KNN graphs.
 Random walks for other tasks:

— Outlier detection with outrank:

* Examples with low PageRank are considered outliers (can detect outlier clusters).



What else can we do with random walks?

* We've discussed random walks for ranking and SSL.
— Useful for problems defined on graphs.
— We can convert from features to graphs using things like KNN graphs.

 Random walks for other tasks:
— Clustering with spectal clustering (and “spectral graph theory):

e “If we start in cluster ‘¢, random walk should tend to stay in cluster ‘c’”.
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Graph-Based Clustering Methods
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Markov Chains

 These random walk algorithms are special cases of Markov chains:

— Most common framework for modeling sequences.

 Bioinformatics, physics/chemistry, speech recognition, predator-prey models,
language tagging/generation, computing integrals, economic models, flying
airplanes, tracking missiles/players, modeling music. Melody Generator

Generates a random melody using Markov Chains built from states

and transitions extracted from an analysis of existing songs.
1. Sequence 2. Analysis 3. Generate + Output
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Example: Vancouver Rain Data

* Consider modeling the “Vancouver rain” dataset.

Doy [Day2 | Day3 | Day4 | Day | DayG |Day7 Doy |Dayd ..
0 0 1 1 0 0 1 1

Ma{th( 0

Meosth 27 1 0 0 0 0 0 1 0 0
Monlt 3 2 1 1 1 1 1 1 1 1
Motk Y 1 1 1 1 0 0 1 1 1
ManthS 0 0 0 0 1 1 0 0 0
/V\,,,m\é 0 1 1 0 0 0 0 1 1

* Atime-series dataset where x,= 1 if it rained on day ‘t".

* The strongest signal in the data is the simple relationship:
— If it rained yesterday, it’s likely to rain today (> 50% chance that x, ; = x,).



Example: Vancouver Rain Data

If we assume x, are independent, we get p(x, = 1) = 0.41 (sadly).
— Real data vs. samples from independent Bernoulli model:

irst 100 months Samples based on independent model
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— Making days independent misses correlation.



Markov Chain Model of Rain Data

A better model for the rain data is a Markov chain:

— Captures dependency of x, on x, ;.

— We model p(x, | x,,): probability of rain today given yesterday’s value.



Markov Chain Ingredients (MEMORIZE)

 Markov chain ingredients:
— State space:
» Set of possible states (indexed by ‘s’) we can be in at time ‘t” (“rain” or “not rain”).
— Initial probabilities:
* p(x; = s) that we start in state ‘s’ at time 1.

— Transition probabilities:

* p(x,=s | x,; =5’) that we move to state s from state s’ at time ‘t".
— Probability that it rains today, given what happened yesterday.

* For PageRank: each webpage is a state ‘s’.
— Initial probability is random.
— Go to random page with probability a, otherwise go to random neighbour.



Markov Chain Probability and Markov Property
* Markov chain probability for a sequence X, X,,...,Xy4:
F(x,,)f))...)xﬂ = p[x,7’>(xz | x,) f’(X3 ,yz) ""p(x,/lx‘,_,)
* This assumes the Markov property:
F(Xf X100, %537 ) :f’("f %))

— That x, is independent of the past given x, ;.

* To predict “rain”, we only need to know whether it rained yesterday.



Markov Chain Applications

9 Applications
9.1 Physics
9.2 Chemistry
9.3 Testing
9.4 Speech Recognition
8.5 Information sciences
8.6 Queueing theory
8.7 Internet applications
9.8 Statistics
9.9 Economics and finance
8.10 Social sciences
9.11 Mathematical biology
9.12 Genetics
8.13 Games
9.14 Music
8.15 Baseball
9.16 Markov text generators



Homogeneous Markov Chains

* We usually assume that the Markov chain is homogeneous:

— Transition probabilities p(x, = s| x,,=5") are same for all t".

* Given ‘n’ samples, MLE for homogeneous Markov chain is:

Thital F(X, =5) = YM\MLW of 4"W5mW€ ol Dable s

ﬂumé\‘—’r‘ o‘F 'f:mej we Wén'/' ][;om S fo S
nvuML@r of Timo we went . s b an/fl./m

—

/rqniijy"\: ()(f 5) Xt < ) -

* So given one or more sequences, learning is just counting.
— Like in naive Bayes.



Computation with Markov Chains

* Common things we do with Markov chains:

— Sampling: generate sequences that follow the probability.
* This is what our “random walk” algorithms are doing.

— Inference: compute probability of being in state ‘s’ at time ‘t’.
— Decoding: compute most likely sequence of states.

— Conditioning: do any of the above, assuming x, = s for some ‘t" and ‘s’
* For example, “filling in” missing parts of a sequence.

— Stationary distribution: probability of being ‘s’ at ‘t’ goes to o-.
e PageRank.



Fun with Markov Chains

Markov chains “explained visually”:
— http://setosa.io/ev/markov-chains

Snakes and ladders:
— http://datagenetics.com/blog/november12011/index.html

Candyland:
— http://www.datagenetics.com/blog/december12011/index.html

Yahtzee:
— http://www.datagenetics.com/blog/january42012

Chess pieces returning home and K-pop vs. ska:
— https://www.youtube.com/watch?v=63HHm{lh794



http://setosa.io/ev/markov-chains
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https://www.youtube.com/watch?v=63HHmjlh794

Application: Voice Photoshop

 Adobe VoCo uses decoding as part of synthesizing voices:
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Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.


https://www.youtube.com/watch?v=I3l4XLZ59iw

Summary

* Graph-based ranking uses links to solve ranking queries.
— PageRank is based on a model of a random web user.

* Markov chains model dependency between states x, across time.
— Based on Markov assumption: “independence of past given last time”.



