CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2019

Admin — Lectures this week

Planned bus strike Wednesday-Friday.

I’'m planning to finish the “testable content” of the course today.
— | might go a bit over time.

Wednesday will be about “fun with deep learning”.

Friday, | might cover different topics in the different sections:
— Possible topics include semi-supervised learning, Google’s PageRank, or proofs:

* How many gradient descent iterations do we need?
* What does the approximation error depend on?

Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:

‘/A"-: v (WS RW S W~ W W %)))

* We discussed unprecedented vision/speech performance.

Image classification

e We discussed methods to make SGD work better:

Classification error
o (=]

— Parameter initialization and data transformations. O ot w1 ooz 2nd

ILSVRC year

— Setting the step size(s) in stochastic gradient and using momentum.

— Alternative non-linear functions like RelLU. Moxt0yz:c{

l"crr(g,-‘)

“Residual” Networks (ResNets)

* Impactful recent idea is residual networks (ResNets):

weight layer
]:(X) l relu «
weight layer identity

Figure 2. Residual learning: a building block.

— You can take previous (non-transformed) layer as input to current layer.
* Also called “skip connections” or “highway networks”.

— Non-linear part of the network only needs to model residuals.
* Non-linear parts are just “pushing up or down” a linear model in various places.

— This was a key idea behind first methods that used 100+ layers.
* Evidence that biological networks have skip connections like this.

DenseNet

 More recent variation is “DenseNets”:
— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

— May get same performance
with fewer parameters/layers.

Figure 1: A 5-layer dense block with a growth rate of &k = 4.
https://arxiv.org/pdf/1512.03385v1.pdf Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth can lead to overfitting.

* How could GooglLeNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.

Standard Regularization
* Traditionally, we've added our usual L2-regularizers:
VoW N Broa 2 « 2)
£ W)= 4 5 (bW hw hw Oy 4 Ay I 2 s 2 3
1= 2 2

* L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.

eeeeeeeeeeeee

Standard Regularization

* Traditionally, we've added our usual L2-regularizers:
£l W w”)= 4 _i (bW R RO 1) -y +7‘q”vﬂz+23llw“’ WU 3wk

* L2-regularization often called “weight decay” in thls context.
— Could also use L1-regularization: gives sparse network.
 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A, A,, A5, A,.

e Recent result:

— Adding a regularizer in this way creates bad local optima.

Early Stopping

 Another common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A _—
accuracy training accuracy

validation accuracy: , |
little overfitting V'\'Fof *\Amré’y it W\'(’LﬂL

loolc more ke

ﬁ /Ll\OrOﬂA’,y \/ov\ loy\l*}

S’*Or heve.

validation accuracy: strong overfitting
L

Dropout

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x. and z, to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Encourages distributed representation rather than relying on specific z.
* Alternately, you are adding invariance to missing inputs or latent factors.

— After a lot of success, dropout may already be going out of fashion.

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
i : — r : _ 0.7r . : : —— : . =
0.06} — Training H — Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f TP
0.02} 0.2
0.01} 0.1
L 1 1 0 L 1 L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Training goes to O with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
‘ ' ‘ i : — r : : 0.7+ . ‘ . — : .
0.06 —Training H —Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f T
0.02} 0.2
0.01} 0.1
L 1 I . 0 L L L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??
There exist global mins with large #hidden units have test error = 1.

— But among the global minima, SGD is somehow converging to “good” ones.

Implicit Regularization of SGD

* There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

 Example of implicit regularization:
— Consider a least squares problem where there exists a ‘W’ where Xw=y.

* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
e So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem.
* So using gradient descent is equivalent to encouraging large margin.

— rer'f\ec"’ class"f"'f wilh w_”m’;,"
\ (lagget doferce to closes? example;)

X;z
| Ooo
°
‘t‘x 0006
XXy % 0 0o,
¥ ¥ °o°o°o
xX' Ooo
x ;X"‘ °
\ Xit

e Similar result known for boosting.

(pause)

Deep Learning “Tricks of the Trade”

* We've discussed heuristics to make deep learning work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient and using momentum.
— RestNets and alternative non-linear functions like ReLU.

— Different forms of regularization:
* L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

 Deep computer vision models are all convolutional neural networks:
— The WM are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).

1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal x” and filter ‘w’ to produces vector ‘z’:

X

— Can be written as a matrix multiplication:

\/\/x’

()

O
9,

L o

-1
\
0

© O 0 o0 O

\
-)
\

¥ w =
-1 2 -

O O O-”\/V
\ 0 O -~
-1 10

08
5 -+ E] 2 A

0 1 2 3] 5

1D Convoluti

on as Matrix Multiplication

 Each element of a convolution is an inner product:

™M
=2 Wy Rin;
y=-m
T Posi fians [=m fh/ovt)l\ [Tm
= w Xpo A~ A
W A(M'l‘l'm) " 0 0]

.
=W X

Where \?v/;[o 0 O

e So convolution is a matrix multiplication (I’'m ignoring boundaries):

~ Ao
Z2= W)(where W=

* The shorter ‘w’ is, the

B — W -0 00
O ’O - WW 0(0) I’Ylal"frix Coan ég
0 -

Lo o0 O . Very spase anl

. . ‘l + r‘
more sparse the matrixis. "/ he dm*l vordes

2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:
X

— Vectorized ‘2’ can be written as a matrix ultiplication with vectorized ‘x’:

(=) =1 O 0000 =I 0 | 000~ O O l 2 0 ()o 0
o -2 -1 0 oo "0, 0 - Q0] 00" 0 -0, oa
_ : 240! 09 O- - -'l(?!/(? 0 ()-- “,olz/ao
o o 0 -~ _T_/, - - _ = - D eta
"0 6 0 o0 -~O/ 2 -l 0 000 0'\ -1 0 | O 00 01z
|, 0 © > 0o0oo0 0,0 2 -l 000-~-0 0 -1 O I ;c)()--OIO(]I'

Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

Key idea: make Wx; act like several convolutions (to make it sparse):

1. Each row of W only applies to part of x.. w':EO 0 b w— 0 OOJ

00 000,
- w
\/\/lf[O

Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.

Motivation for Convolutional Neural Networks

* Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.

Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.

Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

HOW NEURAL NETWORKS RECOGNIZEA DOG IN A PHOTO

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.

— (""L/ /)
— W‘

\/\/(W\) - — "V.z(w) B -

)
|

(m) _

Wk

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.

ID l ﬂdlﬂdﬂ(@ bolwe an coitws of coNveludion is ca//g
exam')(l S‘fr».‘e
— w("‘) O 0 0 O Qo O D
(m)_ o ’Oﬁ, w("‘ o O gawé W w{(f GlresS
o’ () uH/ le rows

0o 0o 0 00 O— "
<~————~o<7000©0

()

2 gﬂﬁc OV\J Smm//
— O O O O O O /Wg" —d Nm ber O"D Pnfhme’/eIS

O o,,-—f—w/ 00

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

e Can add some invariance or just make the number of parameters smaller.

e Usual choice is ‘max pooling’: /l
m 1

over 2X1 =

P eighourho ol

LeNet for Optical Character Recognition

Deep Hierarchies in the Visual System

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR oo

GANGLION CELL Qe
THALAMUS LGN oe LLLE,

LATERAL GENICULATENUCLEUS @ @

= Temporal

Vi SIMPLE CELL S~ I

COMPLEX CELL O O e

POOD

Pulvinar nugheus, -

Lateral geniculate ——
nucleus

2 o 3

TEXTURE-DEFINED ILLUSORY BORDER

Superiorcolliculus ="

CONTOURS CONTOURS OWNERSHIP S
- (V3)
1ary visual cortex v4 ((‘ 5
CURVATURE LUMINANCE-INVARIANT A e
SELECTIVITY HUE
VENTRAL DORSAL
PATHWAY PATHWAY
T VH i % A
SIMPLE SHAPE : ¥ A
RN ANALYSIS OF SPACE
LY VA < e S <)
TE ® @ > ACTION PLANING
COMPLEX FEATURE

CONFIGURATIONS

Fast

Object
Space

50

Deep Hierarchies in Optics

G1
- - 60
E3 X / G3
A
s ™
B LC
E4 E5 ¢ E11 7 E13 E15
E7/C16 -E17 £20

E18

£79
Image

Space

Object
Plane

Slow

Gy ———

A/

{ hN\Y4
75 \ ;25 27 28 29
1578/ 15 24 26
P 74 77 A /
70 77 7z /y;/ 25 505/

\ J5 JE
32 J4 Image
Plane

White Lrgy 7
N
/
c?jj/ij

/ Prism \
/ \

o

Abemated — 1\
Wavefront ‘

Reference
Sphercal

Wavefront

Last Time: Convolutional Neural Networks

Classic convolutional neural network (LeNet):

II__
W_ I- r \\ Output
r

- Full connections

Input

Convolutions Subsamplmg Cnnvolutmns ’Subsamplmg

* Visualizing the “activations” of the layers:

— http://scs.ryerson.ca/~aharley/vis/conv
— http://cs231n.stanford.edu

> Sa‘lpf‘mvr X

2 ,\’[;’/y "(onneclfa/
max Poa/ A(/

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/

Partial Summary

ResNets include untransformed previous layers.

— Network focuses non-linearity on residual, allows huge number of layers.
Regularization is crucial to neural net performance:

— L2-regularization, early stopping, dropout, implicit regularization of SGD.

Convolutional neural networks:
— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.

— Image segmentation, depth estimation, image colorization, artistic style.

(End of testable content for final exam)

Topics from Previous Years

* Slides for other topics that were covered in previous years:
— Ranking: finding “highest ranked” training examples (Google PageRank).

— Semi-supervised: using unlabeled data to help supervised learning.

— Sequence mining: approximate matching of patterns in large sequences.

* |n previous years we did a course review on the last day:
— Overview of topics covered in 340, and topics coming in 540.
— Slides here: this could help with studying for the final.

http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L33.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L34.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L32.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L35.pdf

CPSC 330 vs. 340

e CPSC 330 starts next semester: “Applied Machine Learning”.
— Not intended as a sequel to 340 (or even a prequel).

* There is some overlap in content, but focus is different:
— More emphasis on the other steps of the data processing pipeline:

* Data cleaning, feature extraction, reproducible workflows, communicating results.

— More emphasis of “how to use packages”, less on “how stuff works”.

* |f you found 340 too hard to keep up with, 330 might make sense.

— In this situation, tell your friends about 330.

CPSC 330 vs. 540

Next semester I’'m teaching CPSC 540.

— Intended as a direct sequel to 340.
— We're basically starting with CNNs and going from there.

Main focuses:
— What if y, is a sentence or an image or a protein?
— Giving you the background to understand the latest advances.

Prerequisites:
— | expect you to know everything in this course and CPSC 320.

Longer term, | expect this course to also be listed as CPSC 440.
— 540 next semester is a “trial run” for CPSC 440.
— | removed topics related to optimization research from the course.

Other ML-Related Courses

CPSC 406:

— Numerical optimization algorithms (like gradient descent).

CPSC 422:

— Includes topics like time series and reinforcement learning.

CPSC 532R/533R:

— Deep learning for vision, sound, and language.

CPSC 533V:

— Deep learning for computer graphics.

EECE 592:

— Deep learning and reinforcement learning.

STAT 406:

— Similar/complementary topics.

STAT 460/461:

— Advanced statistical issues (what happens when ‘n’ goes to o=?)

Final Slide

e “Calling Bullshit in the Age of Big Data”:

— https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-
4CSZD7bUl4gSPS

— Every “data scientist” should watch all these lectures.

— You should be able to recognize non-sense,
and not accidently produce non-sense!

* Thank you for your patience.
— This was the first time someone has taught multiple sections of this class.

* Good luck with finals/projects and the next steps!

https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

