CPSC 340: Machine Learning and Data Mining

Convolutional Neural Networks Fall 2019

Admin – Lectures this week

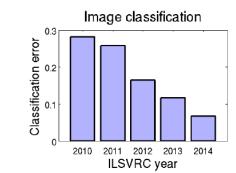
- Planned bus strike Wednesday-Friday.
- I'm planning to finish the "testable content" of the course today.
 I might go a bit over time.
- Wednesday will be about "fun with deep learning".
- Friday, I might cover different topics in the different sections:
 - Possible topics include semi-supervised learning, Google's PageRank, or proofs:
 - How many gradient descent iterations do we need?
 - What does the approximation error depend on?

Last Lectures: Deep Learning

• We've been discussing neural network / deep learning models:

$$\gamma_{i} = \sqrt{h(W^{(n)}h(W^{(m-1)}h(\cdots,W^{(a)}h(W^{(1)}x_{i}))\cdots))}$$

- We discussed unprecedented vision/speech performance.
- We discussed methods to make SGD work better:
 - Parameter initialization and data transformations.
 - Setting the step size(s) in stochastic gradient and using momentum.
 - Alternative non-linear functions like ReLU.



Mox {D, zic }

"Residual" Networks (ResNets)

• Impactful recent idea is residual networks (ResNets):

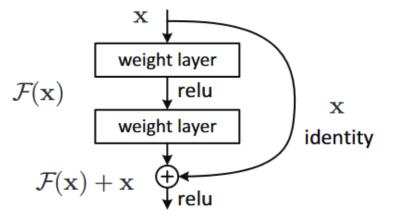


Figure 2. Residual learning: a building block.

- You can take previous (non-transformed) layer as input to current layer.
 - Also called "skip connections" or "highway networks".
- Non-linear part of the network only needs to model residuals.
 - Non-linear parts are just "pushing up or down" a linear model in various places.
- This was a key idea behind first methods that used 100+ layers.
 - Evidence that biological networks have skip connections like this.

DenseNet

- More recent variation is "DenseNets":
 - Each layer can see all the values from many previous layers.
 - Gets rid of vanishing gradients.
 - May get same performance with fewer parameters/layers.

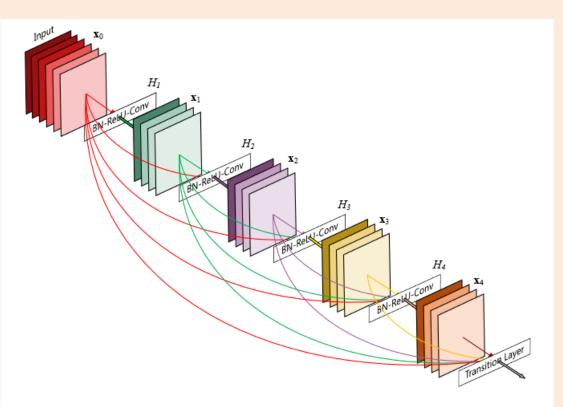


Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

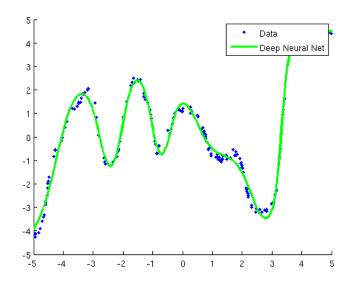
- Neural networks are subject to the fundamental trade-off:
 - With increasing depth, training error of global optima decreases.
 - With increasing depth, training error may poorly approximate test error.
- We want deep networks to model highly non-linear data.
 - But increasing the depth can lead to overfitting.
- How could GoogLeNet use 22 layers?
 - Many forms of regularization and keeping model complexity under control.
 - Unlike linear models, typically use multiple types of regularization.

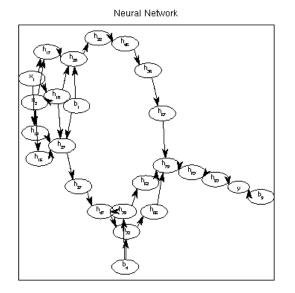
Standard Regularization

• Traditionally, we've added our usual L2-regularizers:

$$f(v_{1}W^{(3)},W^{(2)},W^{(1)}) = \frac{1}{2} \sum_{i=1}^{n} \left(\sqrt{h(W^{(3)}h(W^{(2)}h(W^{(2)}x_{i})))} - y_{i} \right)^{2} + \frac{1}{2} \frac{1$$

- L2-regularization often called "weight decay" in this context.
 - Could also use L1-regularization: gives sparse network.





Standard Regularization

• Traditionally, we've added our usual L2-regularizers:

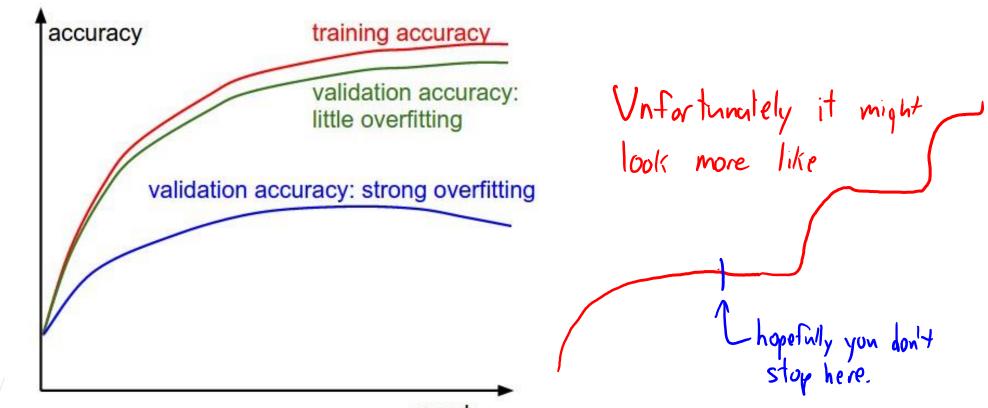
$$f(v_{1}W^{(3)},W^{(2)},W^{(1)}) = \frac{1}{2}\sum_{i=1}^{n} (v_{1}^{i}h(W^{(3)}h(W^{(2)}h(W^{(1)}x_{i}))) - y_{i})^{2} + \frac{1}{2}||v||^{2} + \frac{1}{2}||W^{(3)}||_{F}^{2} + \frac{1}{2}||W^{(2)}||_{F}^{2} + \frac{1}{2}||W^{(2)}||_{F}^{2}$$

- L2-regularization often called "weight decay" in this context.
 Could also use L1-regularization: gives sparse network.
- "Hyper-parameter" optimization:
 - Try to optimize validation error in terms of λ_1 , λ_2 , λ_3 , λ_4 .

- Recent result:
 - Adding a regularizer in this way creates bad local optima.

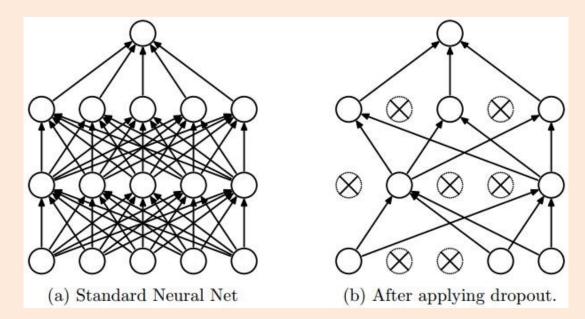
Early Stopping

- Another common type of regularization is "early stopping":
 - Monitor the validation error as we run stochastic gradient.
 - Stop the algorithm if validation error starts increasing.



Dropout

- **Dropout** is a more recent form of explicit regularization:
 - On each iteration, randomly set some x_i and z_i to zero (often use 50%).

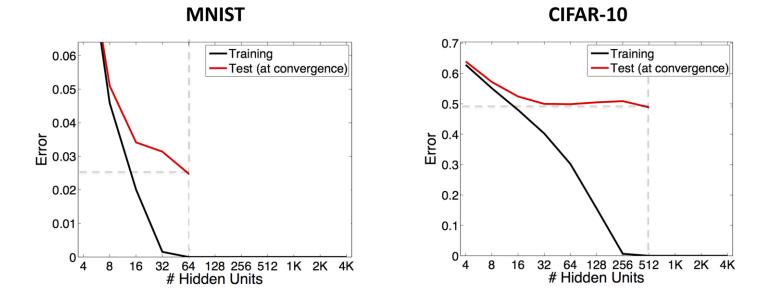


- Encourages distributed representation rather than relying on specific z_i.
 - Alternately, you are adding invariance to missing inputs or latent factors.
- After a lot of success, dropout may already be going out of fashion.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pd

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

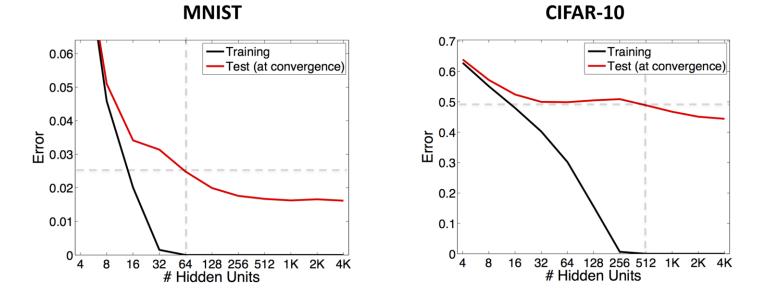


- Training goes to 0 with enough units: we're finding a global min.
- What should happen to training and test error for larger #hidden?

https://www.neyshabur.net/papers/inductive_bias_poster.pdf

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:



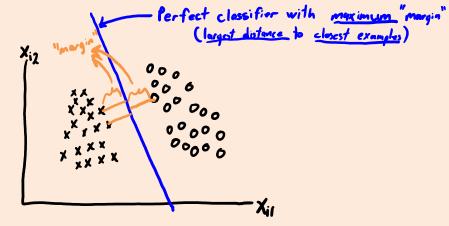
- Test error continues to go down!?! Where is fundamental trade-off??
- There exist global mins with large #hidden units have test error = 1.
 - But among the global minima, SGD is somehow converging to "good" ones.

Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.
 We call this the "implicit regularization" of the optimization algorithm.
- Beyond empirical evidence, we know this happens in simpler cases.
- Example of implicit regularization:
 - Consider a least squares problem where there exists a 'w' where Xw=y.
 - Residuals are all zero, we fit the data exactly.
 - You run [stochastic] gradient descent starting from w=0.
 - Converges to solution Xw=y that has the minimum L2-norm.
 - So using SGD is equivalent to L2-regularization here, but regularization is "implicit".

Implicit Regularization of SGD

- Example of implicit regularization:
 - Consider a logistic regression problem where data is linearly separable.
 - We can fit the data exactly.
 - You run gradient descent from any starting point.
 - Converges to max-margin solution of the problem.
 - So using gradient descent is equivalent to encouraging large margin.



• Similar result known for boosting.

(pause)

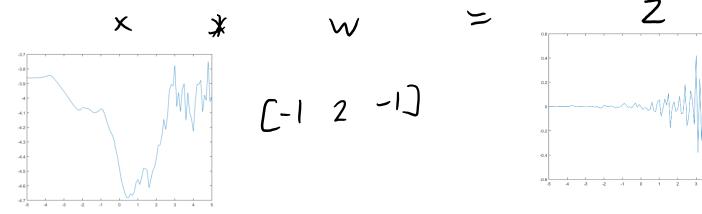
Deep Learning "Tricks of the Trade"

- We've discussed heuristics to make deep learning work:
 - Parameter initialization and data transformations.
 - Setting the step size(s) in stochastic gradient and using momentum.
 - RestNets and alternative non-linear functions like ReLU.
 - Different forms of regularization:
 - L2-regularization, early stopping, dropout, implicit regularization from SGD.
- These are often still not enough to get deep models working.
- Deep computer vision models are all convolutional neural networks:
 - The W^(m) are very sparse and have repeated parameters ("tied weights").
 - Drastically reduces number of parameters (speeds training, reduces overfitting).

1D Convolution as Matrix Multiplication

• 1D convolution:

- Takes signal 'x' and filter 'w' to produces vector 'z':



– Can be written as a matrix multiplication:

1D Convolution as Matrix Multiplication

• Each element of a convolution is an inner product:

$$Z_{i} = \sum_{j=-m}^{m} w_{j} x_{i+j}$$

$$= w^{T} x_{(i-m:i+m)}$$

$$= \widetilde{w}^{T} x \text{ where } \widetilde{w} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

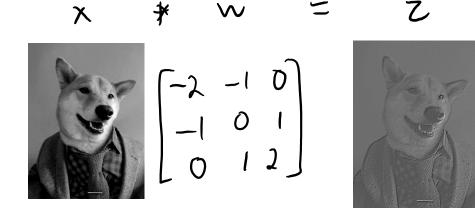
• So convolution is a matrix multiplication (I'm ignoring boundaries):

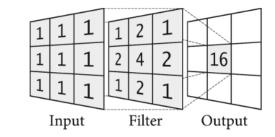
• The shorter 'w' is, the more sparse the matrix is.

2D Convolution as Matrix Multiplication

• 2D convolution:

- Signal 'x', filter 'w', and output 'z' are now all images/matrices:



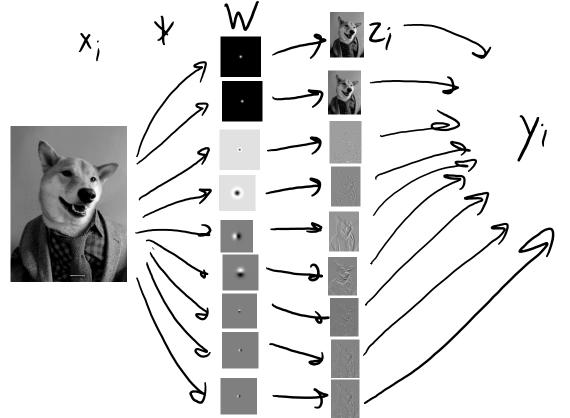


- Consider training neural networks on 256 by 256 images.
 This is 256 by 256 by 3 ≈ 200,000 inputs.
- If first layer has k=10,000, then it has about 2 billion parameters.
 - We want to avoid this huge number (due to storage and overfitting).
- Key idea: make Wx_i act like several convolutions (to make it sparse):

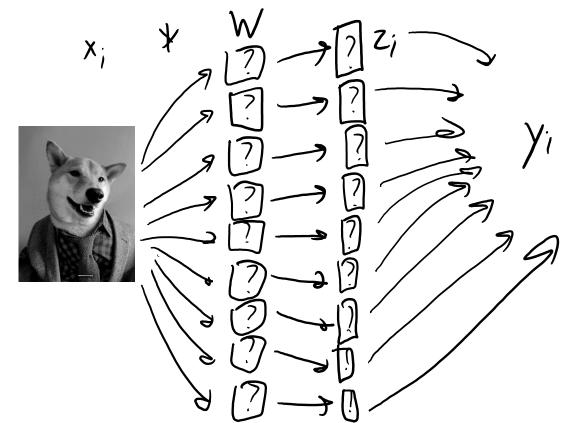
- 1. Each row of W only applies to part of x_i.
- 2. Use the same parameters between rows.

• Forces most weights to be zero, reduces number of parameters.

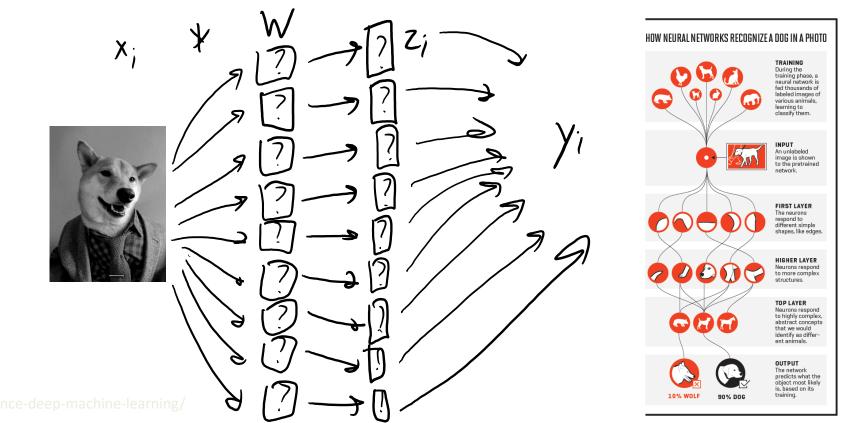
- Classic vision methods uses fixed convolutions as features:
 - Usually have different types/variances/orientations.
 - Can do subsampling or take maxes across locations/orientations/scales.



- Convolutional neural networks learn the convolutions:
 - Learning 'W' and 'v' automatically chooses types/variances/orientations.
 - Don't pick from fixed convolutions, but learn the elements of the filters.

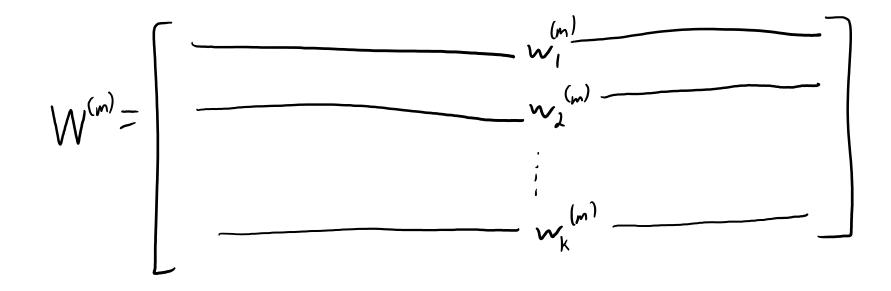


- Convolutional neural networks learn the convolutions:
 - Learning 'W' and 'v' automatically chooses types/variances/orientations.
 - Can do multiple layers of convolution to get deep hierarchical features.



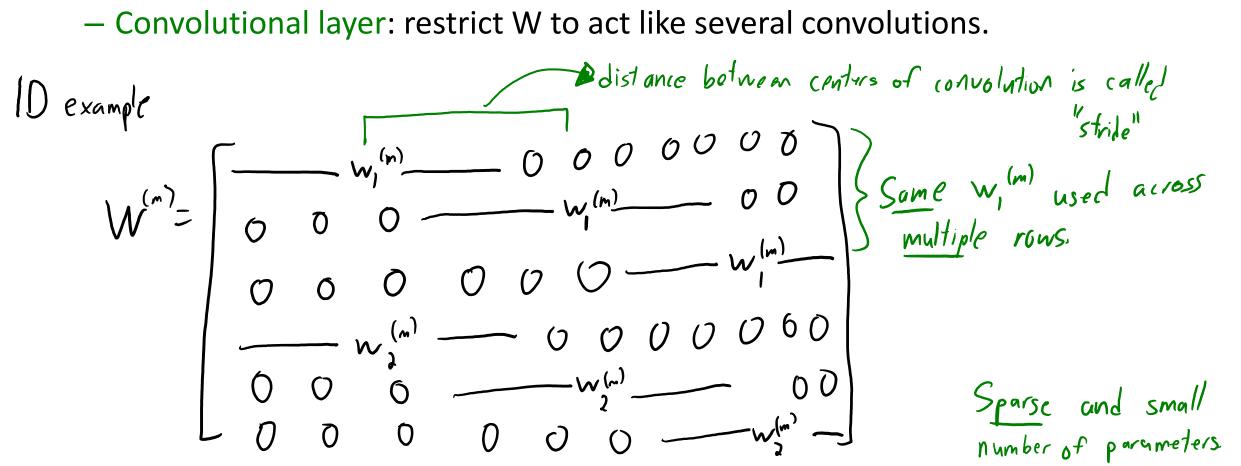
Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.



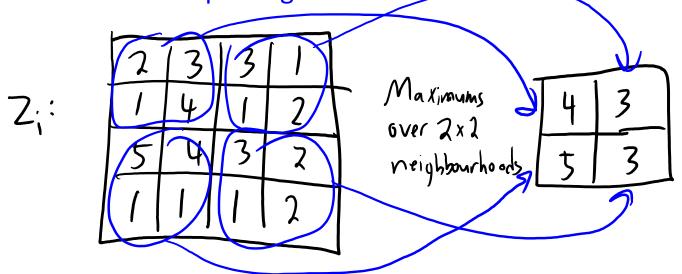
Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.
 - Convolutional layer: restrict W to act like several convolutions.

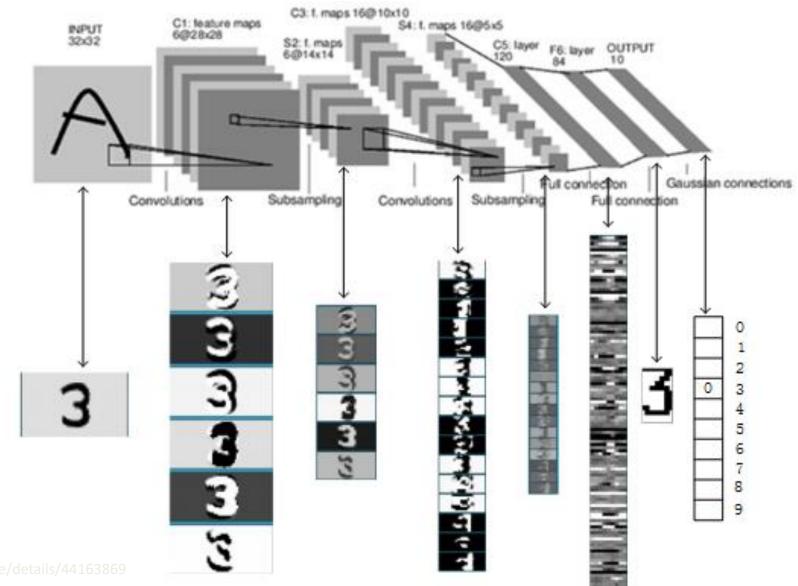


Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
 - Fully connected layer: usual neural network layer with unrestricted W.
 - Convolutional layer: restrict W to act like several convolutions.
 - Pooling layer: combine results of convolutions.
 - Can add some invariance or just make the number of parameters smaller.
 - Usual choice is 'max pooling':

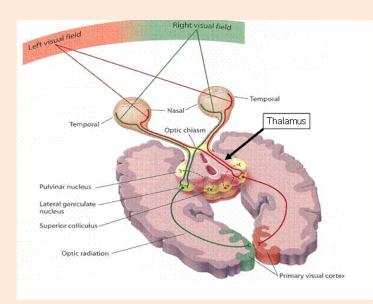


LeNet for Optical Character Recognition

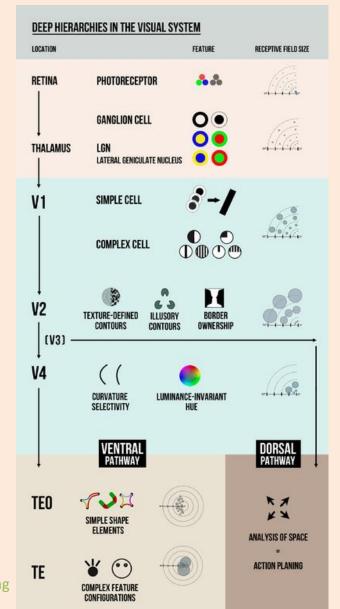


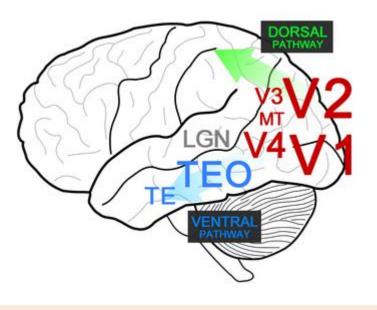
http://blog.csdn.net/strint/article/details/44163869

Deep Hierarchies in the Visual System

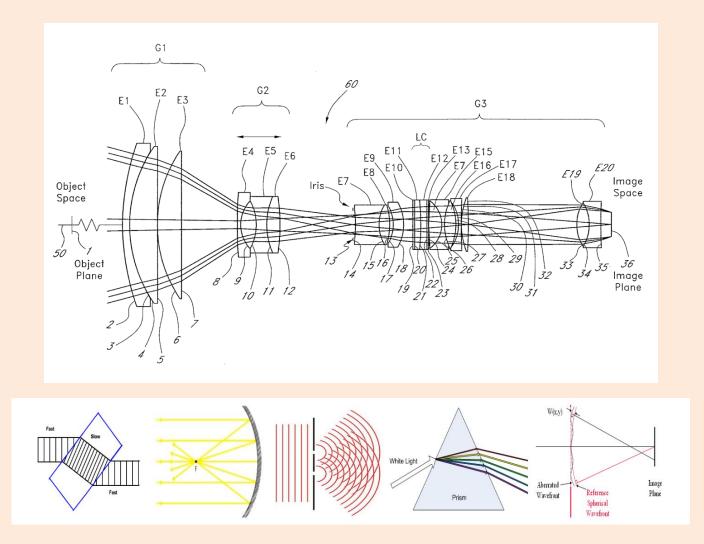


http://www.strokenetwork.org/newsletter/articles/vision.htm https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



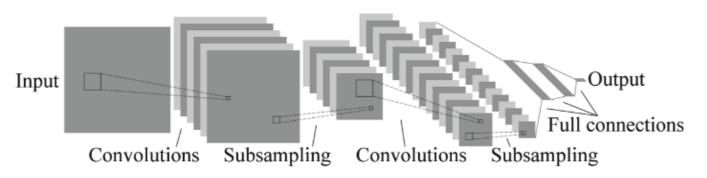


Deep Hierarchies in Optics



Last Time: Convolutional Neural Networks

• Classic convolutional neural network (LeNet):



- Visualizing the "activations" of the layers:
 - <u>http://scs.ryerson.ca/~aharley/vis/conv</u>
 - <u>http://cs231n.stanford.edu</u>

Partial Summary

- ResNets include untransformed previous layers.
 - Network focuses non-linearity on residual, allows huge number of layers.
- Regularization is crucial to neural net performance:
 - L2-regularization, early stopping, dropout, implicit regularization of SGD.
- Convolutional neural networks:
 - Restrict W^(m) matrices to represent sets of convolutions.
 - Often combined with max (pooling).

- Next time: modern convolutional neural networks and applications.
 - Image segmentation, depth estimation, image colorization, artistic style.

(End of testable content for final exam)

Topics from Previous Years

- Slides for other topics that were covered in previous years:
 - <u>Ranking</u>: finding "highest ranked" training examples (Google PageRank).
 - <u>Semi-supervised</u>: using unlabeled data to help supervised learning.
 - <u>Sequence mining</u>: approximate matching of patterns in large sequences.
- In previous years we did a course review on the last day:
 - Overview of topics covered in 340, and topics coming in 540.
 - <u>Slides here</u>: this could help with studying for the final.

CPSC 330 vs. 340

- CPSC 330 starts next semester: "Applied Machine Learning".
 Not intended as a sequel to 340 (or even a prequel).
- There is some overlap in content, but focus is different:
 - More emphasis on the other steps of the data processing pipeline:
 - Data cleaning, feature extraction, reproducible workflows, communicating results.
 - More emphasis of "how to use packages", less on "how stuff works".
- If you found 340 too hard to keep up with, 330 might make sense.
 In this situation, tell your friends about 330.

CPSC 330 vs. 540

- Next semester I'm teaching CPSC 540.
 - Intended as a direct sequel to 340.
 - We're basically starting with CNNs and going from there.
- Main focuses:
 - What if y_i is a sentence or an image or a protein?
 - Giving you the background to understand the latest advances.
- Prerequisites:
 - I expect you to know everything in this course and CPSC 320.
- Longer term, I expect this course to also be listed as CPSC 440.
 - 540 next semester is a "trial run" for CPSC 440.
 - I removed topics related to optimization research from the course.

Other ML-Related Courses

- CPSC 406:
 - Numerical optimization algorithms (like gradient descent).
- CPSC 422:
 - Includes topics like time series and reinforcement learning.
- CPSC 532R/533R:
 - Deep learning for vision, sound, and language.
- CPSC 533V:
 - Deep learning for computer graphics.
- EECE 592:
 - Deep learning and reinforcement learning.
- STAT 406:
 - Similar/complementary topics.
- STAT 460/461:
 - Advanced statistical issues (what happens when 'n' goes to ∞ ?)

Final Slide

- "Calling Bullshit in the Age of Big Data":
 - <u>https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-</u>
 <u>4CSZD7bUI4gSPS</u>
 - Every "data scientist" should watch all these lectures.
 - You should be able to recognize non-sense, and not accidently produce non-sense!
- Thank you for your patience.
 - This was the first time someone has taught multiple sections of this class.
- Good luck with finals/projects and the next steps!