CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2019



Admin — Lectures this week

Planned bus strike Wednesday-Friday.

I’'m planning to finish the “testable content” of the course today.
— | might go a bit over time.

Wednesday will be about “fun with deep learning”.

Friday, | might cover different topics in the different sections:
— Possible topics include semi-supervised learning, Google’s PageRank, or proofs:

* How many gradient descent iterations do we need?
* What does the approximation error depend on?



Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:
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* We discussed unprecedented vision/speech performance.

Image classification

e We discussed methods to make SGD work better:

Classification error
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— Parameter initialization and data transformations. O ot w1 ooz 2nd
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— Setting the step size(s) in stochastic gradient and using momentum.

— Alternative non-linear functions like RelLU. Moxt0yz:c{

l"crr(g,-‘ )




“Residual” Networks (ResNets)

* Impactful recent idea is residual networks (ResNets):
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Figure 2. Residual learning: a building block.

— You can take previous (non-transformed) layer as input to current layer.
* Also called “skip connections” or “highway networks”.

— Non-linear part of the network only needs to model residuals.
* Non-linear parts are just “pushing up or down” a linear model in various places.

— This was a key idea behind first methods that used 100+ layers.
* Evidence that biological networks have skip connections like this.



DenseNet

 More recent variation is “DenseNets”:
— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

— May get same performance
with fewer parameters/layers.

Figure 1: A 5-layer dense block with a growth rate of &k = 4.
https://arxiv.org/pdf/1512.03385v1.pdf Each layer takes all preceding feature-maps as input.



Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

* We want deep networks to model highly non-linear data.
— But increasing the depth can lead to overfitting.

* How could GooglLeNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.



Standard Regularization
* Traditionally, we've added our usual L2-regularizers:
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* L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.
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Standard Regularization

* Traditionally, we've added our usual L2-regularizers:
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* L2-regularization often called “weight decay” in thls context.
— Could also use L1-regularization: gives sparse network.
 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A, A,, A5, A,.

e Recent result:

— Adding a regularizer in this way creates bad local optima.



Early Stopping

 Another common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.
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Dropout

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x. and z, to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Encourages distributed representation rather than relying on specific z.
* Alternately, you are adding invariance to missing inputs or latent factors.

— After a lot of success, dropout may already be going out of fashion.



“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:
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Training goes to O with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?



“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:
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Test error continues to go down!?! Where is fundamental trade-off??
There exist global mins with large #hidden units have test error = 1.

— But among the global minima, SGD is somehow converging to “good” ones.



Implicit Regularization of SGD

* There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

 Example of implicit regularization:
— Consider a least squares problem where there exists a ‘W’ where Xw=y.

* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
e So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem.
* So using gradient descent is equivalent to encouraging large margin.
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e Similar result known for boosting.



(pause)



Deep Learning “Tricks of the Trade”

* We've discussed heuristics to make deep learning work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient and using momentum.
— RestNets and alternative non-linear functions like ReLU.

— Different forms of regularization:
* L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

 Deep computer vision models are all convolutional neural networks:
— The WM are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).



1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal x” and filter ‘w’ to produces vector ‘z’:
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— Can be written as a matrix multiplication:
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1D Convoluti

on as Matrix Multiplication

 Each element of a convolution is an inner product:
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e So convolution is a matrix multiplication (I’'m ignoring boundaries):
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2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:
X

— Vectorized ‘2’ can be written as a matrix ultiplication with vectorized ‘x’:
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Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

Key idea: make Wx; act like several convolutions (to make it sparse):

1. Each row of W only applies to part of x.. w':EO 0 b w— 0 OOJ

00 000,
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Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.




Motivation for Convolutional Neural Networks

* Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.




Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.




Motivation for Convolutional Neural Networks

e Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

HOW NEURAL NETWORKS RECOGNIZEA DOG IN A PHOTO




Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

e Can add some invariance or just make the number of parameters smaller.

e Usual choice is ‘max pooling’: /l
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LeNet for Optical Character Recognition




Deep Hierarchies in the Visual System

DEEP HIERARCHIES IN THE VISUAL SYSTEM
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Last Time: Convolutional Neural Networks

Classic convolutional neural network (LeNet):
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* Visualizing the “activations” of the layers:

— http://scs.ryerson.ca/~aharley/vis/conv
— http://cs231n.stanford.edu
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http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/

Partial Summary

ResNets include untransformed previous layers.

— Network focuses non-linearity on residual, allows huge number of layers.
Regularization is crucial to neural net performance:

— L2-regularization, early stopping, dropout, implicit regularization of SGD.

Convolutional neural networks:
— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.

— Image segmentation, depth estimation, image colorization, artistic style.



(End of testable content for final exam)



Topics from Previous Years

* Slides for other topics that were covered in previous years:
— Ranking: finding “highest ranked” training examples (Google PageRank).

— Semi-supervised: using unlabeled data to help supervised learning.

— Sequence mining: approximate matching of patterns in large sequences.

* |n previous years we did a course review on the last day:
— Overview of topics covered in 340, and topics coming in 540.
— Slides here: this could help with studying for the final.



http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L33.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L34.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L32.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L35.pdf

CPSC 330 vs. 340

e CPSC 330 starts next semester: “Applied Machine Learning”.
— Not intended as a sequel to 340 (or even a prequel).

* There is some overlap in content, but focus is different:
— More emphasis on the other steps of the data processing pipeline:

* Data cleaning, feature extraction, reproducible workflows, communicating results.

— More emphasis of “how to use packages”, less on “how stuff works”.

* |f you found 340 too hard to keep up with, 330 might make sense.

— In this situation, tell your friends about 330.



CPSC 330 vs. 540

Next semester I’'m teaching CPSC 540.

— Intended as a direct sequel to 340.
— We're basically starting with CNNs and going from there.

Main focuses:
— What if y, is a sentence or an image or a protein?
— Giving you the background to understand the latest advances.

Prerequisites:
— | expect you to know everything in this course and CPSC 320.

Longer term, | expect this course to also be listed as CPSC 440.
— 540 next semester is a “trial run” for CPSC 440.
— | removed topics related to optimization research from the course.



Other ML-Related Courses

CPSC 406:

— Numerical optimization algorithms (like gradient descent).

CPSC 422:

— Includes topics like time series and reinforcement learning.

CPSC 532R/533R:

— Deep learning for vision, sound, and language.

CPSC 533V:

— Deep learning for computer graphics.

EECE 592:

— Deep learning and reinforcement learning.

STAT 406:

— Similar/complementary topics.

STAT 460/461:

— Advanced statistical issues (what happens when ‘n’ goes to o=?)



Final Slide

e “Calling Bullshit in the Age of Big Data”:

— https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-
4CSZD7bUl4gSPS

— Every “data scientist” should watch all these lectures.

— You should be able to recognize non-sense,
and not accidently produce non-sense!

* Thank you for your patience.
— This was the first time someone has taught multiple sections of this class.

* Good luck with finals/projects and the next steps!


https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

