
CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks

Fall 2019



Admin – Lectures this week

• Planned bus strike Wednesday-Friday.

• I’m planning to finish the “testable content” of the course today.

– I might go a bit over time.

• Wednesday will be about “fun with deep learning”.

• Friday, I might cover different topics in the different sections:

– Possible topics include semi-supervised learning, Google’s PageRank, or proofs:
• How many gradient descent iterations do we need?

• What does the approximation error depend on?



Last Lectures: Deep Learning

• We’ve been discussing neural network / deep learning models:

• We discussed unprecedented vision/speech performance.

• We discussed methods to make SGD work better:

– Parameter initialization and data transformations.

– Setting the step size(s) in stochastic gradient and using momentum.

– Alternative non-linear functions like ReLU.

https://arxiv.org/pdf/1409.0575v3.pdf



“Residual” Networks (ResNets)

• Impactful recent idea is residual networks (ResNets):

– You can take previous (non-transformed) layer as input to current layer.
• Also called “skip connections” or “highway networks”.

– Non-linear part of the network only needs to model residuals.
• Non-linear parts are just “pushing up or down” a linear model in various places.

– This was a key idea behind first methods that used 100+ layers.
• Evidence that biological networks have skip connections like this.

https://en.wikipedia.org/wiki/Residual_neural_network



DenseNet

• More recent variation is “DenseNets”:

– Each layer can see all the values from many previous layers.

– Gets rid of vanishing gradients.

– May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf



Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:

– With increasing depth, training error of global optima decreases.

– With increasing depth, training error may poorly approximate test error.

• We want deep networks to model highly non-linear data.

– But increasing the depth can lead to overfitting.

• How could GoogLeNet use 22 layers?

– Many forms of regularization and keeping model complexity under control.

– Unlike linear models, typically use multiple types of regularization. 



Standard Regularization

• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.

– Could also use L1-regularization: gives sparse network.



Standard Regularization

• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.

– Could also use L1-regularization: gives sparse network.

• “Hyper-parameter” optimization:

– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.

• Recent result:

– Adding a regularizer in this way creates bad local optima.



Early Stopping

• Another common type of regularization is “early stopping”:

– Monitor the validation error as we run stochastic gradient.

– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout

• Dropout is a more recent form of explicit regularization:
– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Encourages distributed representation rather than relying on specific zi.
• Alternately, you are adding invariance to missing inputs or latent factors.

– After a lot of success, dropout may already be going out of fashion.
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Training goes to 0 with enough units: we’re finding a global min.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??

• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



Implicit Regularization of SGD

• There is growing evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example of implicit regularization:
– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero, we fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.

– Converges to solution Xw=y that has the minimum L2-norm.
• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

• Example of implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• We can fit the data exactly.

– You run gradient descent from any starting point.

– Converges to max-margin solution of the problem.
• So using gradient descent is equivalent to encouraging large margin.

• Similar result known for boosting.



(pause)



Deep Learning “Tricks of the Trade”

• We’ve discussed heuristics to make deep learning work:
– Parameter initialization and data transformations.

– Setting the step size(s) in stochastic gradient and using momentum.

– RestNets and alternative non-linear functions like ReLU.

– Different forms of regularization:
• L2-regularization, early stopping, dropout, implicit regularization from SGD.

• These are often still not enough to get deep models working.

• Deep computer vision models are all convolutional neural networks:
– The W(m) are very sparse and have repeated parameters (“tied weights”).

– Drastically reduces number of parameters (speeds training, reduces overfitting).



1D Convolution as Matrix Multiplication

• 1D convolution:

– Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’:

– Can be written as a matrix multiplication:



1D Convolution as Matrix Multiplication

• Each element of a convolution is an inner product:

• So convolution is a matrix multiplication (I’m ignoring boundaries):

• The shorter ‘w’ is, the more sparse the matrix is.



2D Convolution as Matrix Multiplication

• 2D convolution:

– Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:

– Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:



Motivation for Convolutional Neural Networks

• Consider training neural networks on 256 by 256 images.

– This is 256 by 256 by 3 ≈ 200,000 inputs.

• If first layer has k=10,000, then it has about 2 billion parameters.

– We want to avoid this huge number (due to storage and overfitting).

• Key idea: make Wxi act like several convolutions (to make it sparse):

1. Each row of W only applies to part of xi.

2. Use the same parameters between rows.

• Forces most weights to be zero, reduces number of parameters.



Motivation for Convolutional Neural Networks

• Classic vision methods uses fixed convolutions as features:

– Usually have different types/variances/orientations.

– Can do subsampling or take maxes across locations/orientations/scales.



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Don’t pick from fixed convolutions, but learn the elements of the filters.



Motivation for Convolutional Neural Networks

• Convolutional neural networks learn the convolutions:

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Convolutional Neural Networks

• Convolutional Neural Networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.



Convolutional Neural Networks

• Convolutional Neural Networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to act like several convolutions.



Convolutional Neural Networks

• Convolutional Neural Networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to act like several convolutions.

– Pooling layer: combine results of convolutions.

• Can add some invariance or just make the number of parameters smaller.

• Usual choice is ‘max pooling’:



LeNet for Optical Character Recognition

http://blog.csdn.net/strint/article/details/44163869



Deep Hierarchies in the Visual System

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



Deep Hierarchies in Optics

http://www.argmin.net/2018/01/25/optics/



Last Time: Convolutional Neural Networks

• Classic convolutional neural network (LeNet):

• Visualizing the “activations” of the layers:
– http://scs.ryerson.ca/~aharley/vis/conv

– http://cs231n.stanford.edu

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/


Partial Summary

• ResNets include untransformed previous layers.

– Network focuses non-linearity on residual, allows huge number of layers.

• Regularization is crucial to neural net performance:

– L2-regularization, early stopping, dropout, implicit regularization of SGD.

• Convolutional neural networks:

– Restrict W(m) matrices to represent sets of convolutions.

– Often combined with max (pooling).

• Next time: modern convolutional neural networks and applications.

– Image segmentation, depth estimation, image colorization, artistic style.



(End of testable content for final exam)



Topics from Previous Years

• Slides for other topics that were covered in previous years:

– Ranking: finding “highest ranked” training examples (Google PageRank).

– Semi-supervised: using unlabeled data to help supervised learning.

– Sequence mining: approximate matching of patterns in large sequences.

• In previous years we did a course review on the last day:

– Overview of topics covered in 340, and topics coming in 540.

– Slides here: this could help with studying for the final.

http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L33.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L34.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L32.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F16/L35.pdf


CPSC 330 vs. 340

• CPSC 330 starts next semester: “Applied Machine Learning”.

– Not intended as a sequel to 340 (or even a prequel).

• There is some overlap in content, but focus is different:

– More emphasis on the other steps of the data processing pipeline:

• Data cleaning, feature extraction, reproducible workflows, communicating results.

– More emphasis of “how to use packages”, less on “how stuff works”.

• If you found 340 too hard to keep up with, 330 might make sense.

– In this situation, tell your friends about 330. 



CPSC 330 vs. 540

• Next semester I’m teaching CPSC 540.
– Intended as a direct sequel to 340.
– We’re basically starting with CNNs and going from there.

• Main focuses:
– What if yi is a sentence or an image or a protein?
– Giving you the background to understand the latest advances.

• Prerequisites:
– I expect you to know everything in this course and CPSC 320.

• Longer term, I expect this course to also be listed as CPSC 440.
– 540 next semester is a “trial run” for CPSC 440.
– I removed topics related to optimization research from the course.



Other ML-Related Courses

• CPSC 406:
– Numerical optimization algorithms (like gradient descent).

• CPSC 422:
– Includes topics like time series and reinforcement learning.

• CPSC 532R/533R:
– Deep learning for vision, sound, and language.

• CPSC 533V:
– Deep learning for computer graphics.

• EECE 592:
– Deep learning and reinforcement learning.

• STAT 406:
– Similar/complementary topics.

• STAT 460/461:
– Advanced statistical issues (what happens when ‘n’ goes to ∞?)



Final Slide

• “Calling Bullshit in the Age of Big Data”:

– https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-
4CSZD7bUI4gSPS

– Every “data scientist“ should watch all these lectures.

– You should be able to recognize non-sense,
and not accidently produce non-sense!

• Thank you for your patience.

– This was the first time someone has taught multiple sections of this class.

• Good luck with finals/projects and the next steps!

https://www.youtube.com/playlist?list=PLPnZfvKID1Sje5jWxt-4CSZD7bUI4gSPS

