
CPSC 340:
Machine Learning and Data Mining

More Deep Learning

Fall 2019



Last Time: Deep Learning

https://en.wikipedia.org/wiki/Neuron
https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk&t=300s
https://www.youtube.com/watch?v=aircAruvnKk&t=300s


ImageNet Challenge 

• Millions of labeled images, 1000 object classes.

http://www.image-net.org/challenges/LSVRC/2014/



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian Husky



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian Husky



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian Husky



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian Husky



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian Husky



ImageNet Challenge 

• Object detection task:

– Single label per image.

– Humans: ~5% error.

• 2015: Won by Microsoft Asia

– 3.6% error.

– 152 layers, introduced “ResNets”.

– Also won “localization” (finding location of objects in images).

• 2016: Chinese University of Hong Kong:

– Ensembles of previous winners and other existing methods.

• 2017: fewer entries, organizers decided this would be last year.

http://www.themtank.org/a-year-in-computer-vision



(pause)



Deep Learning Practicalities

• This lecture focus on deep learning practical issues: 

– Backpropagation to compute gradients.

– Stochastic gradient training.

– Regularization to avoid overfitting.

• Next lecture:

– Special ‘W’ restrictions to further avoid overfitting.



• Recall fitting line regression with a bias:

– We avoided this by adding a column of ones to X.

• In neural networks we often want a bias on the output:

• But we also often also include biases on each zic:

– A bias towards this h(zic) being either 0 or 1.

• Equivalent to adding to vector h(zi) an extra value that is always 1.

– For sigmoids, you could equivalently make one row of wc be equal to 0.

But first: Adding Bias Variables



But first: Adding Bias Variables



Artificial Neural Networks

• With squared loss and 1 hidden layer, our objective function is:

• Usual training procedure: stochastic gradient.

– Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.

– Highly non-convex and can be difficult to tune.

• Computing the gradient is known as “backpropagation”.

– Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Backpropagation

• Overview of how we compute neural network gradient:

– Forward propagation:
• Compute zi

(1) from xi.

• Compute zi
(2) from zi

(1).

• …

• Compute ො𝑦i from zi
(m), and use this to compute error.

– Backpropagation:
• Compute gradient with respect to regression weights ‘v’.

• Compute gradient with respect to zi
(m) weights W(m).

• Compute gradient with respect to zi
(m-1) weights W(m-1).

• …

• Compute gradient with respect to zi
(1) weights W(1).

• “Backpropagation” is the chain rule plus some bookkeeping for speed.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.



Backpropagation

• Let’s illustrate backpropagation in a simple setting:

– 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

– Only the first ‘r’ changes if you use a different loss.

– With multiple hidden units, you get extra sums.

• Efficient if you store the sums rather than computing from scratch.



Backpropagation

• I’ve marked those backprop math slides as bonus.
• Do you need to know how to do this?

– Exact details are probably not vital (there are many implementations).
– “Automatic differentiation” is becoming standard and has same cost.
– But understanding basic idea helps you know what can go wrong.

• Or give hints about what to do when you run out of memory.

– See discussion here by a neural network expert.

• You should know cost of backpropagation:
– Forward pass dominated by matrix multiplications by W(1), W(2), W(3), and ‘v’.

• If have ‘m’ layers and all zi have ‘k’ elements, cost would be O(dk + mk2).

– Backward pass has same cost as forward pass.

• For multi-class or multi-label classification, you replace ‘v’ by a matrix:
– Softmax loss is often called “cross entropy” in neural network papers.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


Deep Learning Vocabulary

• “Deep learning”: Models with many hidden layers.
– Usually neural networks.

• “Neuron”: node in the neural network graph.
– “Visible unit”: feature.
– “Hidden unit”: latent factor zic or h(zic).

• “Activation function”: non-linear transform.
• “Activation”: h(zi).
• “Backpropagation”: compute gradient of neural network.

– Sometimes “backpropagation” means “training with SGD”.

• “Weight decay”: L2-regularization.
• “Cross entropy”: softmax loss.
• “Learning rate”: SGD step-size.
• “Learning rate decay”: using decreasing step-sizes.
• “Vanishing gradient”: underflow/overflow during gradient calculation.



(pause)



ImageNet Challenge and Optimization

• ImageNet challenge:

– Use millions of images to recognize 1000 objects.

• ImageNet organizer visited UBC summer 2015.

• “Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).

2. Optimization.

• Why would optimization be so important?

– Neural network objectives are highly non-convex (and worse with depth). 

– Optimization has huge influence on quality of model.



Stochastic Gradient Training

• Standard training method is stochastic gradient (SG):

– Choose a random example ‘i’.

– Use backpropagation to get gradient with respect to all parameters.

– Take a small step in the negative gradient direction.

• Challenging to make SG work:

– Often doesn’t work as a “black box” learning algorithm.

– But people have developed a lot of tricks/modifications to make it work.

• Highly non-convex, so are the problem local mimina?

– Some empirical/theoretical evidence that local minima are not the problem.

– If the network is “deep” and “wide” enough, we think all local minima are good.

– But it can be hard to get SG to close to a local minimum in reasonable time.



Parameter Initialization

• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:

– Initialize bias variables to 0.

– Sample from standard normal, divided by 105 (0.00001*randn).

• w = .00001*randn(k,1)

– Performing multiple initializations does not seem to be important.



Parameter Initialization

• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• Also common to transform data in various ways:

– Subtract mean, divide by standard deviation, “whitten”, standardize yi.

• More recent initializations try to standardize initial zi:

– Use different initialization in each layer.

– Try to make variance of zi the same across layers.

• Popular approach is to sample from standard normal, divide by sqrt(2*nInputs).

– Use samples from uniform distribution on [-b,b], where



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Common approach: manual “babysitting” of the step-size.

– Run SG for a while with a fixed step-size.

– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Bias step-size multiplier: use bigger step-size for the bias variables.

• Momentum (stochastic version of “heavy-ball” algorithm):

– Add term that moves in previous direction:

– Usually βt = 0.9.



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Setting the Step-Size
• Automatic method to set step size is Bottou trick: 

1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

• Several recent methods using a step size for each variable:
– AdaGrad, RMSprop, Adam (often work better “out of the box”).
– Seem to be losing popularity to stochastic gradient (often with momentum).

• SGD often yields lower test error even though it takes longer and requires more tuning of step-size.

• Batch size (number of random examples) also influences results.
– Bigger batch sizes often give faster convergence but maybe to worse solutions?

• Another recent trick is batch normalization:
– Try to “standardize” the hidden units within the random samples as we go.
– Held as example of deep learning “alchemy” (blog post here about deep learning claims).

• Sounds science-ey and often works but little theoretical justification/understanding.

https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics


Vanishing Gradient Problem

• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.

• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.



Rectified Linear Units (ReLU)

• Replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.

– Fixes vanishing gradient problem.

– Gives sparser activations.

– Not really simulating binary signal, but could be simulating “rate coding”.



“Swish” Activiation

• Recent work searched for “best” activation:

• Found that zic/(1+exp(-zic)) worked best (“swish” function).
– A bit weird because it allows negative values and is non-monotonic.

– But basically the same as ReLU when not close to 0.



Summary

• Unprecedented performance on difficult pattern recognition tasks.

• Backpropagation computes neural network gradient via chain rule.

• Parameter initialization is crucial to neural net performance.

• Optimization and step size are crucial to neural net performance.

– “Babysitting”, momentum.

• ReLU avoid “vanishing gradients”.

• Next time:

– Regularization, and getting these working for vision problems.



• Autoencoders are an unsupervised deep learning model:
– Use the inputs as the output of the neural network.

– Middle layer could be latent features in non-linear latent-factor model.
• Can do outlier detection, data compression, visualization, etc.

– A non-linear generalization of PCA.
• Equivalent to PCA if you don’t have non-linearities.

Autoencoders

http://inspirehep.net/record/1252540/plots



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf



• Denoising autoencoders add noise to the input:

– Learns a model that can remove the noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots


