CPSC 340:
Machine Learning and Data Mining

More Deep Learning
Fall 2019

De(r Ne U\fﬂ’ ﬂeiwor I(Sl

g AR
-Vn‘)re(odemfco‘ PPr'Faff‘WI(P on A_’Fr'“"” (ﬂ’l’/f“f'

L oorn "W and 'V horyether

- \ewn ~rpo\1\ANS {Of Sy *(v'lseé
Gw‘ml*
— Non=linear 'R moakes i1 a

\M\uversql mrfrOx'ma\‘for For 'w)(¢

’“EG(L ld)’ef COW\L”IPS "rw"‘s“ '/‘mm ‘)m]w Io er

https://www.youtube.com/watch?v=aircAruvnKk&t=300s
https://www.youtube.com/watch?v=aircAruvnKk&t=300s

ImageNet Challenge

* Millions of labeled images, 1000 object classes.

person

chair

person
,! PEerson

flower pot
helmet

B . power drill i -2 — & — motorcycle

€°\s~/ Lor humans byl

hﬂ\ tor (om‘mfffs,

ImageNet Challenge

* Object detection task: Ilmage classification

0.3

— Single label per image. o

e

— Humans: ~5% error. o
— 027

ok K]

e el

4]

0
B 01

L

= o

Syberian Husky Canadian Husky)
0

2010

ImageNet Challenge

* Object detection task: Ilmage classification

0.3 -
: : [
— Single label per image. o) £7 Yswal improyement

e
— Humans: ~5% error. @

- — 0.2
B =l
4]
9

B 01
(%]
Syberian Husky Canadian Husky)

0

2010 2011

ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

0.3

027

017

Image classification

2010 2011

s

Mal /m/;/ovgm,,,f

5WI7LC‘1 "o J{(r /eanm'n’
(3 lq/en)

2012

ImageNet Challenge

* Object detection task: Ilmage Elasmflcgtlnn

0.3

— Single label per image.) 37 vswal mproytment
 —
— Humans: ~5% error. o | switch to decy /em.'n,
s E 0.2 (3 'q/ers)
- S
T
O
B 01
(]
o
Q

2010 2011 2012 2013

ImageNet Challenge

* Object detection task: Ilmage Elﬂss“‘ﬁ'ti“ﬂnl

0.3 - -
— Single label per image. "E' 27 wswal mptoyemenl
— Humans: ~5% error. | Switch o degp learning
s s b E 0.2 (3 'q/vers)

©
9

2 01 {decper!"
=]

Syberian Husky Canadian Husky] \

0
2010 2011 201z 2013 2014 /
ILSVRC year
(rooq L e Me

ImageNet Challenge

Object detection task:

Classification Localization

— Single label per image. L % es
— Humans: ~5% error. §™ g0 | (
% 0.1 0.07 -'-'—E v 0.09
2015: Won by Microsoft Asia & T A o
2010 2011 2012 2013 2014 2015 2016 2011 2012 2013 2014 2015 2016
— 3.6% error. ILSVRC year ILSVRC year

— 152 layers, introduced “ResNets”.
— Also won “localization” (finding location of objects in images).

2016: Chinese University of Hong Kong:

— Ensembles of previous winners and other existing methods.

2017: fewer entries, organizers decided this would be last year.

(pause)

Deep Learning Practicalities

* This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.

But first: Adding Bias Variables

Recall fitting line regressmn with a bias:
Ji= 2t
— We avoided this by adding a column of ones to X.
In neural networks we often want a bias on the output:

y 2\/ ch)() +)3
But we also often also mclude biases on each z_

Z h(wix t8) +
— A bias towards this h(z o) belng either O or 1.

Equivalent to adding to vector h(z) an extra value that is always 1.
— For sigmoids, you could equivalently make one row of w_ be equal to O.

But first: Adding Bias Variables

Artificial Neural Networks
* With squared loss and 1 hidden layer, our objective function is:
Fww)= 1 2 (v () ~y)?

e Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i, update both ‘v’ and ‘W’.

— Highly non-convex and can be difficult to tune.

 Computing the gradient is known as “backpropagation”.
— Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation:
* Compute z* from x..

» Compute z? from z%).

« Compute y. from z{™, and use this to compute error.
— Backpropagation:

« Compute gradient with respect to regression weights ‘v’.

Compute gradient with respect to z™ weights W™,

Compute gradient with respect to z/™?1 weights W(m-1),

Compute gradient with respect to z!Y) weights W),

“Backpropagation” is the chain rule plus some bookkeeping for speed.

flw

AL
2V
S
2w

Backpropagation

Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

0y W(z) V) -1 (/\i -)Z ! / :\/L\(W(;)L[le)l\(u/m .)))
) 2 >/l \) Where I X'

| H) (2) \% (3))/
= A(W"* h(whl (w"'x,))"(‘l'\(Z‘)

“///j/ \ (
= \/L\ (W h(W h(w" YA ‘Z)R(W(')x,)).:(‘ v h (z,,”))}\[zi_/z))

Backpropagation

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.
FOWGWOWI)= 1 (5=)% e 3y =vh(W7hw MW)))
f 3) (2) 0 C (3)

‘i’ rhW® h(wh(w"x;) = ¢ h(z,)//W
L e R PR DR) bt

) (" \T—/" V()Y ¢
5;@,”: b (WA W)W R VRO B (W) = ¢ W R k)

—_—
22'\"-\:4./(;,-' v L\(WWMWWMWH)))Wp,)h (z)(w()))W(zl). (W)X. - (I)W“);\ ((:))

Backpropagation

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

2f ~hiz m) ,;;Fvc: (‘MZS))

%\'ﬁ/(;): C VL\\(Z,U))A(Z,-R)) %(‘;):’ (\ li))‘\[z(z)

A (321 o - ’(B

gw = (WK) gg,,u:[z W () b
¢C =1

W=)R (0 23 =
TW()) W k (Zl)X' ZW(:)) =[i (l) (l)]h & (,)
C

— Only the first ‘r’ changes if you use a different loss.
— With multiple hidden units, you get extra sums.

N—

 Efficient if you store the sums rather than computing from scratch.

Backpropagation

I’'ve marked those backprop math slides as bonus.

Do you need to know how to do this?
— Exact details are probably not vital (there are many implementations).
— “Automatic differentiation” is becoming standard and has same cost.

— But understanding basic idea helps you know what can go wrong.
* Or give hints about what to do when you run out of memory.

— See discussion here by a neural network expert.

You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W®), W2, WG) and ‘v’.
* If have ‘m’ layers and all z, have ‘k’ elements, cost would be O(dk + mk?).
— Backward pass has same cost as forward pass.
For multi-class or multi-label classification, you replace ‘v’ by a matrix:
— Softmax loss is often called “cross entropy” in neural network papers.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Deep Learning Vocabulary

“Deep learning”: Models with many hidden layers.
— Usually neural networks.

“Neuron”: node in the neural network graph.
— “Visible unit”: feature.
— “Hidden unit”: latent factor z,_ or h(z,).

“Activation function”: non-linear transform.

“Activation”: h(z).

“Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means “training with SGD”.

“Weight decay”: L2-regularization.

“Cross entropy”: softmax loss.

“Learning rate”: SGD step-size.

“Learning rate decay”: using decreasing step-sizes.

“Vanishing gradient”: underflow/overflow during gradient calculation.

(pause)

ImageNet Challenge and Optimization

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example .
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.

e Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.
* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.

— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter Initialization

* Parameter initialization is crucial:
— Can’tinitialize weights in same layer to same value, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

A traditional random initialization:

— Initialize bias variables to O.

— Sample from standard normal, divided by 10° (0.00001*randn).
 w=.00001*randn(k,1)
— Performing multiple initializations does not seem to be important.

Parameter Initialization

 Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’tinitialize weights too large, it will take too long to learn.

e Also common to transform data in various ways:
— Subtract mean, divide by standard deviation, “whitten”, standardize y..

* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
e Popular approach is to sample from standard normal, divide by sqgrt(2*nlnputs).

— Use samples from uniform distribution on [-b,b], where = G

——m——

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

\\'/HMWA Aerewe o(t
/ u——v derenst ‘t

NS

—

Crro,

-

T’me

— If error is not decreasing, decrease step-size.

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
e Bias step-size multiplier: use bigger step-size for the bias variables.

* Momentum (stochastic version of “heavy-ball” algorithm):
— Add term that moves in previous direction:

4l _ -1
\I\/é — WC _ o(tv‘(’\' (Wt) *ﬁt(wé'\/vt)
s Keep ()oML) e
old direclior
— Usually Bt =0.9.

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

O

w? w

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method
w’ w®
y W
_7

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

Gradient Descent vs. Heavy-Ball Method

Girodient Method Heawy = ball Method

wr_;mﬁ o </
foune

Setting the Step-Size

Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box”).

— Seem to be losing popularity to stochastic gradient (often with momentum).
e SGD often yields lower test error even though it takes longer and requires more tuning of step-size.

Batch size (humber of random examples) also influences results.
— Bigger batch sizes often give faster convergence but maybe to worse solutions?

Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

— Held as example of deep learning “alchemy” (blog post here about deep learning claims).
* Sounds science-ey and often works but little theoretical justification/understanding.

https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics

Vanishing Gradient Problem

Consider the sigmoid function:

——
—

.. O . :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

|

o
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (RelLU)

e Replace sigmoid with perceptron loss (ReLU); Mox 102§

e

14?’/’(8;()

- ———

* Just sets negative values z,_ to zero.
— Fixes vanishing gradient problem.
— Gives sparser activations.
— Not really simulating binary signal, but could be simulating “rate coding”.

“Swish” Activiation

e Recent work searched for “best” aCtIVV

-

mx?(?Z

l"?'/’(e(

* Found thatz_/(1+exp(-z_)) worked best (“swish” function).
— A bit weird because it allows negative values and is non-monotonic.
— But basically the same as ReLU when not close to 0.

Summary

Unprecedented performance on difficult pattern recognition tasks.
Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.

Optimization and step size are crucial to neural net performance.

— “Babysitting”, momentum.

RelLU avoid “vanishing gradients”.

Next time:
— Regularization, and getting these working for vision problems.

Autoencoders

* Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

encoder decoder

wl w2 w2’ w1’

— Middle layer could be latent features in non-linear latent-factor model.
e Can do outlier detection, data compression, visualization, etc.

— A non-linear generalization of PCA.
e Equivalent to PCA if you don’t have non-linearities.

Autoencoders

.’De"‘ Cocl(/

A

Interbank markets

European Community
monetary/economic

a8
©
x
.~
@
=
-
2
@®
c
w

Disasters and
accidents

?
:h Legal/judicial

Q-

E

o

g
» [7))
» o5
e~
nn.ma
(¢}
3 3B
. - £

Government
borrowings

Accounts/

eamings

https://www.cs.toronto.edu/~hinton/science.pdf

Denoising Autoencoder

Denoising autoencoders add noise to the input:

encoder decoder

W1 w2 w2" w1

— Learns a model that can remove the noise.

