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Last Time: Multi-Dimensional Scaling

* PCA for visualization:
— We're using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:

— Let’s directly optimize the pixel locations of the z, values.
e “Gradient descent on the points in a scatterplot”.

— Needs a“cost” function saying how “good” the z, Iocatlons are.
e Traditional MDS cost functlon/—\/CA 77r7 to moke s(qu(P0+
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)=25 (=21~ lly - xI1)*

= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)=25 (=21~ lly - xI1)*
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..

QQA»
/ EPCA onl/ Moves anfy C/D,Stl‘.

Vi MDS MDS can presrs
: { ( \S!ﬁ_t

—o—2, LT




Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n n 2
£(2)=z2 (=2 = lly, = x1l)
= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n n 2
£(2)=z2 (=2 = lly, = x1l)
= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..




Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n N 2
‘F(Z) = ‘.:Z\)?ﬁ’ ( “Z,‘ "2)"” - ”Yi - )()'”)
* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z, values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.
— Not convex and sensitive to initialization.

* And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norms:

-F(Z): £ % (”Z,"'ZJ'“ - ”)q —X)'”)l
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* But we can make z, match different distances/similarities:
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— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.

* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

£(2)= 535 dy(kalaz) = dilxox))
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* A possibility is “classic” MDS with d,(x;x;) = x;'x; and d,(z,,z)) = z;'z;
— We obtain PCA in this special case (centered x;, d; as the squared L2-norm).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

£(2)= 25 d3(kla,2) = dilex)
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* Another possibility: di(x,x) = | |x;— x| |1 and d,(z;,z)) = [ [z;— 7| |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.

£ (2)= Z 2 (dl(z,,z) J(w)))

X;)X)
— Denominator reduces focus on large distances.




PC 2 (8.8% var.)

Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.

Accuracy: 70.0%
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(pause)



Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.

 Example is the ‘Swiss roll’:
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Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-linear manifolds.




Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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Manifolds in Image Space

e Consider slowly-varying transformation of image:
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* Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.
— Geodesic distance is distance through space of rotations/resizings.



ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:
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ISOMAP

* ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.
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* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.



Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x. to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold .
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is @ KNN of x..

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* % is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points




ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
e Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
* Usually distance between neighbours.

3. Compute weighted shortest path between all points.{ | |
e Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. |




ISOMAP on Hand Images

-

Fingers extension

Wrist rotation

* Related method is “local linear embedding”.



PCA

Sammon’s Map vs. ISOMAP vs. PCA
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:
— Focus on distance to “neighbours”(allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d; choices):

— d,: for each x;, compute probability that each x; is a ‘neighbour”.
* Computation is similar to k-means++, but most weight to close points (Gaussian).
* Doesn’t require explicit graph.

— d,: for each z, compute probability that each z; is a ‘neighbour’.

» Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d;: Compare x; and z; using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x, if you know the z, (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

t-SNE on Wikipedia Articles




t-SNE on Product Features




t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @& CD8Tcells
® CD20+Bcells CD20-Bcells @ CD11b- Monocytes
® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



(pause)



Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA/NMF is word2vec...



Using Context

* Consider these phrases:
— “the cat purred”

— “the kitten purred”

— “black cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

 Word2vec uses this insight to design an MDS distance function.



Word2Vec

Two common word2vec approaches:
1. Try to predict word from surrounding words (continuous bag of words).
2. Try to predict surrounding words from word (skip-gram).

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.



Word2Vec

In both cases, each word ‘i’ is represented by a vector z..
In continuous bag of words (CBOW), we optimize the following likelihood:
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Apply gradient descent to logarithm:
— Encourages zisz to be big for words in same context (making z, close to z)).
— Encourages zisz to be small for words not appearing in same context (makes z; and z, far).

For CBOW, denominator sums over all words.

For skip-gram it will be over all possible surrounding words.
— Common trick to speed things up: sample terms in denominator (“negative sampling”).



Word2Vec Example

e MDS visualization of a set of related words:

05 T T T T T
_ — — slowest 05F t hairess -
0.41 _ - ) . f'
T 0.4+ .
- slower _ _ — = = — —=shortest e !
- P s ! * countess
03 : _ < shorter 4 03r *aunt r + duchess-
it N ' %istenJ n
- L]
short~ e 0.2 [ 3 | ! empress
0.2F i iy I f ! -
o1k !+ madam f, ]
. |y | by
I {heir
| h
o1k il 1 , ‘nep lew
| )
ik | i 1 woman : |
—— e uncle i 1 queer’
0 P stronger - T 7 =~ = — -sirongest ! brother { . I
/s " - =0.2 i f -
o . < louder ~ —— e - . .
strang ¢ . loudest ) .'F | {emperor
-0.1F 7 1-03F ! .
-~ clearer 7 7 7 = = == - = - = ¢learest : \
Pl i [ bl b S SR e I ! !
g - — = goftest 0.4 I |
o :
-0.2f clear v~ Gafker ~ = ~ = = — — _ _ _ __ . {gir I
soft « - * darkest 0.5k {man bking 4
dark «
-0.3 I I 1 1 1 1 1 1 1 L 1 1 1 L 1 1 L
=0.4 -0.3 =0.2 =0.1 0 01 02 0.3 0.4 0.5 0.6 -05 04 -03 -02 -D01 0 0.1 0.2 0.3 0.5

e Distances between vectors might represent semantics.



Summary

Different MDS distances/losses/weights usually gives better results.
Manifold learning focuses on low-dimensional curved structures.
ISOMAP is most common approach:

— Approximates geodesic distance by shortest path in weighted graph.
t-SNE is promising new data MDS method.

Word2vec:

— Latent-factor (continuous) representation of words.
— Based on predicting word from its context (or context from word).

Next time: deep learning.



Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:

YA o)
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= [X XV
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 PCA can perfectly capture the low-dimensional structure.

 T-SNE can capture the local structure, but can “twist” the plane.

D
— |t doesn’t try to get long distances correct. 1 e




Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing



https://en.wikipedia.org/wiki/Graph_drawing

e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:
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* Using multivariate chain rule we have:
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