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Last Time: PCA with Orthogonal/Sequential Basis

• When k = 1, PCA has a scaling problem.

• When k > 1, have scaling, rotation, and label switching.

– Standard fix: use normalized orthogonal rows Wc of ‘W’.

– And fit the rows in order: 

• First row “explains the most variance” or “reduces error the most”.



“Synthesis” View vs. “Analysis” View

• We said that PCA finds hyper-plane minimizing distance to data xi.
– This is the “synthesis” view of PCA (connects to k-means and least squares).

• “Analysis” view when we have orthogonality constraints: 
– PCA finds hyper-plane maximizing variance in zi space.

– You pick W to “explain as much variance in the data” as possible.



Colour Opponency in the Human Eye

• Classic model of the eye is with 4 photoreceptors:

– Rods (more sensitive to brightness).

– L-Cones (most sensitive to red).

– M-Cones (most sensitive to green).

– S-Cones (most sensitive to blue).

• Two problems with this system:

– Not orthogonal.

• High correlation in particular between red/green.

– We have 4 receptors for 3 colours.

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio



Colour Opponency in the Human Eye

• Bipolar and ganglion cells seem to code using “opponent colors”:

– 3-variable orthogonal basis:

• This is similar to PCA (d = 4, k = 3).

http://oneminuteastronomer.com/astro-course-day-5/
https://en.wikipedia.org/wiki/Color_visio
http://5sensesnews.blogspot.ca/



Colour Opponency Representation

https://en.wikipedia.org/wiki/RGB_color_model



PCA Computation: other methods

• With linear regression, we had the normal equations

– But we also could do it with gradient descent, SGD, etc.

• With PCA we have the SVD

– But we can also do it with gradient descent, SGD, etc.

– These other methods typically don’t enforce the uniqueness “constraints”.

• Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.
– But you can do this in post-processing if you want.

– Why would we want this? We can use our tricks from Part 3 of the course:

• We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.

• We can fit huge datasets where SVD is too expensive.
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PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In k-means we tried to optimize this with alternating minimization:

– Fix “cluster assignments” Z and find the optimal “means” W.

– Fix “means” W and find the optimal “cluster assignments” Z.

• Converges to a local optimum.

– But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• In PCA we can also use alternating minimization:

– Fix “part weights” Z and find the optimal “parts” W.

– Fix “parts” W and find the optimal “part weights” Z.

• Converges to a local optimum.

– Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• Alternating minimization steps:

– If we fix Z, this is a quadratic function of W (least squares column-wise):

– If we fix W, this is a quadratic function of Z (transpose due to dimensions):



PCA Computation: Alternating Minimization

• With centered data, the PCA objective is:

• This objective is not jointly convex in W and Z.

– You will find different W and Z depending on the initialization.

• For example, if you initialize with all wc = 0, then they will stay at zero.

– But it’s possible to show that all “stable” local optima are global optima.

• You will converge to a global optimum in practice if you initialize randomly.
– Randomization means you don’t start on one of the unstable non-global critical points.

• E.g., sample each initial zij from a normal distribution.

http://www.offconvex.org/2018/11/07/optimization-beyond-landscape/



PCA Computation: Stochastic Gradient

• For big X matrices, you can also use stochastic gradient:

• Other variables stay the same, cost per iteration is only O(k).



(pause)



VQ vs. PCA vs. NMF

• How should we represent faces?

– Vector quantization (k-means).

• Replace face by the average face in a cluster.

• ‘Grandmother cell’: one neuron = one face.

• Can’t distinguish between people in the same cluster (only ‘k’ possible faces). 

• Almost certainly not true: too few neurons.



VQ vs. PCA vs. NMF

• How should we represent faces?

– Vector quantization (k-means). 

– PCA (orthogonal basis).

• Global average plus linear combination of “eigenfaces”.

• “Distributed representation”.
– Coded by pattern of group of neurons: can represent infinite number of faces  by changing zi.

• But “eigenfaces” are not intuitive ingredients for faces.
– PCA tends to use positive/negative cancelling bases.



VQ vs. PCA vs. NMF

• How should we represent faces?

– Vector quantization (k-means). 

– PCA (orthogonal basis).

– NMF (non-negative matrix factorization):

• Instead of orthogonality/ordering in W, require W and Z to be non-negativity.

• Example of “sparse coding”:
– The zi are sparse so each face is coded by a small number of neurons.

– The wc are sparse so neurons tend to be “parts” of the object.



Representing Faces

• Why sparse coding?

– “Parts” are intuitive, and brains seem to use sparse representation.

– Energy efficiency if using sparse code.

– Increase number of concepts you can memorize?

• Some evidence in fruit fly olfactory system.

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf



Warm-up to NMF: Non-Negative Least Squares

• Consider our usual least squares problem:

• But assume yi and elements of xi are non-negative:

– Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).

• Assume we want elements of ‘w’ to be non-negative, too:

– No physical interpretation to negative weights.

– If xij is amount of product you produce, what does wj < 0 mean?

• Non-negativity leads to sparsity...



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.
– Also regularizes: wj are smaller since can’t “cancel” negative values.

– Sparsity leads to cheaper predictions and often to more interpretability.
• Non-negative weights are often also more interpretable.

• How can we minimize f(w) with non-negative constraints?
– Naive approach: solve least squares problem, set negative wj to 0.

– This is correct when d = 1.

– Can be worse than setting w = 0 when d ≥ 2.  



Sparsity and Non-Negativity

• Similar to L1-regularization, non-negativity leads to sparsity.

– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?

– A correct approach is projected gradient algorithm:

• Run a gradient descent iteration:

• After each step, set negative values to 0.

• Repeat.



Sparsity and Non-Negativity

• Projected gradient algorithm:

– Similar properties to gradient descent:

• Guaranteed decrease of ‘f’ if αt is small enough.

• Reaches local minimum under weak assumptions (global minimum for convex ‘f’).
– Least squares objective is still convex when restricted to non-negative variables.

• Solution is a “fixed point”: w* = max{0, w* - 𝛼t ∇f(w*)}.
– Use this to decide when to stop.

– A generalization is “proximal-gradient”:

• Instead of constraints, allows non-smooth terms (“findMinL1”).



Projected-Gradient for NMF

• Back to the non-negative matrix factorization (NMF) objective:

– Different ways to use projected gradient:
• Alternate between projected gradient steps on ‘W’ and on ‘Z’.

• Or run projected gradient on both at once.

• Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.

– Non-convex and (unlike PCA) is sensitive to initialization.
• Hard to find the global optimum.

• Typically use random initialization.

• Also, we usually don’t center the data with NMF.



Application: Sports Analytics

• NBA shot charts:

• NMF (using “KL divergence” loss with k=10 and smoothed data).

– Negative
values would
not make 
sense here.

http://jmlr.org/proceedings/papers/v32/miller14.pdf



Application: Cancer “Signatures”

• What are common sets of mutations in different cancers?

– May lead to new treatment options.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/



(pause)



Beyond Squared Error

• Our objective for latent-factor models (LFM):

• As before, there are alternatives to squared error.

• If X consists of +1 and -1 values, we could use logistic loss:



Robust PCA

• Robust PCA methods use the absolute error:

• Will be robust to outliers in the matrix ‘X’.

• Encourages “residuals” rij to be exactly zero.

– Non-zero rij are where the “outliers” are.

http://statweb.stanford.edu/~candes/papers/RobustPCA.pdf



Robust PCA

http://jbhuang0604.blogspot.ca/2013/04/miss-korea-2013-contestants-face.html

• Miss Korea contestants and robust PCA:



Regularized Matrix Factorization

• Recently people have also considered L2-regularized PCA:

• Replaces normalization/orthogonality/sequential-fitting.
– Often gives lower reconstruction error on test data.

– But requires regularization parameters λ1 and λ2.

• Need to regularize W and Z because of scaling problem.
– If you only regularize ‘W’ it doesn’t do anything.

• I could take unregularized solution, replace W by αW for a tiny α to
shrink ||W||F as much as I want, then multiply Z by (1/α) to get same solution.

– Similarly, if you only regularize ‘Z’ it doesn’t do anything.



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Disadvantage of using L1-regularization over non-negativity:

– Sparsity controlled by λ1 and λ2 so you need to set these.

• Advantage of using L1-regularization:

– Sparsity controlled by λ1 and λ2, so you can control amount of sparsity.

– Negative coefficients often do make sense.



Matrix Factorization with L1-Regularization

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Sparse Matrix Factorization

• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Many variations exist:

– Mixing L2-regularization and L1-regularization.

• Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:

• K-means is special case where k = 1.

• PCA is special case where k = d.



Recent Work: Structured Sparsity

• “Structured sparsity” considers dependencies in sparsity patterns.

– Can enforce that “parts” are convex regions.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf



Summary

• Biological motivation for orthogonal and/or sparse latent factors.

• Alternating minimization and stochastic gradient:
– Iterative algorithms for minimizing PCA objective.

• Non-negative matrix factorization: LFM with no negative values.
– Non-negativity constraints lead to sparse solution.

– Projected gradient adds constraints to gradient descent.

• Many of our regression tricks can be used with LFMs:
– Robust PCA uses absolute error to be roboust to outliers.

– L1-regularization leads to sparse factors/weights.

• Next time: the million-dollar NetFlix challenge.



Proof: “Synthesis” View = “Analysis” View (WWT = I)

• The variance of the zij (maximized in “analysis” view):

• The distance to the hyper-plane (minimized in “synthesis” view):



Canonical Correlation Analysis (CCA)

• Suppose we have two matrices, ‘X’ and ‘Y’.

• Want to find matrices WX and WY that maximize correlation.

– “What are the latent factors in common between these datasets?”

• Define the correlation matrices:

• Canonical correlation analysis (CCA) maximizes

– Subject to WX and WY having orthogonal rows.

• Computationally, equivalent to PCA with a different matrix.

– Using the “analysis” view that PCA maximizes Tr(WTWXTX).



Kernel PCA
• From the “analysis” view (with orthogonal PCs) PCA maximizes: 

• It can be shown that the solution has the form (see here):

• Re-parameterizing in terms of ‘U’ gives a kernelized PCA:

• It’s hard to initially center data in ‘Z’ space, 
but you can form the centered kernel matrix (see here).

https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf
https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf


Probabilistic PCA

• With zero-mean (“centered”) data, in PCA we assume that

• In probabilistic PCA we assume that

• Integrating over ‘Z’ the marginal likelihood given ‘W’ is Gaussian,

• Regular PCA is obtained as the limit of σ2 going to 0.



Generalizations of Probabilistic PCA

• Probabilistic PCA model:

• Why do we need a probabilistic interpretation?

• Shows that PCA fits a Gaussian with restricted covariance.

– Hope is that WTW + σ2I is a good approximation of XTX.

• Gives precise connection between PCA and factor analysis.



Factor Analysis

• Factor analysis is a method for discovering latent factors.

• Historical applications are measures of intelligence and personality.

• A standard tool and widely-used across science and engineering.

https://new.edu/resources/big-5-personality-traits



PCA vs. Factor Analysis

• PCA and FA both write the matrix ‘X’ as

• PCA and FA are both based on a Gaussian assumption.

• Are PCA and FA the same?

– Both are more than 100 years old.

– People are still arguing about whether they are the same:

• Doesn’t help that some packages run PCA when you call their FA method.





PCA vs. Factor Analysis

• In probabilistic PCA we assume:

• In FA we assume for a diagonal matrix D that:

• The posterior in this case is:

• The difference is you have a noise variance for each dimension.
– FA has extra degrees of freedom.



PCA vs. Factor Analysis

• In practice there often isn’t a huge difference:

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi



Factor Analysis Discussion

• Differences with PCA:

– Unlike PCA, FA is not affected by scaling individual features.

– But unlike PCA, it’s affected by rotation of the data.

– No nice “SVD” approach for FA, you can get different local optima.

• Similar to PCA,  FA is invariant to rotation of ‘W’.

– So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

• Factor analysis has found an enormous number of applications.

– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.



Motivation for ICA

• Factor analysis has found an enormous number of applications.
– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.
– We can rotate W and obtain the same model.

• Independent component analysis (ICA) is a more recent approach.
– Around 30 years old instead of > 100.

– Under certain assumptions it can identify factors.

• The canonical application of ICA is blind source separation.



Blind Source Separation

• Input to blind source separation:
– Multiple microphones recording multiple sources.

• Each microphone gets different mixture of the sources.
– Goal is reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php



Independent Component Analysis Applications

• ICA is replacing PCA and FA in many applications:

• Recent work shows that ICA can often resolve direction of causality.

https://en.wikipedia.org/wiki/Independent_component_analysis#Applications



Limitations of Matrix Factorization

• ICA is a matrix factorization method like PCA/FA,

• Let’s assume that X = ZW for a “true” W with k = d.

– Different from PCA where we assume k ≤ d.

• There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness

• Label switching: get same model if we permute rows of W.
– We can exchange row 1 and 2 of W (and same columns of Z).
– Not a problem because we don’t care about order of factors.

• Scaling: get same model if you scale a row.
– If we mutiply row 1 of W by α, could multiply column 1 of Z by 1/α.
– Can’t identify sign/scale, but might hope to identify direction.

• Rotation: get same model if we rotate W.
– Rotations correspond to orthogonal matrices Q, such matrices have QTQ = I.
– If we rotate W with Q, then we have (QW)TQW = WTQTQW = WTW.

• If we could address rotation, we could identify the “true” directions.



A Unique Gaussian Property

• Consider an independent prior on each latent features zc.

– E.g., in PPCA and FA we use N(0,1) for each zc.

• If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

• The (non-intuitive) magic behind ICA:

– If the priors are all non-Gaussian, it isn’t rotationally symmetric.

– In this case, we can identify factors W (up to permutations and scalings).



PCA vs. ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf



Independent Component Analysis

• In ICA we approximate X with ZW, 
assuming p(zic) are non-Gaussian.

• Usually we “center” and “whiten” the data before applying ICA.

• There are several penalties that encourage non-Gaussianity:

– Penalize low kurtosis, since kurtosis is minimized by Gaussians.

– Penalize high entropy, since entropy is maximized by Gaussians.

• The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data

• Cash flow from 5 stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf



ICA on Retail Purchase Data

• Factors found using ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf


