CPSC 340:
Machine Learning and Data Mining



Previously: Ensemble Methods

C.I“S'Sif:f/.S
* Ensemble metheds are classifiers that have classifiers as input.

— Also called “meta-learning”.

 They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

 Ensemble methods often have higher accuracy than input classifiers.



Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,,: How small you can make the training error.
VS.

2. E.oorox: HOW well training error approximates the test error.

e Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:

1. Averaging: improves approximation error of classifiers with high E_ .

2. Boosting: improves training error of classifiers with high E, ...



AdaBoost: Classic Boosting Algorithm

* A classic boosting algorithm for binary classification is AdaBoost.

 AdaBoost assumes we have a “base” binary classifier that:
— |s simple enough that it doesn’t overfit much.
— Can obtain >50% weighted accuracy on any dataset.

\f\(s @Xc\»-,/ /[‘l
ZV T(2 1 Fe
1= A y y‘
L/we»yk*rs (swm Yo 1)

 Example: decision stumps or low-depth decision trees.
— Easy to modify stumps/trees to use weighted accuracy as score.



AdaBoost: Classic Boosting Algorithm

* Overview of AdaBoost:

Fit a classifier on the training data.

Give a higher weight to examples that the classifier got wrong.
Fit a classifier on the weighted training data.

Go back to 2.

Weight gets exponentially larger each time you are wrong.

i U

* Final prediction: weighted vote of individual classifier predictions.
— Trees with higher (weighted) accuracy get higher weight.

* See Wikipedia for precise definitions of weights.
— Comes from “exponential loss” (a convex approximation to 0-1 loss).



https://en.wikipedia.org/wiki/AdaBoost

AdaBoost with Decision Stumps in Action

e 2D example of AdaBoost with decision stumps (W|th accuracy score):

File Edit View Insert Tools DktdewHIp

Ddde Yy ANOVLEL-2 0E 0D

Decision Stump 1

> Ensemble (Error = 0.112000)

2

— Size of training example on left is proportional to classification weight.



AdaBoost with Decision Stumps

e 2D example of AdaBoost with decision stumps (with accuracy score):
— 100% training accuracy. 2

— Ensemble of 50 decision stumps.
* Fit sequentially, not independently.

1

0.5

e Are decision stumps a good base classifier?
— They tend not to overfit.

— Easy to get >50% weighted accuracy.

0

-0.5

-1

-1.5

 Base classifiers that don’t work:
— Deep decision trees (no errors to “boost”). Y T S VR

— Decision stumps with infogain (doesn’t guarantee >50% weighted accuracy).
— Weighted logistic regression (doesn’t guarantee >50% weighted accuracy).



AdaBoost Discussion

* AdaBoost with shallow decision trees gives fast/accurate classifiers.
— Classically viewed as one of the best “off the shelf” classifiers.
— Procedure originally came from ideas in learning theory.

 Many attempts to extend theory beyond binary case.
— Led to “gradient boosting”, which is like “gradient descent with trees”.

 Modern boosting methods:
— Look like AdaBoost, but don’t necessarily have it as a special case.



XGBoost: Modern Boosting Algorithm

* Boosting has seen a recent resurgence, partially due to XGBoost:
— A boosting implementation that allows huge datasets.
— Has been part of many recent winners of Kaggle competitions.

* As base classifier, XGBoost uses regularized regression trees.



Regression Trees

Regression trees used in XGBoost:
— Each split is based on 1 feature.

— Each leaf gives a real-valued prediction.
’Lpn:ase,mc u'oqfaor,cifyy,. How -y howrs A’(" fnry /’/"7 qowes (s Aa,/?

g €l >
4 ) N
{ V
‘@‘ ‘ e Q
y ti L

MR Q :> own Xbor!

chl'»dion W, n

— Above, we would predict “2.5 hours” for a 14-year-old who owns an Xbox.



Regression Trees

* How can we fit a regression tree? o <'ng
own )(laox7
* Simpl roach:
Simple approac 9,; = P

— Predict: at each Ieaf pred|Ct mean of the Lianiig y; assigiicu w ulé leaf.
* Weight w at leaf ‘L’ is set to mean(y,) among y, at the leaf node.

— Train: set the w| values by m|n|m|zmg the squared error,

'F(w,)wn > f // )
l\
7I
— Same speed as fitting decision trees from Week 2.
* Use mean instead of mode, and use squared error instead of accuracy/infogain.

— Use greedy strategy for growing tree, as in Part 1.



Boosted Regression Trees: Prediction

 Consider an ensemble of regression trees.
— For an example ‘i, they each make a continuous prediction:

N N
N ¢

A ¢
v, 0.2 ;,f—a.l I 0.| = = 00)

* In XGBoost, final prediction is sum of individual predictions:

/)
j\ “j\ le\

0 0

N N

—

- 4 \n‘ A A
) fat yat Ay,
= (024004 01 + S (=000

* Notice we aren’t using the mean as we would with random forests.
— In boosting, each tree is not individually trying to predict the true y, value (we assume they underfit).
— Instead, each new tree tries to “fix” the prediction made by the old trees, so that sumisy..



Boosted Regression Trees: Training

e Consider the following “gradient tree boosting” procedure:
— Tree[1] = fit(X,y).
— ¥y = Tree[1].predict(X).
— Tree[2] = fit(X,y - ).
— y =9 + Tree[2].predict(X).
— Tree[3] = fit(X,y - ¥).
— y =9y + Tree[3].predict(X).
— Tree[4] =fit(X,y - V).
— y =9y + Tree[4].predict(X).
* Each tree is trying to predict residuals (y-y,) of current prediction.
— “True label is 0.9, old prediction is 0.8, so | can improve J. by predicting 0.1.”



Gradient Tree Boosting in Action

y — SN JJ:/

P
X K__\/x‘—\)
zoro resided
here
LA _1ree
A A
7 7

% (Tor 1ree ]) y a
J-QGI WI

X N\ Fod podichn | A
i fival prodiclim i Sum o |5, ‘\ree;\ which Lt 4 dala e"d‘-ﬂY



Gradient Tree Boosting in Action

File Edit View Inset Tools
NDadde | @ 08| & E
Regression Stump 1
400 i . -
ey
300

200 |

100 |

-100

-200

-300

:‘; ;li"ll}' 'l‘;' L
YRS
'l-
'._ﬂ
-
-10 =] 0 5

10

Desktop Window Help

4DDEnsemhle (Error = 4014.596549)

300

200 [

100 |

-100 |

-200

-300

)
L
- -
b
.}:..:".'.‘}'-l_; :
" -
¥id £ 24 A0
="
i
10 5 0 5 10



Regularized Regression Trees

* Procedure monotonically decreases the training error.

— As long as not all w =0, each tree decreases training error.

* |t can overfit if trees are too deep or you have too many trees.
— To restrict depth, add LO-regularization (stop splitting if w, = 0).
4]
_ 2
-F(V\/l)wj)'“>- g(leﬁr/) -+ )OH\U”O

* “Only split if you decrease squared error by A,.”

— To further fight overfitting, XGBoost also adds L2-regularization of ‘w’.

Flamy )= 2 (. =0 )+ A MM, + 2,000



XGBoost Discussion

Instead of pruning trees if score doesn’t improve, grows full trees.
— And then prunes parts that don’t improve score with LO-regularizer added.

Cost of fitting trees in XGBoost is same as usual decision tree cost.
— XGBoost includes a lot of tricks to make this efficient.
— But can’t be done in parallel like random forest (since fitting sequentially).

In XGBoost, it’s the residuals that act like the “weights” in AdaBoost.
— Focuses on decreasing error in examples with large residuals.

How do you maintain efficiency if not using squared error?
— For non-quadratic losses like logistic, there is no closed-form solution.

— Approximates non-quadratic losses with second-order Taylor expansion.
* Maintains least squares efficiency for other losses (by approximating with quadratic).



(pause)



Motivation for Learning about MLE and MAP

* Next topic: maximum likelihood estimation (MLE) and MAP estimation.
— Crucial to understanding advanced methods, notation can be difficult at first.

* Why are we learning about these?
— Justifies the naive Bayes “counting” estimates for probabilities.
— Shows the connection between least squares and the normal distribution.
— Makes connection between “robust regression” and “heavy tailed” probabilities.
— Shows that regularization and Laplace smoothing are doing the same thing.
— Justifies using sigmoid function to get probabilities in logistic regression.

— Gives a way to write complicated ML problems as optimization problems.
* How do you define a loss for “number of Facebook likes” or “1-5 star rating”?

— Crucial to understanding advanced methods.



But first: “argmin” and “argmax”

 We've repeatedly used the min and max functions:
' 1 - _
m\:v" {\A/ $=0 May gcos (w)f\,[

— Minimum (or maximum) value achieved by a function.

* Arelated set of functions are the argmin and argmax:

— The set of parameter values achieving the minimum (or maximum).
; - -l ' 1 - T =1
min{ (-1} <0 ovgoinf Sl IS 6 +4T) (X7

gt lw- 17§ =) ”
v é ; ""‘)\""V"“‘i\w;(w)ﬁ: 0) 21{) “”l;



But first: “argmin” and “argmax”

* The last slide is a little sloppy for the following reason:
— There may be multiple values achieving the min and/or max.

— So the argmin and argmax return sets.
“51’1 (on" Yns
in SV = / Alning T e/f,,, In W\
arow Yl(w ))g‘__ﬂ; § The enf
sots are equivalonl *

orgeaxd (o (5S1..-4m-2m 0,24 4%, ¢

)

Arqpn X _], < ¢ — -
()w 3,;“Xw \/” g-— iV\/ \ X')(W:)(Tyf
— And we don’t say a variable “is” the argmax, but that it “is in” the argmax.

2’,‘.’ € a(c)xa{i(of(,v)g WTY“ 1Y (XT\/) € a’&"\"" {ﬁ\\Xw-yW T :”2 ))w,)zf



The Likelihood Function

Suppose we have a dataset ‘D’ with parameters ‘w’.

For example:
— We flip a coin three times and obtain D={"heads”, “heads”, “tails”}.
— The parameter ‘W’ is the probability that this coin lands “heads”.

We define the likelihood as a probability mass function p(D | w).
— “Probability of seeing this data, given the parameters”.
— If ‘D’ is continuous it would be a probability “density” function.

If this is a “fair” coin (meaning it lands “heads” with probability 0.5):
— The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.

— If w =0 (“always lands tails”), then p(HHT | w = 0) = 0 (data is less likely for this ‘w’).
— If w=0.75, then p(HHT | w=0.75) = (3/4)(3/4)(1/4) = 0.14 (data is more likely).



Maximum Likelihood Estimation (MLE)

* We can plot the likelihood p(HHT | w) as a function of ‘w’:

4.5

* Notice:
— Data has probability O if w=0 or w=1 (since we have ‘H’ and ‘T’ in data).
— Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).
— This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).

e Maximum likelihood estimation (MLE):

— Choose parameters that maximize the likelihood: W S aramo\’( SL P (D )w)§
* In this example, MLE is 2/3.



MLE for Binary Variables (General Case)

 Consider a binary feature: { @
l

X~ ||

|

L9

* Using ‘W’ as “probability of 1”7, the maximum likelihood estimate is:

N H
W= oo
o) QXC\MW%
* This is the “estimate” for the probabilities we used in naive Bayes.

— The conditional probabilities we used in naive Bayes are also MLEs.
* The derivation is tedious, but if you’re interested | put it here.


https://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

(pause)



Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE) for fitting probabilistic models.
— We have a dataset D.
— We want to pick parameters ‘w’.
— We define the likelihood as a probability mass/density function p(D | w).

— We choose the model W that maximizes the likelihood:

w € ar gma 2 pf D)w)g

* Appealing “consistency” properties as n goes to infinity (take STAT 4XX).
— “This is a reasonable thing to do for large data sets”.



Least Squares is Gaussian MLE

* |t turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:
flw)=31)0 -yl

— This gives MLE of a linear model with [ID noise from a normal distribution:
_ T
Vi = wx, + &
Where each & s sampled iﬂe‘(ff’nc’fnﬁv Fom standnd Norwal

e “Gaussian” is another name for the “normal” distribution.

— Remember that least squares solution is called the “normal equations”.



Least Squares is Gaussian MLE

* |t turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:

A 04: < @rros§ ’T |
o ' 7, 4 . | }\k.\
o 7 A /‘ O'V‘l‘ plo{ L‘:{ 09,..,,,: E,', —
@« | 0 ;i

LP“S‘( S(I‘M\NS

as5waey Cr10/s coml

e [rim Goussian




Minimizing the Negative Log-Likelihood (NLL)

 To compute maximize likelihood estimate (MLE), usually we equivalently
minimize the negative “log-likelihood” (NLL):
* “Log-likelihood” is short for “logarithm of the likelihood”.

we argmar L p(DI)§ = 2y = log (pLoJu))

7

. n val /\1‘
e Why are these equivalent? gl

— Logarithm is strictly monotonic: if a > B, then log(a) > log(B).
* So location of maximum doesn’t change if we take logarithm.

— Changing sign flips max to min.

* See Max and Argmax notes if this seems strange.



http://www.cs.ubc.ca/~schmidtm/Courses/540-W16/max.pdf

Summary

Boosting: ensemble methods that improve training error.

XGBoost: modern boosting method based on regression trees.
— Each tree modifies the prediction made by the previous trees.
— LO- and L2-regularization used to reduce overfitting.

Maximum likelihood estimate:
— Maximizing likelihood p(D | w) of data ‘D’ given parameters ‘w’.

Next time:
— How does regularization and Laplace smoothing fit it?



