CPSC 340:
Machine Learning and Data Mining

Stochastic Gradient
Fall 2019

Last Time: Stochastic Gradient

e Stochastic gradient minimizes average of smooth functions:
jr\(w) =1 i T(: (w)
N,z
— Function f,(w) is error on example ‘".
* For example, with squared error we would have: f.(w) = %5(w'x, — y.)2.

* |terations perform gradient descent on one random example ‘i’:

Wtﬂ'-': Wt = ogfi“:;(wt?

— Cheap iterations even when ‘n’ is large.
— With 1 billion training examples, this iteration is 1 billion times faster.

Stochastic Gradient (SG)

e Stochastic gradient is an iterative optimization algorithm:
— We start with some initial guess, wV.
— Generate new guess by moving in the negative gradient direction:

w = w’ = ol V(W)

* For a random training example ‘i’.

— Repeat to successively refine the guess:
WJrH:Wt_o(tv{:i(wt) for 1=)) :))'g)“‘

* For a random training example ‘i’.

Problem where we can use Stochastic Gradient

e Stochastic gradient applies when minimizing averages:

~
T Vv) = Z(W Xi]‘ (S:’mq/eJ error>

] = |
T(w) N f log(' +exr)()vWX)) (lo‘j"{ic re(j(CSS\OV‘)

1=

| =
F w) = —l';) 2 ['a(J U 4(’7'0 'y;w X;)42”w//2] (Lz’rf’y\/\{w)u,/ /v()isfll)

‘»\(w): 71) 1(:(\'\) (OW noM_i_on 7Pof 7 he 99/\1'4%/ co.>e)

i=1
* Basically, all our regression losses except “brittle” regression.
— Recall: multiplying by positive constant doesn’t change location of optimal ‘w’

Why Does Stochastic Gradient Work / Not Work?

 Main problem with stochastic gradient:

— Gradient of random example might point in the wrong direction.

* Does this have any hope of working?
— The expected d|rect|on is the full gradient

CLvR)] = z‘,(ow() = 2 VE (w¥) = 'Zv,(‘(WE Vw“(w)
,t/(’,ffecf 4108 o \/_\/—_/ Q,F Pack exm!‘f'

choice oF (anam delinition of is eqaall | ely graJ/m‘/ over
QNMV\‘\'P I @Xpec"'aﬁb’\ o,l

- P(UMI,[,S
— The algorithm is going in the right direction on average.

Gradient Descent vs. Stochastic Gradient (SG)

e Gradient descent:

* Stochastic gradlent

=

M v

Gradient Descent in Action

Stochastic Gradient in Action

N 2 (w'x,) F)
"\‘(\«/7 - (‘«/7)(1 '71)2
]C (w) = (w' N~ /2)1
fs(w) = (w" X3 = /;) i -
{i (W) = (w Xy /4) w? W
L) = (s ys) Phr) £6) A R
Stochast,
3@"sz
’ MininiZes
! > ,Z)A‘é j:fe)

Stochastic Gradient in Action

f,)
ﬁ(w) = (w-')/g "ﬂ)l
—
= x
w? W W
»
§+o(l\as1‘ic
9’0(‘“47‘
M)WM/?(j
S/ averaqe
- _— Valye

Stochastic Gradient in Action

fe)

[5“’) :(WTx3875)2 ‘ 4

)
WOV W
£

§+ocl\as1‘ic

3/0Jkeﬂf

mming

AVe/aqC

VO\\\Ae

Stochastic Gradient in Action

o)
'ﬁ(w? = (\«/7)(, ’71)2
—
—5—
WO WY "
P w)
§+o(l\as1‘ic
9’0(‘“47‘
/ M)VM'M/?(j
—7 averaqe
) 'o 3 2\, X Value

Stochastic Gradient in Action

{\g (W) = (w'rs ™ ‘/5)2

= 4

§+ocl\as1‘ic
3’0(‘“47‘
Mumw?cj
: averaqe
) ' 0) ‘3:71 X Iy Value

Effect of ‘w’ Location on Progress
FWpa £y A i)

\/\/\—/
W)

(—:vem/ V‘R (W) eré

(—:\,Q,\/ V‘F‘ (W) eré

/ _
* /R.e (N OP (OﬁFU‘SlO/\ ’

Some Vﬂ(w) powﬂl

*OW(NJS V\/)}‘F Gntl
Some dont

po'»m‘s towerds w, PO""“{S fowerds \/\/*

 We'll still make good progress if most gradients points in right direction.

Variance of the Random Gradients

The “confusion” is captured by a kind of variance of the gradients:

‘Z\\W()= VRO

' = ﬂ’adl?uﬁ O'F GV6/01€ 9‘/,.(1”.41

G’x‘“ﬂ,),e /h oves qll elanrler

If the variance is O, every step goes in the right direction.
— We're outside of the region of confusion.

If the variance is small, most steps point in the direction.

— We’'re just inside region of confusion.

If the variance is large, many steps will point in the wrong direction.
— Middle of region of confusion, where w™ lives.

Effect of the Step-Size

* We can reduce the effect of the variance with the step size.
— Variance slows progress by amount proportional to square of step-size.
— So as the step size gets smaller, the variance has less of an effect.

* For a fixed step-size, SG makes progress until variance is too big.

* This leads to two “phases” when we use a constant step-size:
1. Rapid progress when we are far from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)

Stochastic Gradient with Constant Step Size

Stochastic Gradient with Constant Step Size

0
» W

A1)

gang Conver 7 en(e

+0 the ball

- We (an Ji\/hle 'rL\e rodius b-f
\ / qu/, N 2 loy cLI'V‘(c/,',,a “t [’}’ Z
#-—- . (buf dakres /orf)ev/'fo j«"f fo bell)

/‘/(\,\1';0,\) < Q bq” with f‘ml(u)
A FrorOrhoan 1o ot

Stochastic Gradient with Constant Step Size

|
AN
N}
D
N
N
S
-
< ..
S _ ‘
(& bt errelic LeLau/JVJ
b ¢ o jS v\,i"‘/h 0(01) o‘P 0/!1/17"0/ ‘r’(
¥“"’ — T T T T T T = T = fuconver Luvctions
(V"f('f ("/{fﬁ Of)’uw,n"/uns‘)

l\ —_

Stochastic Gradient with Constant Step Size

Olor) reqor is also
cod in bl

Stochastic Gradient with Decreasing Step Sizes

* To get convergence, we need a decreasing step size.
— Shrinks size of ball to zero so we converge to w’.

* Butit can’t shrink too quickly:
— Otherwise, we don’t move fast enough to reach the ball.

e Stochastic gradient converges to a stationary point if:
— Ratio of sum of squared step-sizes over sum of step-sizes converges to O.

I/tla\»v M e h Nnvise qmcls o —) g&f)l
t |

=0

o<t

I/Aobv '/;-/)’Om (‘Mﬂj‘ﬂ’”/7

" NAY

— This choice also works for non-smooth funtions like SVMs.
* Function must be continuous and not “too crazy” (we're still figuring it out for non-convex).

Stochastic Gradient with Decreasing Step Sizes

* For convergence step-sizes need to satisfy: f(‘x /20(=)

 Classic solution is to use a step-size sequence like at= O(1/t).

o o=
Z&t=2d - Z(O(C) Z L <L oo
t= t=1 t < _ €
- K_/-\/‘\/ .
Weé can ae‘f ev?fywl‘ff”t’,\\ /,qucf olp Vol ahee jB"S lo zero
— E.g., at=.001/t.
* Unfortunately, this often works badly in practice:
— Steps get really small really fast.
— Some authors add extra parameters like at = y/(St + A), which helps a bit.

— One of the only cases where this works well: binary SVMs with ot = 1/At.

"

Stochastic Gradient with Decreasing Step Sizes

* How do we pick step-sizes satisfying %{o(‘)z/z_o((=)

e Better solution is to use a step-size sequence like a'= O(1/Vt).
£ o= 2L = 0UF) -
- - - I = J— - (I
t=! ' g=t it (é(dt) (= ¢ 0 K)

— E.g., use ot = .001/Vt
— Both sequences diverge, but denominator diverges faster.

e This approach (roughly) optimizes rate that it goes to zero.
— Better worst-case theoretical properties (and more robust to step-size).
— Often better in practice too.

Stochastic Gradient with Constant Step Sizes?

Alternately, could we just use a constant step-size.
— E.g., use at =.001 for all ‘t’".

This will not converge to a stationary point in general.
— However, do we need it to converge?

What if you only care about the first 2-3 digits of the test error?
— Who cares if you aren’t able to get 10 digits of optimization accuracy?

There is a step-size small enough to achieve any fixed accuracy.
— Just need radius of “ball” to be small enough.

Mini-batches: Using more than 1 example

* Does it make sense to use more than 1 random example?
— Yes, you can use a “mini-batch” B! of examples.
e _ t t flav Ak
w T w | RE 2 VA (W) of bt
‘B ,egts _ 0 C’VOIM//PS
— Radius of ball is inversely proportional to the mini-batch size.

* If you double the batch size, you half the radius of the ball.
— Big gains for going from 1 to 2, less big gains from going from 100 to 101.

* You can use a bigger step size as the batch size increases (“linear scaling” rule).
— Gets you to the ball faster (though diverges if step-size gets too big).

— Useful for vectorizing/parallelizing code.

e Evaluate one gradient on each core.

Polyak-Ruppert lterate Averaging

* Another practical/theoretical trick is averaging of the iterations.

1. Run the stochastic gradient algorithm with a! = O(1/\/t) or o constant.
2. Take some weighted average of the w! values.

—t_ 1) | |
w ~ f \/I(wh Here, Vi S a Scalar g(//h ferm cn/t(/a e
k=1

) —t- k
lc=! ,L/ "We.’c/lﬂ ! oﬁ i’/@rqf[dm lk w — ?’ w
A2
 Average does not affect the algorithm, it’s just “watching”. ¢
e Surprising result shown by Polyak and by Ruppert in the 1980s:

— Asymptotically converges as fast as stochastic Newton’s method.

Stochastic Gradient with Averaging

0
W

A4)

rY\ast (onver 7 en(e

+0 the ball
A\/erac}e O‘F effo']L)(

i [9‘31"0‘\/’0*\:’ (an converqe
oy e
((solulion) I<—Q ball wiTh {‘ml(u)
l . FrorOrhoan 1o ot

A Practical Strategy for Deciding When to Stop

* |n gradient descent, we can stop when gradient is close to zero.

* |n stochastic gradient:
— Individual gradients don’t necessarily go to zero.
— We can’t see full gradient, so we don’t know when to stop.

* Practical trick:
— Every ‘K’ iterations (for some large ‘k’), measure validation set error.

— Stop if the validation set error “isn’t improving”.
 We don’t check the gradient, since it takes a lot longer for the gradient to get small.
* This “early stopping” can also reduce overfitting.

Gradient Descent vs. Stochastic Gradient

A .
_ N~ [ime to \V 1#’0‘49‘\ al /ﬂl ()Xam'o,fj
2
g '
| stochastic
3
>
(@)
E .
—full gradient
trime "

e 2012: methods with cost of stochastic gradient, progress of full gradient.
— Key idea: if ‘n’ is finite, you can use a memory instead of having o, go to zero.
— First was stochastic average gradient (SAG), “low-memory” version is SVRG.

Lagrange Prize in
Continuous Optimization
2018

Mathematical Optimization
Society and Society for Industr

This graph shows how algorithms have become tast and more efficient over time. The horizontal
axis represents time and the vertical axis represents error. Older algorithms (yellow) were very
slow but had very little error. Faster algorithms were created by only analyzing some of the data
(orange). The method was faster but had an accuracy limit. Schmidt's algorithm is faster and has
no accuracy limit. Aiken Lao / The Ubysse

7)

Machine Learning with “n = co

’)

* Here are some scenarios where you effectively have “n = co”:
— A dataset that is so large we cannot even go through it once (Gmail).
— A function you want to minimize that you can’t measure without noise.

— You want to encourage invariance with a continuous set of transformation:

* You consider infinite number of translations/rotations instead of a fixed number.

3=—3 33

— Learning from simulators with random numbers (physics/chem/bio):

after 0:000-ms-and Otransitions

Stochastic Gradient with Infinite Data

Amazing property of stochastic gradient:

— The classic convergence analysis does not rely on ‘n’ being finite.

Previous slide gives examples with an infinite sequence of IID samples.

Approach 1 (exact optimization on finite ‘n’):
— Grab ‘n’ data points, for some really large ‘n’.
— Fit a regularized model on this fixed dataset (“empirical risk minimization”).

Approach 2 (stochastic gradient for ‘n’ iterations):
— Run stochastic gradient iteration for ‘n’ iterations.
— Each iteration considers a new example, never re-visiting any example.

Stochastic Gradient with Infinite Data

* Approach 2 only looks at a data point once:
— Each example is an unbiased approximation of test data.

* So Approach 2 is doing stochastic gradient on test error:
— It cannot overfit.

* Up to a constant, Approach 1 and 2 have same test error bound.
— This is sometimes used to justify SG as the “ultimate” learning algorithm.
e “Optimal test error by computing gradient of each example once!”

— In practice, Approach 1 usually gives lower test error.
* The constant factor matters!

Summary

Step-size in stochastic gradient is a huge pain:
— Needs to go to zero to get convergence, but classic O(1/t) steps are bad.

— O(1/\/t) works better, but still pretty slow.
— Constant step-size is fast, but only up to a certain point.

SGD practical issues: mini-batching, averaging, termination.
SAG and other methods fix SG convergence for finite datasets.
Infinite datasets can be used with SG and do not overfit.

Next time:

— An algorithm that has been dominating Kaggle ML competitions.

A Practical Strategy For Choosing the Step-Size

* All these step-sizes have a constant factor in the “O” notation.
- Eg, O(t: Z <'- How Jo Y d cl'\aaje TA?) (oy\;{‘am‘{?
\I3

* We don’t know how to set step size as we go in the stochastic case.
— And choosing wrong y can destroy performance.

e Common practical trick:
— Take a small amount of data (maybe 5% of the original data).
— Do a binary search for y that most improves objective on this subset.

